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Abstract— Digital watermarking has been introduced in the
90’s as a complementary technology for copyright protection. In
an effort to anticipate hostile behavior of adversaries, the research
community is constantly introducing new attacks to benchmark
watermarking systems. In this paper, we present a generic attack
strategy based on block replacement. As multimedia content is
often highly repetitive, the attack exploits signal’s self-similarities
to replace each signal block with another, perceptually similar
one. Guided by the principles of the proposed attack framework,
we implemented three attack algorithms for different types of
multimedia content: video shots, audio tracks and still images.
Finally, considering the effectiveness of the proposed algorithms,
we identify the properties that a watermark should have to
counter this attacking strategy.

Index Terms— Self-similarities in multimedia data, block re-
placement attack, signal-coherent watermarks

I. I NTRODUCTION

RECENTLY, security has become an important issue in
several multimedia applications. For example, automated

video surveillance is used to enforce monitoring of protected
facilities; biometric systems are exploited to aid in person
identification, etc. In addition, the proliferation of the Internet
has triggered a substantial increase in multimedia content
piracy. In particular, peer-to-peer systems have been effective
in sharing music and video content world-wide without the
ability to generate revenues to the copyright owners. This
has put pressure on the technical community to rethink their
entire content distribution framework. In particular, initiatives
have been launched to deploy and standardize a Digital Rights
Management (DRM) technology to protect playback, storage
and distribution of multimedia items [1], [2]. The challenge
is that encryption alone is not enough to ensure copyright at
the client side. As soon as data is decrypted or unscrambled,
the adversary obtains a plain-text copy of the multimedia item
and can either copy it in its digital form or digitize it from
an analog output using an A/D converter. This threat has
motivated the introduction of digital watermarks in almost all
modern copyright protection mechanisms [3].

Digital watermarking consists of hiding a key-dependent
secret signal into digital multimedia data in a robust and
imperceptible manner. The robustness of the watermark can
be seen as the ability of the detector to retrieve the hidden
watermark once watermarked data has been altered within
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perceptual bounds. For example, the embedded signal should
survive D/A-A/D conversion. Watermarks can also be regarded
as a communication channel whose capacity is exploited to
convey information. Those parameters (capacity, impercepti-
bility, robustness) are conflicting and a trade-off has to be
found depending on the targeted applications. Introducing wa-
termarks in digital data can be useful to safeguard copyright. In
a content screeningscenario, content providers insert a secret
watermark in their multimedia items, before releasing them on
a public communication channel. On the client side, the media
player blindly checks whether the watermark is present or not.
In case the secret mark is detected, the player verifies whether
it has an authentic and valid license to (dis)play the content.
Alternatively, user-specific watermarks denoted asfingerprints
can be embedded in the data to be protected, before being
delivered to the customer. Search robots are then deployed
to find illegal copies on the Internet and forensic tools are
exploited to identify malicious customers who have broken
their license agreement.

In such applications, the embedded watermark either limits
the possible usage of multimedia content via playback or copy
control, or points out at pirates’ identities - an information
which may be potentially used in court. As a result, ma-
licious users are likely to attack this protection technology.
The competition between attackers and security providers is
common in security fields and usually results in continuously
improving protection technologies. Thus, the research commu-
nity makes efforts to anticipate hostile behavior and releases
benchmarking tools to evaluate the robustness of watermarking
techniques [4]–[6]. After a short review of already developed
attacks against watermarking systems, the generic framework
of the block replacement attack is presented in Section II.
The basic idea consists of replacing each signal block with a
perceptually similar one. In the subsequent sections, alternative
types of multimedia with different levels of self-similarity, are
considered: similar background in successive video frames,
repetitive patterns in audio tracks, and similarities modulo
some transformations in still images. The introduced generic
framework of the attack is then implemented for each type
of data to demonstrate its efficiency. Finally, in Section VI,
an intuitive specification, referred to as signal-coherent water-
marks, is introduced to establish the basic requirements for a
watermarking technology to resist attacks that exploit signal
self-similarities.

