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ABSTRACT

Bayesian parameter estimation techniques such as Linear Mini-
mum Mean Squared Error (LMMSE) often lead to useful MSE
reduction, but they also introduce a bias. In this paper, we in-
troduce the concept of Component-Wise Conditionally Unbiased
(CWCU) Bayesian parameter estimation, in which unbiasedness is
forced for one parameter at a time. This concept had already been
introduced in symbol detection a decade ago, where it led to unbi-
ased LMMSE receivers and in which case global CU corresponds
to Zero-Forcing. The more general introduction of the CWCU
concept is motivated by LMMSE channel estimation, for which
the implications of the concept are illustrated in various ways, in-
cluding the effect on error probability in Maximum Likelihood Se-
quence Detection (MLSD), reprecussion for blind channel estima-
tion etc. Motivated by the channel tracking application, we also
introduce CWCU Kalman filtering.

1. INTRODUCTION

In most applications, estimator designs are subject to a tradeoff
between bias and variance. Bias is due to mismatch’ between the
average value of the estimator and the true parameter (conditional
bias); whereas variance arises from fluctuations in the estimator
due to statistical sampling.

One way to fix this tradeoff is to develop bounds on the best
achievable performance in estimating parameters of interest, as
well as determine estimators that achieve these bounds. Using the
Biased Cramer-Rao Bound B-CRB (which bounds the total MSE),
we can bound the MSE of any estimator & with a given bias vector
b(0) by
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where J(0) is the Fisher Information Matrix, and D(0) = d”a—g(e)
is the bias gradient matrix.
Ideally, we would like to minimize (1) over all estimators and
hence over all bias vectors b(#). Unfortunately, if no limitations
are imposed on 9, an estimator can always be found that makes

both the bias and variance zero at a given point 8. Thus, the mini-
mal bound is the trivial (zero) bound.
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Thus, instead of attempting to minimize the MSE over all
possible estimators, we may restrict attention to estimator with
a bias vector that lies in a suitable class. Traditionally, we con-
sider the class of unbiased estimator. The MSE is bounded by the
CRB. It can also be shown that for a Gaussian linear model, the
Maximum Likelihood (ML) estimator achieves the CRB; and that
is asymptotically unbiased for independent identically distributed
(iid) measurement (under suitable regularity assumption).

For biased estimator, given a specified bias, the B-CRB serves
as a bound on the smallest attainable variance. It turns out that the
B-CRB does not depend directly on the bias but only on the bias
gradient matrix. However, it may not be obvious how to choose a
particular bias gradient. Hero et al. propose the Uniform CRB (U-
CRB), which is a bound on the smallest attainable variance that
can be achieved using any scalar estimator with a bounded bias
gradient norm [1]. Reference [2] extends the U-CRB for vector
parameter, and develops a class of estimators that asymptotically
achieve the bound when estimating an unknown vector from iid
vector measurements. However, Shahtalebi and Gasor show that
for a linear model, the U-CRB is achievable by a class of linear
estimators [3]. All estimators in this class have the same variance
and the same gradient matrix. However, their performances (in
terms of achievable MSE) are not the same. They conclude that the
B-CRL is not a sufficient criterion to design optimal estimators.

Eldar consider the minimization of the MSE bound under a
linear biased constraint[4]. In fact, bias vectors are allowed to be
linear in 6, so that b(6) = M6 for some matrix M (which in-
clude unbiased estimation as a special case). An advantage of this
class of estimators is that we can use results on unbiased estimating
to find estimators that achieve the corresponding MSE bound. In
fact, if 6 is an efficient estimator, i.e., an unbiased estimator that
achieves the CRB, the § = (I + M), achieves the MSE bound
for estimators with bias is equal to 5(9) = M6. The problem is
that minimization cannot be solved in the general case. However,
the author shows that there often exists linear biased vectors that
results in an MSE bound that dominates the CRB. The dominating
bound can be obtained by solving a certain minimax optimization
problem.

