
Institut EURECOM
Corporate Communications

2229, route des Crêtes BP 193
06904 Sophia Antipolis

(France)

Research Reporta No 141 — RR-05-141

Provably Secure Policy-Based Cryptography

Walid Bagga and Refik Molva

May, 2005

a Eurecoms research is partially supported by its industrial partners: Bouygues Telecom, Fondation d’entreprise Groupe
Cegetel, Fondation Hasler, France Telecom, Hitachi, ST Microelectronics, Swisscom, Texas Instruments, and Thales

Provably Secure Policy-Based Cryptography

Abstract. The concept of policy-based cryptography (PBC) is a promising paradigm for trust estab-
lishment and authorization in large-scale open environments. A policy-based encryption scheme (PBE)
allows to encrypt a message according to a policy so that only entities fulfilling the policy are able to
perform the decryption of the message. Symmetrically, a policy-based signature scheme (PBS) assures
that only entities fulfilling a given policy are able to generate a valid signature according to the policy. Ex-
isting PBC schemes suffer from either inefficiency or lack of strong security arguments. In this paper, we
introduce policy-oriented strong security models for PBE and PBS schemes. Then, we present concrete
and elegant PBE and PBS schemes from bilinear pairings. Our schemes are not only at least as efficient
as existing schemes, but also, and more importantly, provably secure under the defined security models.

keywords: Access Structures, Authorization, Trust Establishment, Bilinear Pairings, Provable Security

1 Introduction

In large-scale open environments like the Internet, many interactions may occur between entities
from different security domains without pre-existing trust relationships. Such interactions would not
be secure without the establishment of a sufficient level of mutual trust between the communicating
entities expressed in terms of compliance with a specific policy. Further, exchange of sensitive
resources may also need to be carefully protected through clear and concise authorization policies.
An increasingly popular approach for both trust establishment and authorization consists of using
policies fulfilled by digital credentials. A digital credential is basically the signature of a specific
trusted authority (credential issuer) on a certain assertion about a specific entity (credential owner).
It describes one or multiple properties of the entity that are validated by the trusted authority.

The concept of policy-based cryptography (PBC), recently formalized in the literature, appears as
a promising paradigm for the enforcement of trust establishment and authorization policies. It al-
lows performing cryptographic operations with respect to policies formalized as monotone Boolean
expressions. In PBC, a policy involves conjunctions and disjunctions of conditions, where each con-
dition is associated to a specific credential issued by a trusted authority. An entity fulfills a policy
if and only if it has access to a set of credentials associated to the logical combination of condi-
tions defined by the policy. Intuitively, a policy-based encryption scheme (PBE) allows encrypting
a message according to a policy so that only entities fulfilling the policy are able to perform the de-
cryption of the message. Symmetrically, a policy-based signature scheme (PBS) assures that only
entities fulfilling a given policy are able to generate a valid signature according to the policy.

For an illustration of PBC, consider the following scenario: a web server provides medical informa-
tion to both doctors who are members of a specific medical association (MA) and patients registered
with a specific medical center (MC). When a client sends a request for a specific web page, the server
may use a PBE scheme to encrypt the requested web page so that the client can only decrypt it if
he has either a doctor’s membership credential issued by MA or a patient’s registration credential
issued by MC. The PBE scheme thus allows the web server to encrypt the requested web page
according to the authorization policy ’doctor-member-MA OR patient-registered-MC’. Symmetri-
cally, a patient registered to MC may use his MC credential to sign his request according to the
server’s policy using a PBS scheme. The validity of the generated signature proves that the client
is compliant with the server’s policy. Note that, in both scenarios, the web server may not know
whether the client is a doctor or a patient. This privacy property will be called credential ambiguity.

The fact that a cryptographic scheme withstood cryptanalytic attacks for several years has been
considered, for a long time, as a kind of security validation. Since several schemes have taken a
long time before being totally broken, the lack of cryptanalytic attacks or the provision of intuitive
or heuristic security arguments are not considered as security validations anymore. The concept of
provable security consists of using reductionist proofs as a validation procedure for cryptographic
schemes [4, 5, 20]. Concretely, in order to validate a cryptographic protocol, one should first pre-
cisely state the security notion he wants the protocol to achieve. This statement results in the defini-
tion of intractability for an adversarial goal under a specific attack scenario. A reductionist security
proof then is used to show that the intractability of a well-studied mathematical problem can be
reduced to the security of the proposed cryptographic protocol with respect to the defined attack
model. Existing PBC schemes are either inefficient [14], not supported by formal security models
and proofs [2] or supported by weak security arguments [1, 9]. In this paper, our contributions are
twofold: on one hand, we introduce policy-oriented strong security models for both PBE and PBS
schemes. On the other hand, we present elegant and relatively efficient PBE and PBS schemes and
prove their security with respect to the defined attack models. Our PBC primitives are based on
bilinear pairings over elliptic curves. Our reductionist security proofs are based on the intractability
of well-studied Diffie-Hellman problems [24] while relying on the random oracle model [6].

The paper is organized as follows: we describe our policy model in Section 2. In Section 3, we give
a formal definition for PBE schemes, then we define a strong security model for message confi-
dentiality: indistinguishability against adaptive chosen ciphertext attacks. In Section 4, we present
a provably secure PBE scheme from bilinear pairings. Our work on PBE schemes owes much to the
work on identity-based encryption schemes (IBE) presented in [8] and [12]. We point out that an
IBE scheme could be viewed as a PBE scheme for which policies are limited to a single credential
issued by a single trusted authority (private key generator). In Section 5, we give a formal definition
for PBS schemes. Then, we consider two related security properties: we first define a model for sig-
nature unforgeability: existential unforgeability against adaptive chosen message attacks. We then
define credential ambiguity against chosen message attacks, which ensures that a valid signature
with respect to a given policy does not provide any information about the specific credentials used
for its generation. In Section 6, we present a provably secure PBS scheme from bilinear pairings.
Our work on PBS schemes is inspired by the work on identity-based ring signatures [19, 25]. In-
deed, we use ring structures to deal with disjunctions of conditions within the policy according to
which a signature is generated. We discuss related work in Section 7 before concluding in Section 8.

2 Policy Model

Consider a set of trusted authorities denoted T = {TA1, . . . ,TAN}, where the public key of TAκ is
denoted Rκ and the corresponding master (private) key is denoted sκ. Each trusted authority may be
asked by an entity to issue a credential corresponding to a certain assertion denoted A. The latter
may convey information about one or more attributes, properties, and/or capabilities related to the
entity such as citizenship, age, group membership, licenses, role within an organization, etc. As the
representation of assertions is out of the scope of this paper, they will be henceforth simply encoded
as binary strings i.e. A ∈ {0,1}∗. Whenever a trusted authority TAκ is asked by an entity to sign
a given assertion A, it first checks the validity of A. If A is valid, then TAκ executes a credential
generation algorithm and returns a credential denoted ς(Rκ,A). Otherwise, TAκ returns an error
message. The process of checking the validity of an assertion is out of the scope of this paper.
However, we assume that a trusted authority is ’trusted’ for never issuing credentials corresponding

to invalid assertions. Note that upon receiving the credential ς(Rκ,A), the entity may check its
validity/integrity using TAκ’s public key Rκ.