II. ATTACKS AGAINST DIGITAL WATERMARKING

SYSTEMS

There exists a relatively complex trade-off between conflict-
ing parameters in digital watermarking. As a result, several
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benchmarks have been released to allow a fair comparison
between different algorithms. In this perspective, efficient
attacks have been proposed in an attempt to anticipate ma-
licious behavior. In content protection systems, embedded
watermarks do not add any value to the multimedia items
from the customer perspective. On the contrary, the hidden
information can be used in court to convince a jury that a
suspect has not respected the license agreement. Therefore,
malicious users want to remove this hidden evidence and
design efficient attacks to defeat the system. Attacks against
digital watermarking systems are consequently reviewed below
before introducing a new attacking strategy.

A. Signal Removal Attacks

In digital watermarking, the detector usually computes a
correlation score, which is then compared to a threshold to
assert whether a watermark is present or not. Consequently,
a potential target for an adversary is to find an attack which
brings the detection score below the detection threshold so
that the embedded watermark is no longer detected. In other
terms, the attack aims at decreasing the power of the hidden
watermark down to a level where the detector cannotreliably
assert that it is present. A large range of common signal
processing operations can be considered as candidate removal
attacks. Low-pass filtering and lossy compression are likely for
instance to alter watermarks since they are usually located in
high frequencies. However, many other primitives have to be
considered to obtain a fair benchmark [7] including gamma
correction, quantization, noise addition due for example to
D/A-A/D conversion (printing and scanning), etc. Besides such
blind operations, a new brand of attacks based on estimation
theory has appeared. The basic idea consists in estimating
either the original unwatermarked content or the embedded
watermark itself. For example, denoising techniques can be
exploited to remove a hidden watermark. However, such
approaches have been shown to introduce blurring artifacts.
Thus, a two-step strategy is usually preferred. First, the at-
tacker estimates the embedded watermark using, for example,
local median [8] or Wiener filtering [9]. Then, this estima-
tion can be processed, e.g., high-pass filtered [8], to remove
unlikely low-frequency components. Finally, the estimated
watermark is remodulated either with constant [8], [9] or
adaptive strength [10] which considers perceptual constraints.

B. Synchronization Removal Attacks

This second class of attacks does not explicitly aim at
removing the embedded watermark. It rather tries to disrupt
the communication between the embedder and the detector.
To this end, the attacker basically performs operations which
desynchronize the detector. Indeed, many detectors today are
correlation based and thus expect each watermark sample to be
at a predefined location in the working space. This knowledge
is shared by both the embedder and the detector. If an external
party disturbs this alignment, the convention shared with the
detector becomes obsolete and communication is no longer
possible. Consequently, spatial and temporal alterations can
be performed on the watermarked data to trap the detector.

Examples of such operations include image flipping, rotations,
cropping, scaling, time stretching, etc. The most powerful class

Fig. 1. Stirmark attack (left: original, right: attacked): If the central parts
look really similar, distortions are obvious when the grid is considered.

of desynchronization attacks are locally random geometric
distortions. The most well-known implementation of such an
attack is the random bending attack [11]. It exploits the fact
that the human visual system is not sensitive against shifts and
local affine transformations. Therefore, pixels can be locally
shifted, scaled and rotated without significant visual distortions
as depicted in Figure 1. Such a strategy still succeeds in
confusing most of the watermark detectors today.

C. Block Replacement Attacks

Both classes of attacks previously presented exhibit some
shortcomings. On one side, although common signal pro-
cessing operations decrease the correlation score, they may
also introduce undesirable distortion artifacts. Furthermore,
watermark estimation and remodulation attacks rely on the
assumption that it is possible to obtain a relativelyaccurate
estimation of the embedded watermark. While such a refined
estimation can be computed when several watermarked doc-
uments are colluded [12], [13], it is relatively difficult to
achieve the same goal when a single watermarked document
is considered. On the other side, desynchronization attacks
do not remove the hidden watermark. They simply alter the
alignment shared by the embedder and the detector. However,
nothing ensures that a future enhanced version of the detector
is not going to be able to detect the desynchronized watermark.
Moreover, the introduced misalignment prevents from using
common quantitative metrics such as the Peak Signal to Noise
Ratio (PSNR) to evaluate the impact of the attack.