If prior information on the parameter statistics is available,
Bayesian estimation theory shows that under Bayesian unbiased-
ness constraint, the MSE is bounded by the Bayesian CRB. Bayesian
unbiasedness for random parameters corresponds to unbiasedness
on the average, which is a very weak requirement. So that, we



can achieve better bias vs. variance tradeoff. In recent years, the
Bayesian formulation of channel estimation has become popular,
as it allows for instance the exploitation of the power delay profile.
This allows to reduce the number of parameters to be estimated
from an a priori delay spread range to the effective delay spread of
the power delay profile. For SIMO, MISO or MIMO channels, the
Bayesian formulation allows to exploit correlation between anten-
nas and reduce the number of parameters from the physical number
of antennas to an effective number of uncorrelated antennas. When
the channel is fading in time, the Doppler spectrum and hence cor-
relation in time can be exploited via Wiener or Kalman filtering to
further reduce the MSE.

In all these cases, estimation lead to biased channel estimates.
This bias is detrimental for a number of applications: MLSD in
a SISO system using the Viterbi algorithm (the bias is as detri-
mental as in biased LMMSE symbol receivers), fitting a paramet-
ric (pathwise) model to the channel impulse response, or using
the channel estimate for the design of the receiver or the trans-
mitter. The type of unbiasedness that is required here is condi-
tional unbiasedness (where unbiasedness for Bayesian estimation
corresponds to unbiasedness on the average, which is very weak
requirement). However, conditional unbiasedness for vectors of
parameters is usually introduced globally, requiring all parame-
ter components to be jointly unbiased. However, such a stringent
requirement, which corresponds to zero-forcing when the parame-
ters are multiple symbols, prevents the exploitation of correlations
between the parameters, and hence leads to a significant reduction
in the benefits brought about by the Bayesian framework, the prior
knowledge.

This motivates us to introduce the Component-Wise Condi-
tionally Unbiased (CWCU) Bayesian parameter estimation. In-
stead of constrainting the estimator to be globally unbiased, i.e.,

E/q (57 0) = 0, we impose conditional unbiasedness on one
parameter component at a time, i.e.,
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where By, [Z(Y, X)] = By [Z(Y,X)|2] = / 2(Y,2) fy o (yl2)dY

denotes the expectation of Z(X,Y") on Y conditionally to X = ;
and 0 = [0, - - - 0x]|" is the parameter vector to be estimated.

In such way, the parameter of interest is constrained to be condi-
tionally unbiased. Other parameters are treated as nuisance param-
eters. Note that the component-wise concept can be defined at dif-
ferent levels. For example, if we consider Multi-channel impulse
response estimation; the component-wise concept can be defined
at scalar lever (by considering conditional unbiasedness separately
for different channels and time lags). It can also be defined at a
block level (by considering conditional unbiasedness jointly for
different channels, and separately for different time lags).

This paper is organized as follows. In section 2, we investigate
lower bounds for the CWCU estimation. The CWCU-LMMSE es-
timation, and CWCU linear filtering are derived respectively in
sections 3, and 4. Application of the concept for channel estima-
tion for mobile localization is presented in section 5.

2. LOWER BOUNDS FOR CWCU-MMSE ESTIMATION

We consider the estimation of a random parameter vector § =
[61---0x]T given a set the measurements collected in Y. The

MMSE parameter estimation under the component-wise condi-
tionally unbiasedness constraint can be formulated as:

S
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It is easy to see that the minimization problem is separable, and O
is a solution of
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Without loss of generality, we can assume that 6 can be decom-

posed as #T = [9F OF]. A Bayesian lower bound on the error
variance is given by,
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where Jopp i = EY‘Gk(aln];(;:Gk)><3lnj(;(93k/\9k)) is the Fisher

Information Matrix (FIM) where 6, is considered as deterministic,
and 0, as nuisance parameters.