A policy is formalized as a monotone boolean expression involving conjunctions (denoted ∧) and
disjunctions (denoted ∨) of credential-based conditions. A credential-based condition is defined
through a pair 〈TAκ,A〉 specifying an assertion A ∈ {0,1}∗ and an authority TAκ ∈ T that is trusted
to check and certify A’s validity. An entity fulfills the condition 〈TAκ,A〉 if and only if it has been
issued the credential ς(Rκ,A). A policy can be written either in conjunctive normal form (CNF) or in
disjunctive normal form (DNF). In order to address the two standard normal forms, a policy denoted
Pol will be written in a generic form called conjunctive-disjunctive normal form (CDNF [21])

Pol = ∧m
i=1[∨

mi
j=1[∧

mi, j
k=1〈TAκi, j,k ,Ai, j,k〉]], where TAκi, j,k ∈ T and Ai, j,k ∈ {0,1}∗

Therefore, policies written in CNF are such that mi, j = 1 Hmi
j=1H

m
i=1, while policies written in DNF

correspond to the case where m = 1.

Notation. For the sake of clarity to the reader, we use the notation Hx2
x=x1

as a shortcut for the sentence
’for x varying from x1 to x2’. �
Note. The maximum values that the quantities m, mi Hm

i=1 and mi, j Hmi
j=1H

m
i=1 can take are denoted,

respectively, m∨∧ ≥ 1,m∨ ≥ 1 and m∧ ≥ 1. We assume that these upper-bounds are specified during
the setup stage of a PBC scheme, and that they are publicly known so that we do not need to
explicitly provide them subsequently. �
Let ς j1,..., jm(Pol) denote the set of credentials {{ς(Rκi, ji,k

,Ai, ji,k)}
mi, ji
k=1}m

i=1, for some ji ∈{1, . . . ,mi} Hm
i=1.

An entity fulfills the policy Pol if and only if it has access to a set of credentials ς j1,..., jm(Pol) for
some set of indices { j1, . . . , jm}. The set ς j1,..., jm(Pol) is called a qualified set of credentials for
policy Pol.

Note. Our approach offers an advantage over threshold schemes in that our schemes address general
access structures including those for which there exists no corresponding (k,n)-threshold represen-
tation (for 1 < k < n) (such structures exist according to Theorem 1 of [7]). Although any threshold
structure may be written using only ∧ and ∨ operators and thus may match our formalism, we be-
lieve that dedicated threshold schemes might handle such structures more efficiently and elegantly
than our generic approach. �

3 Policy-Based Encryption

In this section, we first provide a formal definition for PBE schemes. Then, we describe a policy-
oriented security model for indistinguishability against chosen ciphertext attacks.

3.1 Definition

A PBE scheme is specified by five algorithms: Setup, TA-Setup, CredGen, PolEnc and PolDec which
we describe below.

Setup. On input of a security parameter k, this algorithm generates some global information I which
specifies the different parameters, groups and public functions that will be referenced by subsequent
algorithms. Furthermore, it specifies a message space M and a ciphertext space C .

Note. We assume that the global information I is publicly known so that we do not need to explicitly
provide it as input to subsequent algorithms. �

TA-Setup. Let T = {TA1, . . . ,TAN} be a set of trusted authorities. Then, each trusted authority
TAκ ∈ T runs this algorithm to obtain a master key sκ and a corresponding public key Rκ.

Note. We assume that a trustworthy value of the public key of each trusted authority included in T
is known by the system participants. At any time, a new trusted authority may join the set T . �
CredGen. On input of a trusted authority TAκ ∈ T , an assertion A ∈ {0,1}∗, this algorithm is run
by TAκ to obtain the credential ς(Rκ,A).

PolEnc. On input of a message M ∈ M and a policy Pol, this algorithm returns a ciphertext C ∈ C
representing the encryption of M with respect to policy Pol.

PolDec. On input of a ciphertext C ∈ C , a policy Pol and a qualified set of credentials ς j1,..., jm(Pol),
this algorithm returns either a message M ∈ M or ⊥ (for ’error’).

The algorithms described above have to satisfy the following consistency constraint:

C =PolEnc(M,Pol) ⇒ PolDec(C,Pol,ς j1,..., jm(Pol)) = M

Note. We denote by ϕ j1,..., jm(C,Pol) the information from the ciphertext C and the policy Pol that
is required to correctly perform the decryption of C with respect to Pol using the qualified set of
credentials ς j1,..., jm(Pol). A concrete example is given in Section 4. �

3.2 Chosen Ciphertext Security

Indistinguishability against adaptive chosen ciphertext attacks for PBE schemes is defined in terms
of an interactive game, played between a challenger and an adversary. The game consists of five
stages: Setup, Queries-1, Challenge, Queries-2 and Guess which we describe below.

Setup. On input of a security parameter k, the challenger first runs algorithm Setup to obtain the
system global information I . Then, the challenger runs algorithm TA-Setup once or multiple times to
obtain a set of trusted authorities T = {TA1, . . . ,TAN}. Finally, the challenger gives to the adversary
the global information I as well as the public keys of the different trusted authorities included in T .

Queries-1. The adversary performs a polynomial number of oracle queries adaptively i.e. each
query may depend on the replies to the previously performed queries.

Challenge. Once the adversary decides that Queries-1 is over, it gives the challenger two equal
length messages M0,M1 and a policy Polch on which it wishes to be challenged. The challenger
picks at random b ∈ {0,1}, then runs algorithm PolEnc on input of the tuple (Mb,Polch), and finally
returns the resulting ciphertext Cch to the adversary.

Queries-2. The adversary performs again a polynomial number of adaptive oracle queries.

Guess. The adversary outputs a guess b′, and wins the game if b = b′.

The oracles that the adversary may query during Queries-1 and Queries-2 are defined as follows:

– CredGen-O. On input of a trusted authority TAκ ∈ T and an assertion A∈ {0,1}∗, run algorithm
CredGen on input of the tuple (TAκ,A), and return the resulting credential ς(Rκ,A).

– PolDec-O. On input of C ∈ C , a policy Pol and a set of indices { j1, . . . , jm}, first run algo-
rithm CredGen multiple times to obtain the qualified set of credentials ς j1,..., jm(Pol), then run
algorithm PolDec on input of the tuple (C,Pol,ς j1,..., jm(Pol)), and return the resulting output.

