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ABSTRACT

Pole-zero spectral models in the frequency domain have
been well studied and understood in the past several decades.
Exploiting the duality between the temporal domain and the
frequency domain, Kumaresan et al[1, 2] have shown that
the pole-zero model of the analytic speech signal in the tem-
poral domain leads to its characterization in terms of the
positive amplitude modulation (AM) and positive instanta-
neous frequency (PIF). In this paper, we carefully define
AM and frequency modulation (FM) signals in the context
of ASR. We show that for a theoretically meaningful esti-
mation of the AM signal, it is necessary to decompose the
speech signal into several narrow spectral bands as opposed
to the previous use of the speech modulation spectrum[10,
11, 12, 13, 14], which was derived by decomposing the
speech signal into increasingly wider spectral bands (such
as critical, Bark or Mel). The estimated AM message sig-
nals are downsampled and their lower DCT coefficients are
retained as speech features. These features carry informa-
tion that is complementary to the MFCCs. A Tandem[5,
16] combination of these two features is shown to improve
recognition accuracy.

1. INTRODUCTION

In past several years, significant efforts have been made to
develop new speech signal representations which can better
describe the non-stationarity (spectral dynamics) inherent in
the speech signal. Some representative examples are tempo-
ral patterns (TRAPS) features[5, 12], MLP based features[6]
and the several modulation spectrum related techniques[10,
12, 13, 14, 15]. In TRAPS technique, temporal trajectories
of spectral energies in individual critical bands over win-
dows as long as one second are used as features for pat-
tern classification. Recently, Sukittanon and Atlas have pro-
posed a multi-scale modulation frequency decomposition
technique for a communication signal classification task[4].
The notion of the amplitude modulation (AM) and the
frequency modulation (FM) were initially developed for the
communication signals[17]. In theory, the AM signal mod-
ulates a narrow-band carrier signal (specifically, a monochro-
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matic sinusoidal signal). Therefore to be able to extract
the AM signals of a wide-band signal such as speech (typi-
cally 4KHz), it is necessary to decompose the speech signal
into narrow spectral bands. We follow this approach in this
paper as opposed to the previous use of the speech mod-
ulation spectrum [10, 11, 12, 13, 14] which was derived
by decomposing the speech signal into increasingly wider
spectral bands (such as critical, Bark or Mel). Similar ar-
guments from the modulation filtering point of view, were
presented by Schimmel and Atlas[3]. In their experiment,
they consider a wide-band filtered speech signal x(¢)
a(t)c(t), where a(t) is the AM signal and ¢(¢) is the broad-
band carrier signal. Then, they perform a low-pass mod-
ulation filtering of the AM signal a(t) to obtain arp(t).
The low-pass filtered AM signal az,p(t) is then multiplied
with the original carrier ¢(t) to obtain a new signal Z(t).
They show that the acoustic bandwidth of Z(t) is not nec-
essarily less than that of the original signal x(¢). This un-
expected result is a consequence of the signal decomposi-
tion into wide spectral bands that results in a broad-band
carrier[3]. We realise that this is not only a serious problem
for modulation filtering[3], but also for modulation spec-
trum analysis (which is used as feature vector for ASR and
is the topic of this paper). As a solution, we propose us-
ing non-overlapping and narrow-band filters to decompose
speech signal, followed by the AM signal estimation in each
band. The usefulness of this modification is further ex-
plained, later on in this paper.

Over the past few decades, pole-zero transfer functions
that are used for modeling the frequency response of a sig-
nal, have been well studied and understood [7, 8, 19]. In this
work we will denote them by “F-PZ”. Lately, Kumaresan et.
al.[1, 2] have proposed to model analytic signals[17] using
pole-zero models in the temporal domain (denoted by T-
PZ to distinguish them from the F-PZ). Along similar lines,
Athineos et. al.[11, 12] have used the dual of the linear pre-
diction in the frequency domain to improve upon the TRAP
features.

