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ABSTRACT

A key building block in music transcription and indexing oper-
ations is the decomposition of the music signal into notes. We
model a note signal as a periodic signal with (slow) global varia-
tion of amplitude (reflecting attack, sustain, decay) and frequency
(limited time warping). The bandlimited variation of global am-
plitude and frequency gets expressed through a subsampled repre-
sentation and parameterization of the corresponding signals. As-
suming additive white Gaussian noise, a Maximum Likelihood ap-
proach is proposed for the estimation of the model parameters and
the optimization is performed in an iterative (cyclic) fashion that
leads to a sequence of simple least-squares problems. Particular at-
tention is paid to the estimation of the basic periodic signal, which
can have a non-integer period, and the estimation of the amplitude
signal with guaranteed positivity.

1. INTRODUCTION

Sinusoidal model based music analysis/synthesis has received con-
siderable interest in the computer music community [4, 5, 6]. The
sinusoidal transform, originally developed by Quatieri and McAulay
[3], represents a signal as a sum of discrete time-varying sinusoids
or partials:

s(t) = 3 Aw(t) cos (6i(t)) - )

k=0

The estimation of the model parameters is typically carried out
using a short-time Fourier transform (STFT) with a fixed analy-
sis frame size and a fixed stride between frames. The sinusoids
are extracted by peak-picking in the STFT magnitude spectrum.
Intermediate values are obtained by interpolation. A fundamen-
tal problem faced by the traditional sinusoidal-model based tech-
niques, and which arises due to the STFT, is smearing of the fre-
quency response [8, 7]. In fact, over the period of a single analysis
frame, the algorithm estimates the amplitude, frequency and phase
of any sinusoids it believes to be present. Because of the near log-
arithmic scale of pitch perception, we need very long windows in
order to accurately estimate the pitch of low frequency partials.
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On the other hand, the time resolution of these parameters is only
as fine as the window length, itself. And, since the music signal
is strongly non-stationary , it is not always possible to find a good
tradeoff between time and frequency resolution. Also, determining
the sinusoid parameters from the STFT peak amplitude and phase
only works well for high frequency resolution, high SNR and in
the absence of modulation.

Another drawback of these techniques is that they ignore the
harmonic structure of the music signal. In fact, they consider the
signal as a mixture of a finite number of arbitrary sinusoids, and
not as a periodic signal. For treating periodic signals, the state of
the art is limited to the estimation of pure periodic signals with
period equal to an integer number of samples [1, 2]. In these ref-
erences, the authors propose a Maximum Likelihood approach to
analyze pure periodic signals. They show that the resulting pro-
cedure can be interpreted as a signal projection onto suitable sub-
spaces.

This paper extends the results of those references, and tries

to merge the modulated sinusoidal modeling and the periodic sig-
nal analysis techniques, by considering periodic signals with non-
integer period and global amplitude variation and time warping.
The use of this model gives a compromise between reality and a
parsimonious parameterization. Indeed, global amplitude varia-
tion reflects mostly attack, sustain, and decay of the whole note
signal. Whereas, the global time warping allow the capture of vi-
brato and sliding notes. With an eye on future extensions to poly-
phonic sounds, the method should be able to work in fairly low
SNR. Hence it is important to have parsimonious parameteriza-
tions in order to limit the estimation noise. The motivation for the
proposed model is to provide a good compromise between approx-
imation noise and estimation noise.
In music, the nominal frequency of a note is known. So we assume
an analysis exploring the hypothesis of the presence of a note at
any possible nominal note frequency. However, we do not treat
the harmonics of a note signal separately as a simple filter bank
approach would do (this is basically the state of the art in music
signal analysis). Rather, the energy in all harmonics is exploited
jointly through the treatment of the complete periodic signal, in or-
der to robustify the detection of the note signal and the estimation
of its modulation characteristics. The Global Modulation (GM) as-
sumption helps the separation of note signals that have harmonics
in common.

This paper is organized as follows. In section (2), the global
modulation model is presented. The extraction procedure will then
be derived in section (3). Performance of the algorithm is evalu-



ated in Section (4), and finally a discussion and concluding re- For simplicity, we shall assume that a certain degree of oversam-
marks are provided in section (5). pling has been performed so that simple linear interpolation (corre-
sponding to a triangular interpolation filter) produces good results.