The oracle queries made by the adversary during Queries-1 and Queries-2 are subject to two re-
strictions. On one hand, the adversary is not allowed to obtain a qualified set of credentials for the

challenge policy Polch. On the other hand, he is not allowed to perform a query to oracle PolDec-O
on a tuple (C,Pol,{ j1, . . . , jm}) such that ϕ j1,..., jm(C,Pol) = ϕ j1,..., jm(Cch,Polch).

The game described above is denoted IND-Pol-CCA. A formal definition of chosen ciphertext secu-
rity for PBE schemes is given below. As usual, a real function g is said to be negligible if g(k)≤ 1

f (k)
for any polynomial f .

Definition 1. The advantage of an adversary A in the IND-Pol-CCA game is defined to be the quan-
tity AdvA = |Pr[b = b′]− 1

2 |. A PBE scheme is IND-Pol-CCA secure if no probabilistic polynomial
time adversary has a non-negligible advantage in the IND-Pol-CCA game.

Note. Our IND-Pol-CCA model could be viewed as an extension to the policy-based setting of the
IND-ID-CCA model defined in [8]. In IND-ID-CCA, the adversary is not allowed to make decryption
queries on the challenge tuple (Cch, IDch). In the policy-based setting, for an encrypted message with
respect to a policy with disjunctions, there is more than one possible qualified set of credentials that
can be used to perform the decryption. That is, forbidding the adversary from making decryption
queries on the challenge tuple (Cch,Polch) is not sufficient anymore. In fact, we may have tuples
such that (C,Pol) 6= (Cch,Polch) while ϕ j1,..., jm(C,Pol) = ϕ j1,..., jm(Cch,Polch). Decryption queries on
such tuples should then be forbidden as well. �

4 Our PBE Scheme

In this section, we first describe our PBE scheme. Then, we discuss its efficiency and analyze its
security in the random oracle model.

4.1 Description

Before describing our PBE scheme, we define algorithm BDH-Setup as follows:

BDH-Setup. On input of a security parameter k, generate a tuple (q,G1,G2,e,P) where the map
e : G1×G1 → G2 is a bilinear pairing, (G1,+) and (G2,∗) are two Gap Diffie-Hellman groups of
the same order q, and P is a random generator of G1. The generated parameters are such that the
Bilinear Diffie-Hellman Problem (denoted BDHP) is hard.

Note. We recall that a bilinear pairing satisfies the following three properties: (1) Bilinear: for
Q,Q′ ∈G1 and for a,b ∈ Z∗

q, e(a ·Q,b ·Q′) = e(Q,Q′)ab, (2) Non-degenerate: e(P,P) 6= 1 and there-
fore it is a generator of G2, (3) Computable: there exists an efficient algorithm to compute e(Q,Q′)
for all Q,Q′ ∈G1. �
Note. BDHP is defined as follows: on input of a tuple (P,a · P,b · P,c · P) for randomly chosen
a,b,c∈Z∗

q, compute the value e(P,P)abc. The hardness of BDHP can be ensured by choosing groups
on supersingular elliptic curves or hyperelliptic curves over finite fields and deriving the bilinear
pairings from Weil or Tate pairings. The hardness of BDHP implies the hardness of the so called
Computational Diffie-Hellman Problem (denoted CDHP) which is defined as follows: on input of a
tuple (P,a ·P,b ·P) for randomly chosen a,b ∈ Z∗

q, compute the value ab ·P. As we merely apply
these mathematical primitives in this paper, we refer for instance to [15, 24] for further details. �
Our PBE scheme consists of the algorithms described below.

Setup. On input of a security parameter k, do the following: (1) Run algorithm BDH-Setup to obtain
a tuple (q,G1,G2,e,P), (2) Let M = {0,1}n−n0 and C = G1 × ({0,1}n)∗ (for some n,n0 ∈ N∗

such that n0 � n), (3) Define three hash functions: H0 : {0,1}∗ → G1, H1 : {0,1}∗ → Z∗
q and H2 :

{0,1}∗→{0,1}n, (4) Let I = (q,G1,G2,e,P,n,n0,H0,H1,H2).

TA-Setup. Let T = {TA1, . . . ,TAN} be a set of trusted authorities. Each trusted authority TAκ ∈ T
picks at random a secret master key sκ ∈ Z∗

q and publishes the corresponding public key Rκ = sκ ·P.

CredGen. On input of TAκ ∈ T and A ∈ {0,1}∗, this algorithm outputs ς(Rκ,A) = sκ ·H0(A).

PolEnc. On input of message M ∈ M and policy Pol, do the following:

1. Pick at random Mi ∈ {0,1}n−n0 Hm−1
i=1 , then set Mm = M⊕ (⊕m−1

i=1 Mi)
2. Pick at random ti ∈ {0,1}n0 Hm

i=1
3. Compute r = H1(M1‖ . . .‖Mm‖t1‖ . . .‖tm), then compute U = r ·P
4. Compute πi, j = ∏

mi, j
k=1 e(Rκi, j,k ,H0(Ai, j,k)) Hmi

j=1H
m
i=1

5. Compute µi, j = H2(πr
i, j‖i‖ j), then compute vi, j = (Mi‖ti)⊕µi, j Hmi

j=1H
m
i=1

6. Return C = (U, [[vi, j]
mi
j=1]

m
i=1)

The intuition behind the encryption algorithm PolEnc is as follows: each conjunction of conditions
∧mi, j

k=1〈TAκi, j,k ,Ai, j,k〉 is first associated to a mask µi, j that depends on the different credentials related
to the specified conditions. The encrypted message M is split into m random shares [Mi]mi=1, then for
each index i ∈ {1, . . . ,m}, the value Mi‖ti is associated to the disjunction ∨mi

j=1∧
mi, j
k=1 〈TAκi, j,k ,Ai, j,k〉,

where ti is a randomly chosen intermediate key. Each value Mi‖ti is encrypted mi times using each
of the masks µi, j. This way, it is sufficient to compute any one of the masks µi, j in order to be able
to retrieve Mi‖ti. In order to be able to retrieve the encrypted message, an entity needs to retrieve all
the shares as well as all the intermediate keys ti using a set of qualified credentials for policy Pol.