An inherent advantage of working with the analytic sig-
nal is that it elegantly allows the decomposition of an ar-
bitrary signal (possibly non-stationary) into its amplitude
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modulation (AM) and frequency modulation (FM) signals.
We make extensive use of T-PZ representation in this paper.
For the sake of completeness and clarity, we state and prove
several interesting time-frequency dualities for the analytic
signals. These properties are then used to develop “mean-
ingful” AM-FM decomposition of the speech signal.

There are two main contributions of this paper. Firstly,
we develop a theoretically consistent AM signal analysis
technique as compared to the previous ones[11, 10, 13, 14,
15]. We show that a “meaningful” AM signal estimation
is possible only if we decompose the speech analytic sig-
nal into several narrow-band filters which results in narrow-
band carrier signals. As a consequence, the unexpected
modulation filtering behaviour reported in [3] can be partly
avoided. Secondly, we use the lower modulation frequency
spectrum of the downsampled AM signal, as a feature vec-
tor (termed FEPSTRUM for reasons to be explained in the
following sections). The Fepstrum provides complemen-
tary information to the MFCC features and a Tandem[5, 16]
combination of the two features provides a significant ASR
accuracy improvement over several other features.

This paper is divided into four sections. In Section 2,
we describe the dual properties of the pole-zero models and
the associated notation. In Section 3, the Fepstrum feature
extraction is described. Through examples, we show how
the bandwidth of the analysis filter influences the estimated
AM signal. In Section 4, experimental results are described
followed by a conclusion in Section 5.

2. POLE-ZERO MODELS (ELEMENTARY
SIGNALS) IN THE TEMPORAL DOMAIN

Traditionally, the pole-zero transfer functions have been used
to approximate a discrete time frequency response which is

inherently periodic with a period of 27. Voelcker and Ku-

maresan have used the T-PZ to approximate analytic signals

in the temporal domain. We recall that given a real periodic'

signal x(¢) with period T seconds, its analytic version s(t)

is given by,

s(t) = «(t) + j&(t) M

where Z(t) denotes the Hilbert transform of z(t). If z(¢) is
band-limited, then so is s(t). Moreover s(t) has non-zero
spectrum for only positive frequencies. Therefore s(t) can
be expressed in terms of a finite number of Fourier series
coefficients at positive frequencies.

)

M
s(t) = el Z apel*
k=0

IThis is not a limitation as in short-time Fourier analysis, we implicitly
make the signal periodic with the base period equal to the I" second long
windowed segment.
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where wy is an arbitrary frequency translation, Q = 27 /T
and M is sufficiently large. Noting that s(¢) is a polynomial,
it can be factored in terms of T-PZ as follows,

(1 — qe’®)

e

P
s(t) = age’** [](1 — pie?™) 3)
=1

-~

1

where P + (Q = M and p; and ¢; are the complex roots,
inside and outside the unit circle respectively. More gener-
ally, if s(t) is not band-limited, it can be represented using
poles and zeros.
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where, p; and ¢; are the zeros inside and outside the unit
circle respectively. The poles u; are guaranteed to be inside
the unit circle as proved in the following lemma.

s(t)

Lemma 1 The T-PZ factorization of an analytic signal s(t)
has all the poles u; inside the unit circle.

Proof: Lets assume that there is a pole 7 = |r|e/? outside
the unit circle, with |r| > 1. The expansion of s(¢) will then
have a term,

A -4 1
(1 —rei®t) — peiflt ] — p—le—i%
—A Ok kot
= i r— e (5)
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where, A is a constant. (5) implies that s(¢) has non-zero
spectrum for negative frequencies. This is in contradiction
to the fact that s(¢) being an analytic signal has zero spectral
energy for negative frequencies. Hence |r| < 1.