To evaluate the above expression, we should evaluate the condi-
tional pdf with respect to 0y:

f(Y|9k):/f(Y,§k|9k) dék:/f(Y|9)f(§k|9k)d§k

Usually, the above bound is difficult to compute because either the
above integration is not solvable, or the resulting expectation is
not analytically tractable. This difficulty motivates the use of the
modified Cramer-Rao bound (MCRB) (introduced by D’Andrea et
al. in [5]),
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where Jycrp k= Ey_’ékwk(alnggw)) (amg{}(:w)) .

With respect to the classical CRB, The MCRB is much easier to
compute, but generally lower. The problem is that the MCRB can
be not tight enough for use in paractical applications.

Another approach to facilitate the calculation of the CRB is to re-
sort the CRB of the joint estimation of the desired parameter to-
gether with the nuisance terms [6]. Under the CWCU constraints,
the estimation problem becomes
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Note that only §k is of interest; 6, is only estimated to reduce the
interference. In such way, the component of interest gets treated
as deterministic whereas the other (correlated) parameter compo-
nents continue to be treated as Bayesian. So that, other compo-
nents are estimated better (taking into account prior information);
as well as the component of interest (due to the coupling through
prior and/or data).

As in the Bayesian and deterministic case, a performance bound on
CWCU estimation can be defined based on the Fisher Information



Matrix (FIM). The FIM for component-wise conditional estima-
tion problem with respect to the parameter 6. can be defined as:

oln f (Y,§k|9k)><8lnf (Y,§k|0k)>T
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The Hessian of In f (A|Y") can be formulated as:

9 <Blnf(Y,6k|0k)>T 1 P <8f(Y,6k|0k)>T
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For the expectation of the first term, we get
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Thus, using Bayes’ rule, (6), and (7), the CWCU-FIM can be
decomposed onto:
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As expected, we see that J}’,:"‘” + IR > T > It since
the CWCU estimation exploits the correlation between the param-
eters, and imposes an unbiasedness constraint for the parameter of
interest.

Using the Schur components lemma, and the block matrix inver-
sion formula, one can show that the error variance is bounded by:
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where Jyorp k= J/k(9k79k)—J/Tk(9k7ék)J/_kl(gk,ék)J/k(%gk):
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Remark that if 6, and 6y, are independent J, (6x, 0x) = JrcrB k-
JucrB,k, and Jucrp,, overlap if and only if there is no cou-
pling between the different parameters (through prior nor data).

Now, we consider a linear Gaussian model
y=HO0+wv (10)

where y is the received signal,  ~ N (0, Cipe) is the parameters to
be estimated, and v ~ N (0, C») is a Gaussian noise independent
with 6.

One can show that,

Jorsk = Cpy, CopoH'
-1
X(CUUH (Cee — C@ekcgklgk C'ek,e) HT) ngkCgklek
Jrucrer = hi Coyhi
Jie = Cog — Corg ehen + H Cpl H

where e, = [0---010---0] is the k*" element of the standard
RX basis; and h, = Hey, is the k*" column of H. Using Monte
Carlo simulations with the linear model, we obtain:

-1 -1 -1
JCRB,k > JHCRB,k > JMCRB,k

3. CWCU-LMMSE ESTIMATION FOR LINEAR
GAUSSIAN MODEL

We consider a linear Gaussian model (as in (10)); and we assume
that the additive noise is white (Cy, = 07 1).
As 6 and y are jointly Gaussian, minimizing the MSE leads to the
LMMSE estimator:
~ ~ 2
Orvyvse = arg min B HG - 9H
0=Fy

1
(o2ca + HHH> HYy

Under the unbiasedness constraints, minimizing the MMSE
leads to the BLUE estimator
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LMMSE and BLUE estimators are related by
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where B represents the bias of the LMMSE estimation.
Under the CWCU constraints, one can show that
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Thus, in the CWCU-LMMSE estimation, the component of inter-
est 0y is treated as deterministic, whereas the other (correlated) pa-
rameter components 6, continue to be treated as Bayesian. From
(11), we have

Ocwevrmmsek X O0LMMSE k

Thus

boweovrmmse = D Oummse (12)

where D = diag(B)™" is a diagonal matrix that ensures the
component-wise unbiasedness constraint.