Those limitations have consequently motivated the intro-
duction of a novel attack. Ideally, the attack would consist of
blindly restoring the original document from the watermarked
one. However such a perfect attack is impossible to implement
in practice. In this paper, the goal is to design an attack with
the following specifications:

(i) the detector should no longer be able to detect the
embedded watermark after the attack,

(ii) the attack should not introduce geometric distortions so
that quantitative measures of distortion can still be used1,

1It does not mean that geometrical attacks are irrelevant. The point is only
to say that distortion is easier to evaluate when there is no desynchronization.
In the case of StirMark for instance, it is difficult to say when the distortion
is critical or not.
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Fig. 2. Temporal Frame Averaging after Registration (TFAR): Once the video objects have been removed (a), neighbor frames are registered (b) and combined
to estimate the background of the current frame (c). Next, the missing video objects are inserted back (d).

(iii) the attack should introduce a fair additional distortion,
e.g., the distance between the watermarked and attacked
documents should be close to the distance between the
original and watermarked documents,

(iv) the attack should be designed in such a way that it
is possible to adapt the strength of the attack to cope
with alternative watermarking schemes using different
embedding strength,

(v) the attack should ensure that a future improved version
of the detector alone cannot overcome the problem.
Hence, both the embedder and the retriever must be
revised to re-enable content protection.

TABLE I

GENERIC DESCRIPTION OF THEBLOCK REPLACEMENT ATTACK

1 Partition the input signal into blocks

2 For each input block,
(a) Define a search window and build a codebook which

contains a collection of blocks
(b) Compute a replacement blocksimilar to the input one

using the blocks in the codebook
(c) Replace input block by the replacement one

Multimedia digital data is highly redundant. For example,
successive frames are highly similar in a video shot; similarly,
most songs often contain repetitive patterns. Thus, an attacker
can exploit these similarities to replace each part of the
signal with asimilar one taken from another location in the
same signal. The generic block replacement strategy is further
detailed in Table I. The input signal is first partitioned into a
set of blocks. Then, for each input block, a search window is
defined and also partitioned to obtain a codebook containing
a collection of blocks. Next, this codebook is exploited to
obtain a replacement block similar to the input one, but which
does not directly carry the watermark signal. This is where
the presented attack differs from previous works which also
considered block replacement, but for copying the watermark
embedded in a document to another unwatermarked one [14].
In this paper, the Mean Square Error (MSE) is used to evaluate
the level of similarity between two blocksB1 andB2:

MSE(B1, B2) =
1
N

N∑
i=1

(
B1(i)− B2(i)

)2
(1)

where the indexi in the summation can be one-dimensional
(sound) or multidimensional (image, video) andN is the
number of considered signal samples. Finally, the input block
is substituted by the replacement. The subsequent sections
present alternative implementations of this block replacement
strategy for different types of multimedia data (video, sound,
images). Although the proposed algorithms share the same
principles, their implementations require specific modifications
to address the structural and perceptual nature of considered
multimedia signals.

III. C ASE STUDY WITH V IDEO SHOTS

Video content is recognized to be highly redundant. In
particular, the background which usually occupies most of
the scene is repeated across successive video frames. As a
result, for a given video frame, neighboring frames often
entail an estimation of the current one. This property has been
extensively used to obtain efficient coding tools. In terms of
the block replacement attack, each video frame is processed
sequentially: neighboring frames are gathered and combined,
e.g., averaged to obtain a replacement frame [15], [16]. To this
end, video processing tools such as object-based segmentation
and frame registration have to be introduced to cope with
moving objects and camera motion. The block replacement
attack applied to video content is depicted in Figure 2 and
further detailed hereafter.