The importance of lemma 1 will become apparent later
on. Let us now specify the dual analogues of three well
known properties which are,

e Minimum-phase: Traditionally, minimum phase is a
frequency domain phenomenon. A frequency response
(F-PZ) is termed minimum-phase if all its poles and
zeros are inside the unit circle. Similarly, a T-PZ is
called T-MinP if all its poles and zeros are inside the
unit circle.

e All-pass: Traditionally, all-pass is a frequency do-
main phenomenon. A frequency response, (F-PZ), is
said to be all-pass if its magnitude is unity at all fre-
quencies. Similarly, a T-PZ is called T-AlIP if it has
unity magnitude for ¢ € (—00, 00).



e Causality: Traditionally, causality is a time-domain
phenomenon. A signal z(¢) is said to be causal if it
is non-zero only for the ¢ > 0. Similarly, we define
a frequency response to be F-causal if it is non-zero
only for the f > 0. Therefore, an analytic signal is
F-causal.

With these definitions in place, we are ready to describe the
decomposition of an analytic signal s(t) into its T-MinP and
T-AlIP part which will lead to its AM and FM parts. There-
fore, reflecting the zeros g; inside the unit circle, we get,

j Q
jwe HP: (1_p'e]Qt) * _j
s(t) = ape?t? H;J 1(1 - uz.eth) H(l —1/qr M)
=1 i i=1 J

T-MinP
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T-AllP

We recall the following two well-known lemmas,

Lemma 2 Given a frequency response (F-PZ) X (f)

= | X (f)|e??Y), its phase response ¢(f) is the Hilbert trans-
Sform of its log-envelope log | X (f)|, if and only if the fre-
quency response is minimum phase (i.e a F-PZ with all the
poles and zeros inside the unit circle).

Lemma 3 Given a frequency response (F-PZ) X (f)

= | X (f)|e?®Y), it is minimum phase, if and only if, its com-
plex cepstrum (CC) x.c(n) is causal (i.e xc.(n) = 0,n €
[_007 _1])

The proof of above two lemmas can be found in the
pages 782-783 of [18]. Using the time-frequency duality,
we will state and prove a dual of the lemmas (2), (3).

Lemma 4 Given an analytic T-PZ signal s(t)
_ I 0—pi?®) _ |

— H?=1(l—uiejnt) —
are within the unit-circle (i.e s(t) is T-MinP) if and only if
its phase ¥ (t) is the Hilbert transform of its log envelope

log |s(¢)!.

Proof: Let S(f) be the Fourier transform (FT) of log s(t) =
log |s(t)| + j¥(t). We note that S(f) consists of spectral
lines at integral multiple of 2% and hence is a discrete se-
quence. Lets assume that the phase ¥(¢) is the Hilbert
transform of the log envelope log |s(t)|. This implies that
log s(t) is an analytic signal and hence its FT S(f) is zero
for negative frequencies (i.e. S (f) is a discrete and f-causal

5(t)|e?¥®), all of its poles and zeros

Oonhis Ckan'kb((;t seen by series expansion of log(l — pe/?) =
Dhey PRk
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sequence). Using the duality principle we note thatlog s(— f)
is the FT of S(t). In fact, S(t) is the complex cepstrum(CC)
of a signal whose FT is s(— f). As S(t) has the same func-
tional form as S(f), this implies that S(¢) is a discrete and
causal CC sequence. Therefore in light of lemma (3), it fol-
lows that s(—f) is minimum-phase F-PZ with all the zeros
and poles inside the unit circle. Therefore we get,

s(-f) = Dl =peD)
M7, (1 - uiei®-1)
substituting t for ’-f” we get,

p .
s(t) = Lz (L= pie™)
H?:l(l — u;ei )

This proves that the T-PZ s(t) that is T-MinP results in its
phase being the HT of its log-envelope.

Therefore, using Lemma (4), s(t) can expressed as fol-
lows,

(N

Q
s(t) = ao [ [ (—g) g2 1721 1) )
=1 T-MinP  T-AllP
A,

where A, is a constant, (%) is the logarithm of the AM sig-
nal, &(t) its HT and &(t) + «y(¢) is the phase signal and its
derivative is the FM signal. As &(t) can be determined from
the log AM signal a(t) 3, it forms the redundant informa-
tion and hence is excluded from the FM signal. Therefore,
~'(t) is the FM (instantaneous frequency) signal of interest,
where ’ denotes derivative.