PolDec. On input of ciphertext C = (U, [[vi, j]
mi
j=1]

m
i=1), policy Pol, and the qualified set of credentials

ς j1,..., jm(Pol), do the following:

1. Compute π̃i, ji = e(U,∑
mi, ji
k=1 ς(Rκi, ji,k

,Ai, ji,k)) Hm
i=1

2. Compute µ̃i, ji = H2(π̃i, ji‖i‖ ji), then compute (Mi‖ti) = vi, ji ⊕ µ̃i, ji Hm
i=1

3. Compute r = H1(M1‖ . . .‖Mm‖t1‖ . . .‖tm)
4. If U = r ·P, then return the message M =⊕m

i=1Mi, otherwise return ⊥

Note. Our PBE scheme is such that the decryption information ϕ j1,..., jm(C = (U, [[vi, j]
mi
j=1]

m
i=1),Pol)

consists of the value U and the pairs (vi, ji ,∧
mi, ji
k=1〈TAκi, ji,k

,Ai, ji,k〉) Hm
i=1. �

Note. As opposed to the scheme provided in [9], chosen ciphertext security is provided by the
random value r being a function of the intermediate keys and the encrypted message. If the policy
specified by the sender during the encryption is considered as sensitive, it can be hidden from the
recipient. In this case, the latter needs to test different combinations of credentials from his set of
credentials until retrieving the encrypted message. As in the modified secret splitting scheme of [9],
the different intermediate keys can be generated in a way such that only a recipient fulfilling the
hidden policy recognizes correct decryptions of the different intermediate keys.

4.2 Consistency and Efficiency

Our PBE scheme satisfies the standard consistency constraint. In fact, thanks to the bilinearity prop-
erty of bilinear pairings, the following holds

π̃i, ji = e(r ·P,
mi, ji

∑
k=1

sκi, ji,k
·H0(Ai, ji,k)) =

mi, ji

∏
k=1

e(sκi, ji,k
·P,H0(Ai, ji,k))

r = π
r
i, ji

The essential operation in pairing-based cryptography is pairing computation. Although such opera-
tion can be optimized as explained in [3], it still have to be minimized. On one hand, our encryption

algorithm PolEnc requires a total of ∑
m
i=1 ∑

mi
j=1 mi, j pairing computations, each one corresponds to

a credential-based condition specified by the policy. The same amount of pairing computations is
required by the encryption algorithms proposed in [2, 9]. On the other hand, our decryption algo-
rithm PolDec requires a total of m pairing computations (same as in [2]), each one corresponds to
a message share concatenated to an intermediate key. Whereas, the decryption algorithm proposed
in [9] requires a total of ∑

m
i=1 mi, ji pairing computations.

Note. In algorithm PolEnc, the value e(Rκi, j,k ,H0(Ai, j,k)) does not depend on the encrypted mes-
sage M. Thus, it can be pre-computed, cached and used in subsequent encryptions involving the
credential-based condition 〈TAκi, j,k ,Ai, j,k〉. �
Let l1 denote the bit-length of the bilinear representation of an element of group G1, then the size
of a ciphertext produced by our PBE scheme is equal to l1 + (∑m

i=1 mi).n. Thus, our scheme pro-
duces more compact ciphertexts than the scheme proposed in [2] (l1 +(∑m

i=1 mi).n+n) and the one
proposed in [9] (l1 +(∑m

i=1 ∑
mi
j=1 mi, j).n+n).

4.3 Security

Theorem 1. Our PBE scheme is IND-Pol-CCA secure in the random oracle model under the as-
sumption that BDHP is hard.

Proof. Theorem 1 follows from a sequence of three reduction arguments: (1) In [8], the public-key
encryption scheme BasicPub is shown to be IND-CPA secure in the random oracle model under
the assumption that BDHP is hard, (2) In [12], the public-key encryption scheme NewBasicPubhy

is defined to be the encryption scheme resulting from the application of the Fujisaki-Okamoto
transformation [11] to the BasicPub scheme. Result 6 of [12] shows that an IND-CCA attack on
NewBasicPubhy can be converted into an IND-CPA attack on BasicPub, (3) Lemma 1 shows that an
IND-Pol-CCA attack on our PBE scheme can be converted into an IND-CCA attack on NewBasicPubhy.
Lemma 1 is defined below.

Lemma 1. Let A◦ be an IND-Pol-CCA adversary with advantage AdvA◦ ≥ ε when attacking our
PBE scheme. Assume that A◦ has running time tA◦ and makes at most qc queries to oracle CredGen-O,
qd queries to oracle PolDec-O as well as q0 queries to oracle H0. Then, there exists an IND-ID-CCA
adversary A• the advantage of which, when attacking the NewBasicPubhy scheme, is such that
AdvA• ≥ F(qc,qd ,q0,N,m∨∧,m∨,m∧).ε. Its running time is tA• = O(tA◦).

Proof of Lemma 1 is given in Appendix A.

Note. Computing F(qc,qd ,q0,N,m∨∧,m∨,m∧) relies on computing the quantity ϒ(X ,m∨∧,m∨,m∧),
which is defined to be the total number of ’minimal’ policies written in CDNF, given the upper-
bounds (m∨∧,m∨,m∧) and X possible credential-based conditions. Computing ϒ(X ,m∨∧,m∨,m∧)
is similar, but not exactly the same as the problems of computing the number of monotone boolean
functions of n variables (Dedekind’s Problem [17]) and computing the number of antichains on
a set {1, . . . ,n} [16]. As opposed to these problems, the order of the terms must be taken into
consideration when dealing with our policies. This is a typical, yet interesting, ’counting’ problem.
However, due to space limitations, we do not elaborate more on the details. �

�

5 Policy-Based Signature

In this section, we first provide a formal definition for PBS schemes. Then, we describe security
models for existential unforgeability and credential ambiguity against chosen message attacks.

5.1 Definition

A PBS scheme is specified by five algorithms: Setup, TA-Setup, CredGen, PolSig and PolVrf which
we describe below.

Setup. On input of a security parameter k, this algorithm generates some global information I which
specifies the different parameters, groups and public functions that will be referenced by subsequent
algorithms. Furthermore, it specifies a message space M and a signature space S .

TA-Setup. As for PBE schemes (Section 3).

CredGen. As for PBE schemes (Section 3).

PolSig. On input of a message M ∈ M , a policy Pol and a qualified set of credentials ς j1,..., jm(Pol),
this algorithm returns a signature σ ∈ S representing the signature on M according to policy Pol.

PolVrf. On input of a message M ∈M , a signature σ ∈ S and a policy Pol, this algorithm returns >
(for true) if σ is a valid signature on M according to policy Pol. Otherwise, it returns ⊥ (for false).

The algorithms described above have to satisfy the following consistency constraint:

σ =PolSig(M,Pol,ς j1,..., jm(Pol)) ⇒ PolVrf(M,σ,Pol) =>

5.2 Existential Unforgeability

Existential unforgeability against chosen message attacks for PBS schemes is defined in terms of an
interactive game (denoted EUF-Pol-CMA), played between a challenger and an adversary. The game
consists of three stages: Setup, Probing and Guess which we describe below.