A. Temporal Frame Averaging after Registration (TFAR)

The goal is to estimate a given video frameFt from its
neighboring onesFt+δ using frame registration. The consid-
ered neighboring frames may contain objects which cannot be
used to reconstruct the target video frame. As a result, a binary
maskM t has to be built for each frame to distinguish useful
areas in the frame (e.g., the backgroundBt) from useless ones
(e.g., moving and varying objectsOt):

Ot = Ft ⊗M t and Bt = Ft ⊗ M̄ t, (2)

where⊗ is the pixel-wise multiplication operator and.̄ is the
binary negation operator. In this paper, no specific work has
been done to design a novel object-based segmentation system.
We use an existing algorithm based on semi-automatic initial
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segmentation of the first video frame, followed by automatic
tracking of the selected objects [17].

Once several observationsBt′ of the movie set are obtained
from neighboring frames, they can be exploited to estimate
the background̃Bt of the current frame. To this end, it is
necessary to find a registration function whichpertinently
associates each pixel position(xt, yt) in the current frame
Ft with a corresponding position(xt′ , yt′) in a neighboring
frame Ft′ . The association can be based, for example, to
minimize the MSE between the target backgroundBt and the
registered oneB(t)

t′ . In other words, the goal is to define a
model which describes the apparent displacement generated
by the camera motion. Physically, camera motion is a combi-
nation of traveling displacements (horizontal, vertical, forward
and backward translations), rotations (pan, roll and tilt) and
zooming effects (forward and backward). As the background
of the scene is often far from the camera, pan and tilt rotations
can be assimilated for small rotations to translations in terms
of 2D apparent motion. Thus, the zoom, roll, and traveling
displacements can be represented, under some assumptions,
by the following first order polynomial motion model [18]:{

xt′ = tx + z(xt − xo)− zθ(yt − yo)
yt′ = ty + z(yt − yo) + zθ(xt − xo)

, (3)

wherez is the zoom factor,θ the 2D rotation angle,(tx, ty)
the 2D translational vector, and(xo, yo) the coordinates of the
camera optical center.

The registered backgroundsB(t)
t+δ obtained from the video

frames in the temporal window, are then combined to obtain
an estimatioñBt of the background in the current frame. To
this end, the registered backgrounds are averaged using the
proper normalization factor for each pixel. For each pixel
positionp, a binary maskRt is also built to indicate whether a
background value has been effectively estimated (Rt(p) = 1)
or not (Rt(p) = 0). The moving objects are then inserted
back:

Ḟt = B̃t ⊗ M̄ t︸ ︷︷ ︸
Background

+ Ft ⊗M t︸ ︷︷ ︸
Objects

+ Ft ⊗ (M̄ t & R̄t)︸ ︷︷ ︸
Missing pixels

, (4)

where& is the binary AND operator. The last term indicates
that, at this point, some background pixels may have not been
estimated. In this case, the pixel values from the original video
frameFt are retrieved.

B. Experiments

Today, watermarking digital video content is regarded most
of the time as watermarking a sequence of still images.
Without loss of generality, such a frame by frame approach
is illustrated below with a simple additive spread spectrum
watermark:

F̌t = Ft + αWt(K), Wt(K) ∼ N (0, 1) (5)

where t is the frame index,Ft (resp. F̌t) is the luminance
component of the original (resp. watermarked) video frame,α
the embedding strength, andWt(K) a key-dependent normally
distributed watermark with zero mean and unit variance.
Perceptual shaping can subsequently be introduced to improve

the imperceptiveness of the watermark. On the detector side,
the presence or absence of a watermark is checked with a
correlation score:

ρ(F̆t,K) =
(
Ft + εαWt(K)

)
·Wt(K) ≈ εα (6)

where · is the linear correlation operator andε is equal to 0
or 1 depending on whether the tested luminance component
F̆t is watermarked or not. Finally, the computed correlation
score is compared to a thresholdτdetect to assert whether or
not a watermark has been embedded. This threshold can, for
instance, be set toα/2 to have equal false positive and false
negative probabilities.
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Fig. 3. Impact of the TFAR attack with usual frame-by-frame embedding
strategies.