The next step is to develop algorithms that can automat-
ically achieve the decomposition as in (8). Noting that the
all-pole F-PZ as estimated using classical linear prediction
technique is guaranteed to be minimum phase, Kumaresan
et. al. used the dual of linear prediction in the spectral
domain (LPSD)[2], with sufficiently high prediction order
"M, to derive the T-MinP signal. The T-AllP signal was
obtained as the residual signal of the LPSD.

It is well know that the LP technique overestimates the
peaks and poorly models the valley. Moreover, the results
are highly susceptible to the model order "M’ whose actual
value is not known. Therefore, in this work, we use a non-
parametric technique to estimate the AM signals. From (8),
we note that log |s(t)| = a(t) + log(A.), where log(A,) is
a constant over the frame. Therefore the logarithm of the
absolute magnitude of the analytic signal in each band is
an estimate of the corresponding AM signal + a constant
term. In this work, we have used only the AM modulation
spectrum as a feature and the work on FM signal inclusion
in under progress.

3Due to the HT relationship between the two
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Fig. 2. The AM signal derived using narrow-band filters

Fig.1 illustrates our feature extraction scheme. A full-
band analytic speech signal s(t) is decomposed into J lin-
early spaced, non-overlapping narrow bands. We have used
narrow-bandwidth filters to achieve our objective of a more
“meaningful” modulation analysis by keeping the carrier
signal narrow-band (ideally, a sinusoid)[3]. The use of Mel,
critical or Bark scale filters will lead to broad-band carriers
for higher frequencies. We take the log magnitude of the
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Fig. 3. The AM signal derived using broad-band filters

output of each filter to obtain its corresponding AM signal
a(t). The AM signal is then downsampled and its lower
DCT coefficients are retained as the feature vector. To dis-
tinguish this representation from the previous use of the
word “modulation spectrum”[10, 13, 14], which has been
weakly specified/defined in the ASR literature[3], we have
termed this representation as FEPSTRUM. It bears certain
similarity to the cepstrum (due to log followed by DCT op-
eration) while it essentially is a spectrum of an AM signal,
a(t).* The fepstrum features from each band are concate-
nated together, then uncorrelated using a KL transform fol-
lowed by the dimensionality reduction. This representation
is then fed to a Tandem[5, 6, 16] system to finally derive a
Fepstrum-Tandem feature. In Tandem modeling, phoneme
aposteriors obtained at the output of the MLP, which has
been trained to classify phonemes, are used as features in a
usual HMM-GMM system.

Fig.2 illustrates the case when we use narrow-band fil-

4the name FEPSTRUM denotes this dual nature
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ters to decompose the speech analytic signal, followed by
the AM signal estimation in each band. Second and third
pane shows the narrow band-pass filtered speech signals and
their corresponding AM signals. We note that these AM
signals are low modulation frequency signals. The narrow
band-pass filters used have band-widths 160 Hz and 104 Hz
respectively. Fig.3 illustrates the case where a broad-band
filter (bandwidth 533 Hz) has been used. For voiced speech,
each pitch harmonic can be roughly seen as a monochro-
matic sinusoidal carrier signal. The spectrum of the signal
at the output of a broad-band filter will have several pitch
harmonics in it and therefore will violate the condition of
a narrow-band carrier signal. As can be noted in the Fig.3,
the pitch component manifests itself as sharp spikes in the
AM signal. Therefore a modulation spectrum of this AM
signal will reflect the pitch frequency as well, which is un-
desirable in the context of a speaker independent ASR sys-
tem. We present these arguments to justify our choice of the
non-overlapping narrow-band filterbank instead of a criti-
cal, Bark or Mel-scale filterbank, in the Fepstrum estima-
tion.