Setup. On input of a security parameter k, the challenger first runs algorithm Setup to obtain the
system global information I . Then, the challenger runs algorithm TA-Setup once or multiple times to
obtain a set of trusted authorities T = {TA1, . . . ,TAN}. Finally, the adversary gives to the adversary
the global information I as well as the public keys of the different trusted authorities included in T .

Probing. The adversary performs a polynomial number of oracle queries adaptively.

Forge. Once the adversary decides that Probing is over, it outputs a message Mf, a policy Polf and a
signature σf. The adversary wins the game if PolVrf(Mf,σf,Polf) =>.

The oracles that the adversary may query during Probing are defined as follows:

– CredGen-O. As for the IND-Pol-CCA game (Section 3).
– PolSig-O. On input of a message M and a policy Pol, first run algorithm CredGen once or mul-

tiple times to obtain a qualified set of credentials ς j1,..., jm(Pol) for policy Pol, then run algorithm
PolSig on input the tuple (M,Pol,ς j1,..., jm(Pol)) and return the resulting output.

The oracle queries performed by the adversary during Probing are subject to some restrictions. In
fact, the adversary is not allowed to obtain (through queries to oracle CredGen-O) a set of credentials
fulfilling the forgery policy Polf. Besides, it is natural to assume that the adversary does not perform
a query on the tuple (Mf,Polf) to oracle PolSig-O.

Definition 2. The advantage of an adversary A in the EUF-Pol-CMA game is defined to be the
quantity AdvA = Pr[A wins]. A PBS scheme is EUF-Pol-CMA secure if no probabilistic polynomial
time adversary has a non-negligible advantage in the EUF-Pol-CMA game.

5.3 Credential Ambiguity

Credential ambiguity against chosen message attacks for PBS schemes is defined in terms of an
interactive game (denoted CrA-Pol-CMA), played between a challenger and an adversary. The game
consists of three stages: Setup, Challenge and Guess which we describe below.

Setup. As in the EUF-Pol-CMA game. Here, the adversary is additionally given the master keys of
the different trusted authorities.

Challenge. The adversary chooses a message Mch and a policy Polch on which he wishes to be
challenged. The challenger does the following: (1) Pick at random jch

i ∈ {1, . . . ,mi} Hm
i=1, (2) Run

algorithm CredGen m times to obtain the qualified set of credentials ς jch
1 ,..., jch

m
(Polch), (3) Run algo-

rithm PolSig on input the tuple (Mch,Polch,ς jch
1 ,..., jch

m
(Polch)) and return the resulting output σch to

the adversary.

Guess. The adversary outputs a tuple (j1, . . . , jm), and wins the game if (jch
1 , . . . , jch

m) = (j1, . . . , jm).

Definition 3. The advantage of an adversary A in the CrA-Pol-CMA game is defined to be the
quantity AdvA = Maxi{|Pr[ji = jch

i]− 1
mi
|}. A PBS scheme is CrA-Pol-CMA secure if no probabilistic

polynomial time adversary has a non-negligible advantage in the CrA-Pol-CMA game.

6 Our PBS Scheme

In this section, we first describe our PBS scheme. Then, we discuss its efficiency and analyze its
security in the random oracle model.

6.1 Description

Our PBS scheme consists of the algorithms described below.

Setup. On input of a security parameter k, do the following: (1) Run algorithm BDH-Setup on
input k to generate output (q,G1,G2,e,P), (2) For some chosen n ∈ N∗, let M = {0,1}n and let
S = (G2)∗×G1, (3) Define two hash functions: H0 : {0,1}∗ → G1 and H4 : {0,1}∗ → Z∗

q, (4) Let
I = (q,G1,G2,e,P,n,H0,H4).

TA-Setup. As for our PBE Scheme (Section 4).

CredGen. As for our PBE Scheme (Section 4).

PolSig. On input of a message M ∈ M , a policy Pol and a qualified set of credentials ς j1,..., jm(Pol),
do the following:

1. Pick at random Yi ∈G1, then compute xi, ji+1 = e(P,Yi) Hm
i=1

2. For l = ji +1, . . . ,mi,1, . . . , ji−1 mod(mi +1) Hm
i=1, do the following:

(a) Compute τi,l = ∏
mi,l
k=1 e(Rκi,l,k ,H0(Ai,l,k))

(b) Pick at random Yi,l ∈G1, then compute xi,l+1 = e(P,Yi,l)∗ τ
H4(M‖xi,l‖m‖i‖l)
i,l

3. Compute Yi, ji = Yi−H4(M‖xi, ji‖m‖i‖ ji) · (∑
mi, ji
k=1 ς(Rκi, ji,k

,Ai, ji,k)) Hm
i=1

4. Compute Y = ∑
m
i=1 ∑

mi
j=1Yi, j

5. Return σ = ([[xi, j]
mi
j=1]

m
i=1,Y)

The intuition behind algorithm PolSig is as follows: each conjunction of credential-based conditions
∧mi, j

k=1〈TAκi, j,k ,Ai, j,k〉 is associated to a tag τi, j. For each index i, the set of tags {τi, j}mi
j=1 is equivalent

to a set of ring members. The signature key of the ring member corresponding to the tag τi, j consists

of the credentials {ς(Rκi, j,k ,Ai, j,k)}
mi, j
k=1. Thus, the generated signature corresponds to a set of ring

signatures which validity can be checked using the ’glue’ value Y .

PolVrf. Let σ = ([[xi, j]
mi
j=1]

m
i=1,Y) be a signature on message M according to policy Pol. To check

the validity of σ, do the following:

1. Compute z1 = ∏
m
i=1[∏

mi
j=1 xi, j]

2. Compute τi, j = ∏
mi, j
k=1 e(Rκi, j,k ,H0(Ai, j,k)) Hmi

j=1H
m
i=1

3. Compute z2 = e(P,Y)∗∏
m
i=1 ∏

mi
j=1 τ

H4(M‖xi, j‖m‖ j‖i)
i, j

4. If z1 = z2, then return >, otherwise return ⊥

6.2 Consistency and Efficiency

Our PBS scheme satisfies the standard consistency constraint. In fact, on one hand, the following
statement holds

τ
H4(M‖xi, j‖m‖i‖ j)
i, j = xi, j+1 ∗ e(P,Yi, j)−1 (where xi,mi+1 = xi,1) Hmi

j=1H
m
i=1

On the other hand, let λ = e(P,Y), then the following holds

z2 = λ∗
m

∏
i=1

[
mi

∏
j=1

τ
H4(M‖xi, j‖m‖i‖ j)
i, j] = λ∗

m

∏
i=1

[
mi−1

∏
j=1

xi, j+1 ∗ e(P,Yi, j)−1 ∗ xi,1 ∗ e(P,Yi,mi)
−1]

= λ∗
m

∏
i=1

[
mi

∏
j=1

xi, j ∗
mi

∏
j=1

e(P,Yi, j)−1] = λ∗ [
m

∏
i=1

mi

∏
j=1

xi, j]∗ [e(P,
m

∑
i=1

mi

∑
j=1

Yi, j)]−1 = λ∗ z1 ∗λ
−1

Our signature algorithm PolSig requires a total of ∑
m
i=1 mi + ∑

m
i=1 ∑ j 6= ji mi, j pairing computations,

whereas our verification algorithm Polvrf requires a total of 1+∑
m
i=1 ∑

mi
j=1 mi, j pairing computations.