If the parameters are decoupled (B diagonal), the CWCU-LMMSE
corresponds to the BLUE estimation. The CWCU-LMMSE esti-
mation is of interest if there is a coupling through prior (Cye is not
diagonal), and/or data ((H " H) is not diagonal).

Remark that from linear multi-user detection (Cyy is diagonal), the
CWCU-LMMSE estimation corresponds to the Unbiased LMMSE;
whereas, the (jointly) conditionally unbiased estimator (BLUE)
corresponds the MMSE-ZF.

4. THE CWCU LINEAR FILTERING

Consider two stochastic processes {xx },.c , and {yx } . , that are
correlated. We observe the process y; but we are interested in the



process xj, that we cannot observe. The linear estimation of xy,
form y;, can be formulated as a filtering operation, i.e.,

Ty = f(Qyr = Z Jivk—i (13)

where f(q) = 3", fig~ " isagiven linear filter; and ¢ is the one
sample time delay operator.
We assume that

where B represents the filtering Bias. Note that if {yz,xx}, are
jointly Gaussian, or if yy is a linear mixture of independent param-
eters x, the previous assumption is valid.

From (14), one can show that the bias B is given by

E[m,?] (E [mkkaD_l (15)
;fiE [yi—kl'kH] Ry = 7{f(z)Syz(z)%R;m1

B

If x;, is a stochastic vector process, the notion of “component-
wise” can be defined on different levels:

- per vector sample (removing bias using B~1).

- per scalar sample (removing bias using diag (B) ™).

In the following, we will derive the bias update for the Kalman,
and Wiener filtering.

4.1. CWCU Kalman filtering

Consider the signal process model

Trt1 = Frar + Grug
’ (16)
Y = HpTr + vk
where F,Gx, and Hj are given matrices. The initial state zo, the
driving disturbance u, and the measurement disturbance v, are
unknown complex vectors. The output y; is assumed known for all
k. We assume also that E [zoz' | = Re0, E [uruf’] = Qdwi,
E [U}Cle] = R(Skl, and £/ [ukle] =0.
Using Kalman update equations [7], one can show that the
Kalman Bias can be updated using:
Ry k1= FkRz,kFIfI + GkQGkH
B = (FB{" Ru ) Ry b an

B = (I — Ky p41Hys1) BYYS'+ K epr Higr

where R, . = E (zxxf ) is the corelation matrix of z., BY.', B{*":

represent respectively the time and the measurement update of the
Kalman bias matrices, and K y,j, denotes the Kalman filtering gain.
4.2. CWCU Wiener filtering
Consider the signal process model

Yk = Tk + Vg (18)

where xj, is the desired signal to be estimated, and vy, represents
an additive noise (assumed to have zero mean, and to be uncorre-
lated with the signal of interest xy).

Using (15), one can show that the bias of the Wiener, and the
causal Wiener filters are given by

Buiener = f Sacx(z)sy_yl(Z)Sgcx(Z)%) Rz_l
Beansel — f (1— Sun(2)E 1 A2) sm(z)%) R

where Sy, (2), Sz (z), and Sy, (z) represent respectively the spec-
trum of the observed, desired, and noise signals, where A (z) de-
notes the optimal prediction filter for the observed signal y, and
Y is the associate prediction error variance.

If we consider the signal process model given in (16). If we
assume the F, Gk, and H, are time invariant, one can show that
in steady state we have

Sea(z) = H(zI—F) 'GQGH (z[ - FH) T
Sww(z) = R (19)
Sex(z) = HSw(2)HY + R

Anderson and Moore show that the causal Wienner solution of the
prediction problem is [7]

Hiienin(2) = (21 = F(I - K;H)) ' KH (20)

The bias matrix is then given by

BR, = i (F — FK;H)* kH (FH)HI 1)
k=0

which correspond to the steady state Kalman Bias (that we can
derive using (17)).