When a frame-by-frame approach is enforced, two major
embedding strategies are usually observed: either a different
watermark is inserted in each video frame (SS strategy [19]),
or the same watermark is embedded in all video frames (SS-
1 strategy [20]). The video sequencestefanhas consequently
been watermarked using both embedding strategies and using
an embedding strengthα = 3. The resulting watermarked
sequences have then been submitted to the TFAR attack.
Figure 3 depicts the detection score computed before and after
the attack. It is clear that TFAR makes the detection score drop
below the thresholdτdetect= 1.5. It should be noted that a peak
around the5th frame indicates that the SS-1 strategy survives
in part the attack. At this moment, there is indeed almost no
camera motion and video frames watermarked with the SS-1
strategy are thus not affected by TFAR.

IV. CASE STUDY WITH AUDIO TRACKS

Repetition is often a principal part of composing music and
is a natural consequence of the fact that distinct instruments,
voices and tones are used to create a soundtrack. Thus, one
is likely to find similar blocks of music within a single
musical piece, an album of songs from a single author, or
in instrument solos. Finding similarities within musical pieces
is a challenging task. First, music has a lot less redundancy
than video. In addition, musical redundancies are often su-
perimposed. Next, it is difficult to model redundancies in
music as opposed to, for example, video. In particular, music
performed by humans commonly exhibits repetitions with
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significant variance in amplitude, pitch, and timing. Detecting
such similarities is a complex task which is not addressed
by modern psycho-acoustic models. Although perceptually
similar blocks of music can be quite distant in the Euclidean
sense, the Human Auditory System (HAS) may perceive them
as equivalent. On the other hand, the fact that high fidelity
music tolerates significant multiplicative noise levels, makes
block replacement attacks quite viable for audio content [21].

A. Watermark Estimation Remodulation

A post-processing step is added to the generic block replace-
ment strategy defined in Table I which provides additional
attack efficacy linearly proportional to the introduced noise.
More formally, let x̌ denote the marked signal anḋx the
signal created by the block replacement procedure. Assuming
that ẋ is at a small distance from̌x, a low-energy attack
vector d = ẋ − x̌ is created whose direction is opposite
with respect to the secret watermarkw embedded iňx. If the
watermark detector yields the following expected normalized
correlation scoresρ(x̌) = 1 and ρ(ẋ) = a, 0 < a < 1, then
ρ(d) = a − 1 < 0 under the assumption of model linearity.
For example, one large class of such correlators are matched
filters used in spread-spectrum watermarking [3], [22]. This
vector is subsequently scaled byβ and remodulated to obtain
y = x̌ + βd whose correlation equalsρ(y) = 1 + β(a − 1).
Clearly, for strong enoughβ = 1

1−a , the adversary can set the
correlation ofy to zero.

BT
BR

Fig. 4. Audio processing primitives performed as pre- and post-processing
to the attack.

The first objective of the adversary is to obtain an accurate
estimate of the original signal iňx. To this end, the block
replacement strategy is exploited. For each input blockBT ,
a setQ of N blocks BQi

at a perceptually similardistance
is identified, i.e., MSE(BQi , BT ) ≤ ε. The blocks inQ are
then combined in such a way that the similarity between
the obtained replacement blockBR andBT is maximized. In
other terms, the goal is to find mixing coefficientsλi so that
MSE(BR, BT ) is minimized, where:

BR =
N∑

i=1

λiBQi
. (7)

This optimization goal can be modeled as the least-squares
problem which can be solved optimally. Per sampleBR(j),
two cases can occur:

(i) BR(j) satisfies the fidelity restriction
MSE(BT (j), BR(j)) ≤ ε, in which case the replacement
sample is kept,

(ii) BR(j) is perceptually not similar toBT (j), i.e.,
MSE(BT (j), BR(j)) > ε, in which case we propose to
set BR(j) = BT (j) to minimize the noise due to the
attack.

In addition, after the initial approximation, the algorithm
excludes all samples of type-(ii ) from BT and all blocks inQ.
Then, it recomputes the approximation ofBT usingQ more
accurately.

The second objective is to estimate the value ofβ which sets
ρ(y) ≈ 0. Improved accuracy of the estimate of the original
signal, lowersa, requires less amplifiedd, and eventually
imposes less noise in the attacked clipy with respect to the
original. In the presence of the watermark detector, this prob-
lem is trivial and can be resolved using a simple binary search
for β. Alternately, β can be estimated using the following
example strategies:

(i) β = 1−γ, whereγ is the ratio of signal samples modeled
at a certain quality, e.g., MSE(x̌(j), ẋ(j)) ≤ ε,

(ii) by watermarking the available marked contentx̌ with
another watermarkv and then attackinǧx + v using the
block replacement attack. Since the detector in this case
is available, identifyingβ is straightforward under these
assumptions.