Up to ∑
m
i=1 ∑ j 6= ji mi, j in algorithm PolSig and up to ∑

m
i=1 ∑

mi
j=1 mi, j in algorithm PolVrf can be pre-

computed, cached and used in subsequent interactions.

Let li denote the bit-length of the bilinear representation of an element of group Gi Hi=1,2, then the
bit-length of a signature produced by our PBS scheme is equal to (∑m

i=1 mi).l2 + l1.

Note. A PBS scheme can be constructed from the ID-based ring signature proposed in [25]. How-
ever, the way this ring signature was constructed does not allow generating a single ’glue’ value for
the policy according to which the signature has to be generated. �

6.3 Security

Theorem 2. Our PBS scheme is EUF-Pol-CMA secure in the random oracle model under the as-
sumption that CDHP is hard.

Proof. Theorem 2 follows from Lemma 2 which we define below.

Lemma 2. Let A◦ be an EUF-Pol-CMA adversary with advantage AdvA◦ ≥ ε when attacking the
PBS scheme, where ε is a non-negligible function. Assume that adversary A◦ has running time tA◦

and makes at most qc queries to oracle CredGen-O, qs queries to oracle PolSig-O, q0 queries to ora-
cle H0 and q4 queries to oracle H4. Then, there exists an adversary A• the advantage of which, when
attacking CDHP, is such that AdvA• ≥ 9/(100qm∨∧m∨

0 ∑
m∨
l=1 l!

(m∨
l

)
). For q≥Max{2m∨∧m∨,2m∨∧qsq4}

and ε ≤ 32(q4 +1−m∨∧m∨)/q, its running time is such that tA• ≤ (32q4 +4)tA◦/ε.

Proof of Lemma 2 follows the method described in [13], which is based on the oracle replay tech-
nique [20]. Informally, by a polynomial replay of the attack with different random oracles, we allow
the attacker to forge two signatures that are related so that the attacker is able to solve the underlying
hard problem (CDHP). The details of our proof are given in Appendix B.

�

Theorem 3. Our PBS scheme is CrA-Pol-CMA secure in the random oracle model.

Proof. Let Mch be the message and σch = ([xch
i, j]

mi
j=1]

m
i=1,Y

ch) be the signature which the adversary is
challenged on in the CrA-Pol-CMA game. Our PBS scheme is such that the following hold

1. xch
i, j = e(P,Yi, j−1)∗ τ

H4(Mch‖xch
i, j−1‖m‖i‖ j−1)

i, j−1 H j 6= jch
i +1 , xch

i, jch
i +1

= e(P,Yi) Hm
i=1

2. Y ch = ∑
m
i=1[∑ j 6= jch Yi, j +Yi−H4(Mch‖xch

i, jch
i
‖m‖i‖ jch

i) · (∑
mi, jch

i
k=1 ς(Rκi, jch

i ,k
,Ai, jch

i ,k))]

Since Yi and Yi, j−1 are chosen at random from G1, and H4 is assumed to be a random oracle, we
have that xch

i, j and Y ch are uniformly distributed in G2 and G1 respectively. If (j1, . . . , jm) is the tuple
output by the adversary in the CrA-Pol-CMA game, then we have Pr[ji = jch

i] = 1/mi Hm
i=1.

�

7 Related Work

The problem of performing encryption with respect to policies formalized as monotone boolean ex-
pressions has been addressed in various areas. In [10], the authors show how to perform encryptions
according to disjunctions and conjunctions of decryption keys generated by multiple trusted author-
ities. However, their solution remains restricted to a limited number of disjunctions. In [21], the
author further pursues the ideas discussed in [10] and presents an elegant and efficient mechanism
to perform encryption according to arbitrary combinations of keys, yet generated by a single trusted
authority. Our work on PBE could be seen as an extension of [21] in the sense that we use the same
policy model while dealing with multiple trusted authorities. Furthermore, as opposed to our work,
the schemes proposed in [10, 21] are not supported by security models and proofs.

Automated trust negotiation (ATN) allows regulating the flow of security/privacy-sensitive resources
during trust establishment through the definition of disclosure policies [23]. One of the major prob-
lems in ATN is called the cyclic policy interdependency problem which occurs when a communica-
tion party is obliged to be the first to reveal a sensitive credential to the other. In [18], the authors
model the cyclic policy interdependency problem as a 2-party secure function evaluation (SFE) and
propose oblivious signature-based envelopes (OSBE) for efficiently solving the FSE problem. They
describe a one-round OSBE scheme based on ID-based cryptography. Our work on PBE could be
seen as a generalization of their ID-based OSBE scheme in the sense that the latter corresponds to
encrypting a message with respect to a policy fulfilled by a single credential.

In [14], the authors introduce the notion of hidden credentials which is equivalent to PBE in that
the ability to read a sensitive resource is contingent on having been issued the required credentials.
Compared to OSBE, hidden credentials deal with complex policies expressed as monotone boolean
expressions. They use onion-like encryptions and multiple encryptions to deal, respectively, with
conjunctions and disjunctions of credentials. Their approach remains inefficient in terms of both
computational costs and bandwidth consumption (ciphertext size), especially when authorization

structures become very complex. In [9], the authors propose a solution to improve decryption effi-
ciency as well as policy concealment when implementing hidden credentials with sensitive policies.
They prove the chosen ciphertext security of their solution while relying on the security models
defined in [8] for ID-based encryption schemes. As opposed to their approach, ours consists of
defining a policy-oriented chosen ciphertext security model, which enables us to provide more for-
mal reductionist security analysis.

An escrow-free public-key encryption scheme supporting cryptographic workflow is presented in [1].
The proposed scheme could be called a public-key policy-based encryption scheme as the ability to
read a sensitive resource requires not only the possession of a qualified set of credentials but also
the knowledge of a specific private key. Formal security models are defined to support the presented
scheme. The recipient security model considered in [1] corresponds to indistinguishability against
chosen plaintext attacks for PBE schemes, whereas our security analysis considers the stronger cho-
sen ciphertext attacks. The encryption scheme of [1] and the one of [9] consider policies formalized
as monotone boolean expressions represented as general conjunctions and disjunctions of atomic
terms. The size of the resulting ciphertexts depends linearly on the number of these terms, whereas
the normal forms used in our approach substantially reduce the size of the produced ciphertexts.