5 SIGNAL MODEL In that case, the matrix F is given by

In the sinusoidal modeling, the signal is modeled as a sum of ﬂl 12,8 00
evolving sinusoids as in (1), where 6;(t) represents the instan-
taneous phase of the k** partial. As the music signal is quasi-
periodic, 6 (t) can be de composed into P 5)
b (t) = 2mktfo + 2mpi(t) ) 0 AT 1T
AT - AT
where () characterizes the evolution of the instantaneous phases .
around the k** harmonic; and can be assumed to be low-frequency. L : .
The Global Modulation assumption implies that all harmonic am-
plitudes evolve proportionally in time; and that the instantaneous where 8 = 1 — % This is a banded matrix with in every row
frequency of each harmonic is proportional to the harmonic index: only two consecutive (in a modulo sense) elements being non-zero,
providing a convex combination of two available samples to ap-
{ Ag(n) = A A(n) @) proximate an intermediately positioned sample.
2rpr(n) =21k p(n) + ®x The same approach can be used to take into account a given
time warping by considering f(t) = fo + ¢ (t), being a piece-
In summary, we model an audio signal as the superposition of har- wise constant function of time (see figure 1). As a result, the phase
monic components with a global amplitude modulation and time becomes a piecewise linear function of time. The time period 7}
warping (that can be interpreted in terms of phase variations): over which the instantaneous frequency is supposed to be constant
is chosen such that % exceeds (well) the (assumed) bandwidth of
y(n) = s(n) + v(n) variation of the instantaneous frequency. As a result, the frequency
= >_; Ak(n) cos (2mknfo + 2mpr(n)) + v(n) and hence phase variation gets parameterized by the subsample
= A(n) Y, Ak cos (27rkf0 (n + %) + <I>;c) + v(n) values at rate TLl The way the figure 1 should be interpreted is that
the line indicates for each row of the matrix the point for which an
where - v,, is an additive white Gaussian noise. interpolation value has to be provided. In the case of simple linear
- A(n) represents the amplitude modulating signal interpolation the two matrix elements on that row surrounding the
- () denotes the phase modulating signal (that can intpesection of the line with the row will correspond to an appro-
interpreted in terms of time warping). priate convex combination.
2.1. Global Phase/Frequency Modulation
Consider, first, the case of a pure periodic signal:
s(n) = ZAk cos (2mknfo + @) . (4)
k
F =
If the fundamental period 7' = % is an integer, then 8 = [4(1) - - - 6(T)]",
the signal over one period, is sufficient to describe the totality of
the periodic signal S = [s(1) -- - s(V)]* [1, 2]:
Ir ly
S=| It |o=ry
where the column space of F' corresponds to the signal subspace Fig. 1. Interpolation matrix structure
for a periodic signal of period T'. When T is not integer, we shall
take the vector # of size [T"] (and not longer, to minimize identi-
fiability problems). Hence 6 contains a set of sufficient statistics 2.2. Global Amplitude Modulation
to describe the whole periodic signal. To generate the periodic
signal vector .S exactly, the interpolation matrix F' would become While time warping focuses on the time evolution of the instanta-
quite complex. If we want to obtain approximate interpolation and neous frequency, and allows the modeling of several musical phe-
work with FIR interpolation filters, we could extend @ in length nomena (vibrato, glissando ...), the global amplitude-modulating
by the length of the FIR filter to be used and introduce an F' of signal allows an evolution of the note power, reflecting attack, sus-
similar structure as in (5), but with the identity matrices replaced tain, and decay. The amplitude signal is assumed to be a non-

by banded blocks corresponding to the (time-varying) FIR filter. negative low-pass signal. Hence it can also be represented as an



interpolated version of a subsampled signal (see further). So the
audio signal can be written as:

=AF0+V (6)
——
=S

where :
Y =[y1)- - y(N )]T represents the observation vector
-8 =[s(1)---s(N)]7, represents the signal of interest
-V =[v(1 )---11( )]%, denotes the noise vector
-0 =16(1)---6([T7)], characterizes the harmonic signature over

essentially one period

- A = diag[A(1) - - - A(IV)], represents the global amplitude mod-
ulation signal

- Fisan N x [T interpolation matrix characterizing the time
warping.

3. PERIODIC SIGNAL EXTRACTION PROCEDURE

The previous model is linear in 8, A, or F' (separately), F' being
parameterized nonlinearly. Trying to estimate all factors jointly is
a difficult nonlinear problem. Indeed, as the noise is assumed to be
a white Gaussian signal, the ML approach leads to the following
least-squares problem:

. ;o 2
min |y —AF 0]

where A and F are parameterized in terms of subsamples. The
estimation can easily be performed iteratively though.
3.1. Periodic Signature Estimation

If we assume that the matrices X, Fare given, the periodic signa-
ture 6 can be isolated as

Y =AF0+V=H6+V (8)
Then minimizing (7) w.r.t. 6 leads to
~ ~pm o ~\ —1 ~
§= (HTH) a2y . )
Hence the periodic signature gets estimated by using the data over
the whole note duration.