For brevity, in this version of the manuscript, we do not
analyze empirically this process.
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Fig. 5. Music self-similarity: probability that for a given 2048-long MCLT
block, another block is found at a certain correlation within the subsequent
60 seconds of the same audio clip.

B. Experiments

Since most psycho-acoustic models operate in the frequency
spectrum [23], the attack is launched in the logarithmic (dB)
frequency domain. The set of signal blocks is filtered using
a Modulated Complex Lapped Transform (MCLT) [24]. We
consider MCLT analysis blocks with 1024 transform coef-
ficients and a 50% overlap. Each block of coefficients is
normalized and psycho-acoustically masked using an off-the-
shelf masking model (PAFM) [23]. Similarity is explored ex-
clusively in the audible part of the frequency sub-band where
watermarks are hidden. In this paper, this sub-band is bounded
within 2-7 kHz [22]. Figure 4 illustrates the signal processing
primitives used to prepare the audio blocks for substitution.



6 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. ?, NO. ?, ? 200?

We searched for similar blocks in the time domain. The
correlation of each target blockBT is computed by convolving
the complex conjugate ofBT with the corresponding search
window using the Fast Fourier Transform and the overlap-
add fast convolution method [25]. BothBT and the search
region were filtered using a band-pass within 2-7 kHz. Figure 5
illustrates the probability that one can find a similar block of
certain correlation with respect to the target within a 60-second
search region that follows the target block in the same audio
clip. It can be noted that clips created electronically have been
identified with substantially greater self-similarities than clips
performed entirely by humans.
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Fig. 6. Resulting correlation (left subfigure) and MSE with respect to marked
clip (right subfigure) after the block replacement attack.

In order to evaluate the effect of the attack, we used Direct
Sequence Spread-Spectrum (DSSS) sequences with aδ=1 dB
amplitude, that spread over 240 consecutive 2048-long MCLT
blocks, where only the audible frequency magnitudes in the
2-7 kHz sub-band were marked. In the experiments presented,
the first 60 seconds of the following audio clips are considered:

1 ACE OF BASE, Ultimate Dance Party 1999, Cruel Summer [Blazin’ Rhythm
Remix],

2 STEELY DAN, Gaucho, Babylon Sisters,
3 PINK FLOYD, The Wall, Comfortably Numb,
4 DAVE MATTHEWS BAND, Crash, Crash Into Me,
5 Unidentified classical piece, produced by SONY Ent., selected because of excep-

tional perceptual randomness, available upon request from the authors.
6 DAFT PUNK, Discovery, One More Time,
7 THE PRODIGY, The Fat of the Land, Breathe,
8 KHAL ÉD, Arabica, Didi [Didi Funk Club Remix],
9 PAUL OAKENFOLD, Transport, El Niño, and

10 GROOVE FOUNDATION PRESSKU, Amnesia - Ibiza 2001, That Feeling.

In Figure 6, we present, for all clips from our benchmark suite,
the resulting correlation and MSE with respect to the marked
clip after the block replacement attack. We used1 ≤ N ≤
50. The achieved correlations are higher than in the case of
previous work [21] at the benefit of significantly decreased
MSE noise. This result has been exploited to driveβ such
that the resulting normalized correlation score equalsρ = 0.5
andρ = 0. For both cases, in Figure 7 we present the resulting
MSE after suchβ is applied. One can observe that in all but
one case (4, β|ρ = 0), the desired normalized correlation score
was achieved with MSE lower than 3.5 dB. For most listeners
such noise is typically imperceptible in the considered sub-
band. The result can be further improved by considering larger
audio databases than the 60 second search region we used.