In [2], the authors show how the policy-based cryptographic primitives can be used to enforce
policies with respect to the data minimization principle according to which only strictly necessary
information should be collected for a given purpose. In this paper, we provide a further refinement
of the formal definitions given in [2]. While the security analysis in [2] is intuitive, we define in
this paper new security models for PBC primitives and give reductionist security arguments for our
PBC schemes. Furthermore, our PBE scheme produces ciphertexts with shorter size compared to
the scheme presented in [2].

As opposed to encryption, there is lesser emphasis in the literature on the specific problem of gen-
erating pairing-based signatures with respect to policies formalized as monotone boolean functions.
PBS schemes may have interesting application in proof-based authorization systems [22]. Our PBS
scheme could be viewed as a slight modification of the scheme presented in [2]. In contrast with [2],
our scheme is supported by formal security models and proofs. The latter follows the technique
presented in [13] to prove the security of the ID-based ring signature of [25]. Note finally that our
proof can be easily adapted to prove the security of the ID-based ring signature of [19].

8 Conclusion

The concept of PBC allows to perform cryptographic operations with respect to policies formalized
as monotone boolean expressions. Such operations have interesting applications in encryption-based
and proof-based authorization systems as well as in trust establishment and negotiation. Various
PBC schemes proposed so far in the literature suffer from either inefficiency or lack of strong se-
curity arguments. In this paper, we first introduced policy-oriented strong security models for both
PBE and PBS schemes. Then, we presented concrete PBE and PBS schemes and proved their se-
curity in the random oracle model. Future research directions include further improvement on the
efficiency of PBE and PBS schemes, provision of tighter security reductions, development of new
PBC primitives and investigation of the deployment of PBC schemes in real-world applications.

References

1. S.S. Al-Riyami, J. Malone-Lee, and N.P. Smart. Escrow-free encryption supporting cryptographic workflow. Cryp-
tology ePrint Archive, Report 2004/258, 2004. http://eprint.iacr.org/.

2. W. Bagga and R. Molva. Policy-based cryptography and applications. In Proceedings of Financial Cryptography
and Data Security (FC’05), volume 3570 of LNCS, pages 72–87. Springer-Verlag, 2005.

3. P. Barreto, H. Kim, B. Lynn, and M. Scott. Efficient algorithms for pairing-based cryptosystems. In Proceedings of
the 22nd Annual International Cryptology Conference on Advances in Cryptology, pages 354–368. Springer-Verlag,
2002.

4. M. Bellare. Practice-oriented provable-security. In ISW ’97: Proceedings of the First International Workshop on
Information Security, pages 221–231. Springer-Verlag, 1998.

5. M. Bellare, A. Desai, D. Pointcheval, and P. Rogaway. Relations among notions of security for public-key encryption
schemes. In CRYPTO ’98: Proceedings of the 18th Annual International Cryptology Conference on Advances in
Cryptology, pages 26–45. Springer-Verlag, 1998.

6. M. Bellare and P. Rogaway. Random oracles are practical: a paradigm for designing efficient protocols. In Proceed-
ings of the 1st ACM conference on Computer and communications security, pages 62–73. ACM Press, 1993.

7. J. Benaloh and J. Leichter. Generalized secret sharing and monotone functions. In CRYPTO ’88: Proceedings on
Advances in cryptology, pages 27–35, New York, NY, USA, 1990. Springer-Verlag New York, Inc.

8. D. Boneh and M. Franklin. Identity-based encryption from the weil pairing. In Proceedings of the 21st Annual
International Cryptology Conference on Advances in Cryptology, pages 213–229. Springer-Verlag, 2001.

9. Robert Bradshaw, Jason Holt, and Kent Seamons. Concealing complex policies with hidden credentials. Cryptology
ePrint Archive, Report 2004/109, 2004. http://eprint.iacr.org/.

10. L. Chen, K. Harrison, D. Soldera, and N. Smart. Applications of multiple trust authorities in pairing based cryptosys-
tems. In Proceedings of the International Conference on Infrastructure Security, pages 260–275. Springer-Verlag,
2002.

11. E. Fujisaki and T. Okamoto. How to enhance the security of public-key encryption at minimum cost. In Public Key
Cryptography, pages 53–68, 1999.

12. David Galindo. Boneh-franklin identity based encryption revisited. To appear in Proceedings of 32nd International
Colloquium on Automata, Languages and Programming (ICALP 2005).

13. J. Herranz. A formal proof of security of zhang and kim’s id-based ring signature scheme. In WOSIS’04, pages
63–72. INSTICC Press, 2004. ISBN 972-8865-07-4.

14. J. Holt, R. Bradshaw, K. E. Seamons, and H. Orman. Hidden credentials. In Proc. of the 2003 ACM Workshop on
Privacy in the Electronic Society. ACM Press, 2003.

15. A. Joux. The weil and tate pairings as building blocks for public key cryptosystems. In Proceedings of the 5th
International Symposium on Algorithmic Number Theory, pages 20–32. Springer-Verlag, 2002.

16. J. Kahn. Entropy, independent sets and antichains: a new approach to dedekind’s problem. In Proc. Amer. Math.
Soc. 130, pages 371–378, 2002.

17. D. Kleitman. On dedekind’s problem: the number of monotone boolean functions. In Proc. Amer. Math. Soc. 21,
pages 677–682, 1969.

18. N. Li, W. Du, and D. Boneh. Oblivious signature-based envelope. In Proceedings of the 22nd annual symposium on
Principles of distributed computing, pages 182–189. ACM Press, 2003.

19. C. Lin and T. Wu. An identity-based ring signature scheme from bilinear pairings. Cryptology ePrint Archive, Report
2003/117, 2003. http://eprint.iacr.org/.

20. D. Pointcheval and J. Stern. Security arguments for digital signatures and blind signatures. Journal of Cryptology:
the journal of the International Association for Cryptologic Research, 13(3):361–396, 2000.

21. N. Smart. Access control using pairing based cryptography. In Proceedings CT-RSA 2003, pages 111–121. Springer-
Verlag LNCS 2612, April 2003.

22. A. Hess T. Barlow and K. E. Seamons. Exploiting hierarchical identity-based encryption for access control to
pervasive computing information. Technical Report CMU-CS-04-172, October 2004.

23. W. Winsborough, K. Seamons, and V. Jones. Automated trust negotiation. Technical Report TR-2000-05, Raleigh,
NC, USA, 24 2000.

24. Y. Yacobi. A note on the bilinear diffie-hellman assumption. Cryptology ePrint Archive, Report 2002/113, 2002.
http://eprint.iacr.org/.

25. F. Zhang and K. Kim. ID-based blind signature and ring signature from pairings. In ASIACRYPT, pages 533–547.
Springer-Verlag LNCS 2501, 2002.