5. CWCULMMSE CHANNEL ESTIMATION

In this section, we will focus on one particular problem setting, in
which the channels from different Base Stations to a mobile station
need to be estimated jointly, for a mobile localization application.
The estimation of the transmission channel has a crucial role in
communications systems (for mobile positioning applications, multi-
user detection...). Channel parameters are observed indirectly by
the received data : convolved with a known training sequence and
embedded in a white Gaussian noise.

M
y=> Xihp+v (22)

k=1

where -
e y = [y1---yn] denotes received data on a given idle pe-
riod. IV is the idI%period length.
e v = [u;---vn| represents the additive white gaussian
noise.
e M is the number of detected base stations. )
® hy = [Ak,1---hgr,] denotes the channel impulse re-

sponse between the MS and the k" base station. L, is k"

CIR length.
1 I
o X = : isan N x L matrix char-
TN **+  TN4L-1

acterizing the training sequence of the k‘" base station.



Using a compact notation, received data can be written as:

y=Xh+wv (23)
where X = [X; -+ Xu],and h = [A] - ~~hf/,]T
Whereas the direct use of the Bayesian channel estimate for
an interfering signal allows to better suppress of interference, its
use for the user of interest may lead to bias problem. The fact
that can undesirable for Mobile localization applications (as TOA
is estimated by fitting a parametric model of the channel impulse
response). That motivate the use of the CWCU-LMMSE chan-
nel estimation, in order to exploit the prior knowledge about the
power delay profile, while ensuring the estimator unbiasness (in
the component-wise sense [8]).

The linear Minimum Mean Square Error (LMMSE) estimator
is given by:

- _ 1 |
hoymMsE = (Chhl + = XHX> — XHy
o2 o2
2 H -1 1 - H L H
::(UUCX X) Cﬁl+l) CX X) XHy
B
=B herLur (24)

The component-wise Unbiasness constraint can be formulated as

E[ﬁhﬂth = hn; k=1:M,j=1:Ly (25

By minimizing the MSE, we have
heovimmse = (diag(B))_l B hpLue (26)

5.1. SIC implementation of the CCULMMSE estimator

The inherent complexity of the CCULMMSE scheme is cubic (as
the technique requires the inversion of a, non necessarily Toeplitz,
matrix). For practical implementation, Successive Interference
Cancellation (SIC) approach can been used to approximate the
CCULMMSE estimator; with, only a linear complexity.

Successive Interference Cancellation is a nonlinear type of
multi-channel estimation scheme in which CIR’s are estimated
successively. The approach successively cancels strongest chan-
nels. Assume that channels have been ordered in order of decreas-

2 .
ing SN R, = Zzlhil

U’U
(strongest) channel impulse response estimation is produced by a
simple matched filter,

at the channel estimator input. The first

h = Xily 27

After making an unbiased estimate of the CIR, the LMMSE esti-
mator is derived, the interfering signal is recreated at the receiver,
and subtracted from the received waveform.

~ —1 ..
hlLMMSE _ (Ugch_hl + diag (X1HX1>> h1
i = XlﬁlLMMSE

Yy =

Note that, even if X X can not be approximated as diagonal,
non-diagonal elements of X X, can be neglected (as the number
of unkown is M times less).

In this manner successive base stations does not have to en-
counter interference caused by initial base stations. SIC leads to
good performance for all channel estimates: initial CIR estimates
improve because the later channels are given less power which
means less interference for the initial channels, and later CIR esti-
mate improve because early BS’s interference have been cancelled
out. Figure 1 shows that the the SIC well approximate the CCUL-
MMSE estimator (specially for low SNR).
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Fig. 1. CIR estimation accuracy using MF, BLUE, CCULMMSE,
and SIC estimators
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