4. EXPERIMENTS AND RESULTS

In order to assess the effectiveness of the fepstrum features,
speech recognition experiments were conducted on the OGI
Numbers corpus [21]. It consists of spontaneously spoken
free-format connected numbers over a telephone channel.
The lexicon consists of 31 words.’> The Fepstrum features
were extracted as per the scheme outlined in Fig.1. We used
20 linearly spaced, non-overlapping rectangular filters to
decompose the speech analytic signal into narrow-band sig-
nals of bandwidth 200Hz each. The AM signal is obtained
as the logarithm of the absolute magnitude of the narrow-
band filter output. At this stage, the AM signal has the same
sampling frequency as the original speech signal (8K H z).
As can be noted in the Fig2, the AM signals are low mod-
ulation frequency signals. Therefore, we filter the AM sig-
nals through a low-pass filter of cutoff-frequency 200 Hz
and then downsample them by a factor of 40. Long rectan-
gular windows of size 85 ms were used to frame the narrow
band-pass filtered analytic signals. This was done to ensure
that we have sufficient number of samples after downsam-
pling the AM signal. We chose a rectangular shape of the
window to avoid any artificial tilt in the lower DCT coef-
ficients. We then retain its first 5 DCT coefficients (Fep-
strum) that correspond to [0, 50] Hz. Fepstrum sub-vector
from each band are concatenated together to form a vector
of dimensionality 100 (5 x 20). We perform a KL transform
on this vector, followed by dimensionality reduction to ob-
tain a 60 dim. feature vector. These features are then fed to
a trained multi-layer perceptron (MLP) to obtain phoneme

Swith confusable words like nine, ninety and nineteen.
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aposteriors which are again KL transformed to obtain 27 di-
mensional Tandem-Fepstrum features®. Tandem[5, 6, 16]
has been shown to be an effective technique for combin-
ing different kind of features. Fepstrum being a modulation
spectrum carries information that is complementary to the
usual spectral envelope based MFCC features. Therefore
we have concatenated MFCC feature with the Fepstrum-
Tandem features.

Mel-frequency cepstral coefficients (MFCC) and their
temporal derivatives along with cepstral mean subtraction
have been used as additional features. For comparison, four
feature sets were generated:

1. [T-MFCC:] 27 dim. Tandem representation of MFCC
+ delta features.

2. [T-Fepstrum:] 27 dim. Tandem representation of Fep-
strum features

3. [Concat. MFCC+ (T-MFCC):] (27+39) dim. feature
vector which is a concatenation of the MFCC and
Tandem-MFCC

4. [Concat. MFCC+ (T-FEPSTRUM):] (27+39) dim. fea-
ture vector which is a concatenation of the MFCC and
Tandem-Fepstrum features.

All the above features were then used in a Hidden Markov
Model and Gaussian Mixture Model (HMM-GMM) based
speech recognition system that was trained using public do-
main software HTK [20] on the clean training set from the
original Numbers corpus. The system consisted of 80 tied-
state triphone HMMs with 3 emitting states per triphone
and 12 mixtures per state. Table 1 indicates the perfor-
mance of these feature sets. T-Fepstrum features have only
the modulation frequency information and hence they per-
form slightly worse than the T-MFCC feature. However, as
they carry complementary information, their concatenation
(MFCC+T-FEPSTRUM) results in the lowest (4.1%) WER.
For a fair comparison, we compare this to a concatenation of
the MFCC+ T-MFCC features which has a WER of 4.6%.
This is an encouraging result and we are further working on
the feature represenations that will include the FM signal
information in it. This may improve the results further.

Table 1. Word error rate (WER) in clean conditions

T-MFCC 5.2
T-FEPSTRUM 5.5
Concat. MFCC+ (T-MFCC) 4.6
Concat. MFCC+ (T-FEPSTRUM) | 4.1

Seach dimension corresponds to a monophone which are 27 in number



5. CONCLUSION

We have extended the work of Kumaresan[2] to develop a
theoretically sound AM-FM decomposition technique suit-
able for ASR application. We point out to the deficiency in
the previous use of the modulation spectrum that was caused
due to the use of the broad-band filters. Finally we present
a suitable representation of the AM signal in form of the
lower modulation frequencies of the downsampled AM sig-
nals in each band. A concatenation of the MFCCs with
the Tandem-Fepstrum features achieves the lowest WER
(4.1%). We are further working on new representations to
include the information carried by the FM signal as well.
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