3.2. Instantaneous Amplitude Estimation

The amplitude signal could similarly be estimated from (7) by iso-
lating F and . However, such an estimation procedure would not
guarantee positive values for the estimated amplitude signal. Al-
ternatively, consider performing the square of the note signal:

s>(n) = A%(n) (X, Ak cos(2mknfo + 2mkp(n) + <I>k))2 (10)

= A%(n) 2 + (high freq. terms)

[T]
where 62 = Z A2 = fﬂ Z

power of the perlodlc signal. Taklng into account an additive noise
leads to:

y?(n) —v*(n) = A>(n) 82 + 2s(n)v(n) +
N—— -
signal noise

|9|| denotes the

(high freq. t.)

from which we shall estimate A?(n) via least-squares. \We propose
to express the low-pass character of A(n) by taking A(n) to be
piecewise constant (so that A%(n) is also piecewise constant) over
time frames that are a multiple of 7" (so that the high frequency
terms get suppressed well). The length of these time frames (which
can differ from T4, which is typically longer since the frequency
varies more slowly than the amplitude) can be time-varying, to ac-
comodate for the time-varying speed of variation of the amplitude
(attack versus decay). Thus, A(n) gets estimated using:

~

= () - ) =5@)Y),

where (. ), denotes temporal averaglng over the piecewise inter-

val containing n; S = AF® denotes the latest estimate of the
signal of interest.

3.3. Instantaneous Frequency Estimation

As for the instantaneous amplitude, the instantaneous frequency
gets estimated on a frame-by-frame basis. In each frame, the in-
stantaneous frequency is optimized using (7):

min AF )6 H
L]\:ff <, (12)
0

where A f denotes the maximum relative frequency variation in
the current frame compared to the previous frame, reflecting an
assumed limited frequency variation rate. The optimal instanta-
neous frequency value for the current frame gets determined from
a finite set of discrete values within the thus limited range.

4. EXPERIMENTAL RESULTS

Using the proposed approach, we have experimented with a real
music signal. The proposed signal represents a single note (pitch
= 84 Hz) played by an acoustic guitar. The record has a duration
of 1s and is sampled at 22.050 Khz (see figure 2). The SNR of the
input signal is 26 dB.
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Fig. 2. Original guitar signal.

In order to improve the convergence, the algorithm gets initialized
by starting with the periodic signature estimation over a limited
portion of the signal, somewhere in the middle, over which no
amplitude or frequency modulation is assumed (initially). Then
the indicated iterative scheme takes over with amplitude estima-
tion over the whole signal duration, frequency estimation over the
whole signal, periodic signature reestimation over the whole signal
etc. lterations are performed untill the relative change in the peri-
odic signal signature gets below 10~2. This corresponds to about
ten iterations.



In figure 3, we plot the different outputs of the algorithm: orig-
inal signal (Y), synthesized signal (S) according to the global am-

plitude and frequency modulation model, signal error (17) (differ-
ence between the previous two), instantaneous amplitude signal

~ ~

A(n) and instantaneous frequency signal f(n)/ fo (relative to the
nominal fundamental frequency).
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Fig. 3. Amplitude and Frequency modulation extraction.

In order to analyze the extraction quality of our algorithm, we plot-
ted the Fast Fourier transform of the original signal (Y") and the

residual error signal (17) (figure 4).
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Fig. 4. The FFT of the original and residual error signals.

We notice that the extraction quality depends mainly on the har-
monic index. First of all, one may notice that the evolution with
harmonic index of the strength Aj of the various harmonics is
not at all smooth. Next, modeling degradation appears to start
at harmonic 17. Due to the global frequency modulation assump-
tion, modeling error indeed increases with the harmonic index for
the instantaneous phase. Another possible explanation might be a
deviation from the global amplitude modulation assumption. In-
deed, it is often indicated that the amplitude signals of the differ-
ent harmonics are not proportional for a number of musical instru-
ments. Nevertheless, the global amplitude modulation assumption
appears to hold for quite an impressive number of harmonics in

this example. We also calculate the signal to (measurement plus
approximation) noise ratio for the estimated model:
0,2
SNR=— =79dB
5
which is quite far from the SNR of 26 dB. The exact sources for
the residual error are currently being investigated.

5. CONCLUSION

In this paper, we have started investigating the decomposition of
a music signal into note signals. We have considered the peri-
odic signal model with a slow global amplitude and phase vari-
ation. Assuming additive white Gaussian noise, and small time
warping variation, a Maximum Likelihood approach is proposed
for the estimation of the model parameters and the optimization is
performed in an iterative (cyclic) fashion that leads to a sequence
of simple least-squares problems. Simulations show that the ex-
traction technique is suitable for the analysis of musical notes, and
produces good auditive synthetic results. Possible further sophisti-
cations of the model currently being envisaged (depending on the
error explanations to be found) are a splitting of the global modu-
lation assumption into subbands and/or allowing a slow variation
of the periodic signature waveform over the signal duration.
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