V. CASE STUDY WITH STILL IMAGES

In the context of still images, self-similarities have been
previously exploited to obtain efficient coding tools [26]. On
the coder side, for each image block, the most similar block
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Fig. 7. Resulting noise after theβ-amplified watermark estimate is subtracted.
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halved and zeroed out.

in the search window modulo a geometrical (scaling, rotation,
flip) and a photometric transform is found as depicted in
Figure 8. Then, starting from any image, the decoder applies
those transformations several times and converges towards
the original image. This strategy is similar to the presented
block replacement strategy. In particular, early work has shown
that the candidate block could not be obtained using a single
block [27] for fidelity issues. A straightforward improvement
consists then in combining several blocks optimally, i.e., in a
least square sense [28]. This can be seen as projecting each
input block on a specific subspace. However the basis vectors
of this subspace - in this case, some blocks of the codebook -
are not orthogonal which increases the computational cost. As
a result, an alternative approach using Principal Component
Analysis (PCA) [29] is described below.

Geometrical transformation
(horizontal flip)

Photometric transformation
s=-0.25  o=154

Reduction

BQ

BT



Processed image BR

Fig. 8. Fractal-based image coding: for each image block, the coder finds
in the search window the most similar block modulo a geometrical and
photometric transformation.

A. Block Projection on a PCA Subspace

For each blockBT of the input image, a search window is
defined and partitioned to define a codebookQ. Photometric
compensation is then performed to make the blocksBQi

of
the codebook more similar to the target blockBT . To this
end, each blockBQi is transformed insBQi + o1, where1 is
a block containing only ones, so that the MSE with the target
block BT is minimized. This is a simple least-squares problem
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and the scales and offseto can be determined as follows:

s =
(BT −mT 1) · (BQi

−mQi
1)

|BQi
−mQi

1|2
(8)

o = mT − s.mQi (9)

where mT (resp. mQi
) is the mean value of blockBT (resp.

BQi
), · is the linear correlation defined as:

B · B′ =
1

ST

ST∑
i=1

B(i)B′(i) (10)

and |B| is the norm defined as
√

B · B. At this point, the
codebookQ contains a collection of blocks similar to the input
block BT . However, they are usually not similar enough to al-
low replacement without introducing strong visual distortions.
Several blocks need to be combined to obtain valid candi-
date blocks for replacement. PCA is consequently performed
considering all the blocksBQi to obtain an orthogonal basis
describing the variations of the blocks in the codebook. This
gives a centroidC defined as follows:

C =
1
|Q|

∑
BQi

∈Q
BQi (11)

and a set of eigenblocksEi associated with their eigenvalues
ei which indicate how much the codebookQ varies in this
direction. Next, those eigenblocks are sorted by descending
eigenvalues, i.e., the directionE1 contains more information
than any other one in the basis. A candidate block for replace-
ment BR is then computed using theN first eigenblocks so
that the distortion with the target blockBT is minimized. In
other terms, the blockBT −C is projected onto the subspace
spanned by theN first eigenblocks and the replacement block
can be written:

BR = C +
N∑

i=1

(BT − C) · Ei

|Ei|2
Ei (12)

Of course, the distortion∆ = MSE(BT , BR) gracefully
decreases as the numberN of combined eigenblocks increases.
An adaptive framework can be introduced to dynamically
adjust the valueN so that

√
∆ is as near as possible to a

target value
√

τtarget. In other terms,N is iteratively increased
and the value which gives the candidate block whose distortion
minimizes|

√
∆−√τtarget| is retained. This parameter can be

used as an attacking strength: the higherτtarget, the stronger
the attack. It should be noted that the underlying assumption
is that most of the watermark energy is concentrated in the
last eigenblocks since the watermark can be seen as details.
As a result, if a valid candidate block can be built without
using the last eigenblocks, the watermark signal will not be
reintroduced. Furthermore, for visibility reasons, overlapping
blocks are considered during the attack to prevent blocking
artifacts.

B. Experiments

A database of 500 images of size512 × 512 has been
considered for experiments. It contains snapshots, synthetic

images, drawings and cartoons. Each image has been water-
marked using a simple additive spread-spectrum scheme with
an embedding strengthα = 3 and then submitted to three
alternative attacks (Gaussian blurring, JPEG compression and
block projection on a PCA-defined subspace). For each attack,
several predefined values have been used for the parameter
settings (filter width, JPEG quality factor, target threshold
τtarget). At this point, for each image in the database, a
distortion vs. correlation curve can be drawn for each attack.
All the curves associated with a given attack are thenaveraged
to depict the statistical behavior of the image database for this
particular attack. The three resulting curves have been gathered
in Figure 9. It is obvious that the block replacement strategy
first succeeds in removing the embedded watermark, second
outperforms both surveyed image processing operations. In
other terms, from an attacker perspective, it allows to improve
the trade-off distortion vs. correlation. For instance, the corre-
lation score drops below the detection thresholdτdetect = 1.5
around 40 dB with the block replacement strategy while it
is necessary to introduce a distortion around 36 dB to obtain
the same result with the other attacks. Furthermore, assuming
that the parameters of the attacks are set so that the introduced
distortion is similar to the one due to the embedding process
(38 dB), the block replacement strategy traps the detector
while watermarks submitted to either Gaussian blurring or
JPEG compression can still be detected.
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Fig. 9. Correlation score vs. distortion curves for Gaussian blurring, JPEG
compression and block projection on a PCA-defined subspace.

VI. CONCLUSION

In some applications, digital watermarks are embedded to
reduce the potential illegal usage of protected data or to
identify customers who have broken their license agreement.
In such situations, malicious users may try to remove the
hidden data which can be used against them. Since attackers
are likely to follow best-effort attacks, resistance to strong
hostile attacks has to be considered, not only survival after
usual signal processing operations such as filtering or lossy
compression. In security fields, improvements usually come
up from the competition between technology providers and
attackers. Consequently, in this paper, a novel attacking strat-
egy has been proposed in an effort to anticipate the possible
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behavior of malicious users. The basic idea consists of ex-
ploiting multimedia self-similarity to replace each signal block
with another, perceptually similar one. More precisely, several
blocks carrying different watermarks are combined to obtain
a candidate block for replacement which is expected not to
carry the same watermark as the input signal block. Thus, this
attack can be considered as a form of intra-signal collusion:
several watermarked signal-blocks are combined to obtain
unwatermarked blocks. Nevertheless, even if this attacking
strategy is somewhat generic, it needs to be adjusted to cope
with different nature of multimedia content. In this paper,
practical implementations of this attack have been presented
for video shots, audio tracks, and still images. In each case,
experimental results have demonstrated the efficiency of the
proposed block replacement attacking strategy.

The attacker basically exploits the fact that the embedding
algorithm does not take into account the self-similarities of
the signal. It is possible to build some sets of similar blocks,
which on the other hand are not assumed to carry similar
watermark samples. This is a weak link of most watermarking
schemes today and an informed attacker can exploit it to defeat
the protection system. Of course, this brings up an interesting
question: which countermeasures can be introduced by tech-
nology providers to disable, or at least decrease the impact,
of such an attack? Intuitively, ifsimilar signal blocks carry
similar watermarks, the presented block replacement strategy
is likely to be ineffective. In other terms, the introduced
watermark has to be coherent with the self-similarities of the
host signal. This can be seen as an intermediary specification
between the security requirements for steganography - the
embedded watermark should be statistically invisible [30]
so that an attacker cannot even detect thepresenceof the
hidden watermark - and the absence of any one for non-
secure applications such as data hiding or broadcast moni-
toring. Unfortunately this intuitive statement does not point
to straightforward constructive ideas on how to obtain such
coherent watermarksin practice. An early study in video has
demonstrated that security can be improved by making the
watermark coherent with camera motion [16], so that a given
3D physical point carries the same watermark sample along a
video scene. Then, temporal frame averaging after registration
becomes useless. However, a generic approach has still to be
designed to solve the problem in the general case. In particular,
this new specification raises many interesting questions. Is it
possible to obtain such a coherent watermark for an arbitrary
host signal? If not, which strategy should be enforced to
minimize the impact of block replacement attacks? How many
bits can be reliably embedded? Does the achievable capacity
depend on the host signal or not?
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