A Proof of Lemma 1

We construct an IND-CCA adversary A• that uses adversary A◦ to mount an attack against the
NewBasicPubhy scheme [12]. The game between the challenger and algorithm A• starts with the
Initialization stage which we describe below.

Initialization. On input of the security parameter k, the challenger first generates the public key
pk? = (q,G1,G2,e,P,R?,Q?,m?.n,m?.n0,H1,H2) such that m? ∈{1, . . . ,m∨∧} and R? = s? ·P, where
s? ∈Z∗

q is the private key corresponding to pk?. Upon receiving pk?, algorithm A• does the following:

1. Let m• = m?, then choose the values m•
i ∈ {1, . . . ,m∨} and m•

i, j ∈ {1, . . . ,m∧} Hm•
i

j=1H
m•
i=1

2. Pick at random α•i ∈ {1, . . . ,m∨∧} and rα•i ,ω
•
i ∈ Z∗

q Hm•
i=1

3. Pick at random β•i, j ∈ {1, . . . ,m∨} and rβ•i, j
,υ•i, j ∈ Z∗

q Hm•
i

j=1H
m•
i=1

4. Pick at random l•i, j,k ∈ {1, . . . ,q0} , γ•i, j,k ∈ {1, . . . ,m∧} and rγ•i, j,k
∈ Z∗

q H
m•

i, j
k=1H

m•
i

j=1H
m•
i=1

5. Pick at random θ•i, j,k ∈ Z∗
qH

m•
i, j

k=2H
m•

i
j=1 Hm•

i=1, then compute θ•i, j,1 = ∑
m•

i, j
k=2 θ•i, j,k Hm•

i
j=1H

m•
i=1

6. Compute κ•i, j,k = ((α•i −1).m∨+β•i, j)−1).m∧+ γ•i, j,k and rκ•i, j,k
= rγ•i, j,k

rβ•i, j
rα•i H

m•
i, j

k=1H
m•

i
j=1H

m•
i=1

7. Choose a hash function: H̄•
2 : {1, . . . ,m∨∧}→ {0,1}n

8. Define the function ∆• : {0,1}m•.n×{1 . . . ,m•}→{0,1}n which on input of a tuple (X , i) returns
the ith block of length n of the binary string X i.e. the bits from (i−1).n+1 to i.n of X .

9. Define the functions ξ
f
x : {0,1}>x →{0,1}x and ξl

x : {0,1}>x →{0,1}x which on input a string
X return, respectively, the first x bits of X and the last x bits of X .

10. Define the function Ω• : {0,1}m•.n×{1 . . . ,m•}→{0,1}n which on input of a tuple (X , i) returns
the binary ∆•(ξ f

m•.(n−n0)
(X), i)‖∆•(ξl

m•.n0
(X), i).

Note. We assume that adversary A◦ is parameterized with m? ∈ N∗. Furthermore, we assume that
N ≥ m∨∧m∨. Our proof can be easily adapted to the case where N ≤ m∨∧m∨. �
The interaction between algorithm A• and adversary A◦ consists of five stages: Setup, Queries-1,
Challenge, Queries-2 and Guess which we describe below.

Setup. Algorithm A• does the following: (1) Let I • = (q,G1,G2,e,P,n,n0,H•
0 ,H1,H•

2) be the
global information, where the oracles H•

0 and H•
2 are controlled by algorithm A• and the tuple

(q,G1,G2,e,P,n,n0,H1) is taken from params?, (2) Define the set of trusted authorities T =
{TA1, . . . ,TAN} as follows: for κ ∈ {κ•i, j,k}, the public key of TAκ is Rκ = rκ ·R?, whereas, for
κ ∈ {1, . . . ,N} \ {κ•i, j,k}, the public key of TAκ is Rκ = sκ ·P for some randomly chosen sκ ∈ Z∗

q,
(3) Give the global information I • and the trusted authorities’ public keys Rκ HN

κ=1 to adversary A◦.

Note. For κ ∈ {κ•i, j,k}, the master key of TAκ is sκ = rκs?

Algorithm A• controls the random oracle H•
0 as follows: algorithm A• maintains a list of tuples

[Aı,H0,ı,λı] which we denote H list
0 . The list is initially empty. Assume that adversary A◦ makes a

query on assertion A ∈ {0,1}∗, then adversary A• responds as follows:

1. If A already appears on the list H list
0 in a tuple [Aı,H0,ı,λı], then return H0,ı

2. If A does not appear on H list
0 and A is the l•i, j,1-th distinct query to oracle H•

0 , then compute
H0,l•i, j,1

= r−1
γ•i, j,1

· ((r−1
β•i, j

υ•i, jr
−1
α•i

ω•
i) ·Q?−θ•i, j,1 ·P), return H0,l•i, j,1

, and add [A,H0,l•i, j,1
,null] to H list

0

3. If A does not appear on H list
0 and A is the l•i, j,k-th distinct query to oracle H•

0 (for k > 1), then
compute H0,l•i, j,k

= (r−1
γ•i, j,k

θ•i, j,k) ·P, return H0,l•i, j,k
, and add the entry [A,H0,l•i, j,k

,r−1
γ•i, j,k

θ•i, j,k] to H list
0

4. Otherwise, pick at random λ ∈ Z∗
q such that λ ·P does not appear on the list H list

0 , return λ ·P,
and add the entry [A,λ ·P,λ] to H list

0

Note. The simulated oracle H•
0 is such that (r−1

β•i, j
υ•i, jr

−1
α•i

ω•
i) ·Q? = ∑

m•
i, j

k=1 rγ•i, j,k
H0,l•i, j,k

Hi, j

Algorithm A• controls the random oracle H•
2 as follows: on input of a tuple (G, i, j), algorithm A•

returns the value Ω•(H2(Gυ•i, j
−1

ω•
i
−1

)⊕ H̄•
2 (j), i).

The policy Polcr = ∧m•
i=1∨

m•
i

j=1∧
m•

i, j
k=1〈TAκ•i, j,k

,Al•i, j,k
〉 is called the ’crucial’ policy. Algorithm A• hopes

that the ’target’ policy Polch, which will be chosen by adversary A◦ in the Challenge stage of the
IND-Pol-CCA game, will be equal to policy Polcr.

Queries-1. Adversary A◦ performs a polynomial number of oracle queries adaptively.

Challenge. Once adversary A◦ decides that the stage Queries-1 is over, it outputs two equal length
messages M0 and M1 as well as a policy Polch on which it wishes to be challenged. Algorithm
A• responds as follows: (1) If Polch 6= Polcr, then report failure and terminate (we refer to this
event as Ech), (2) Otherwise, first pick at random Md,i ∈ {0,1}n−n0 Hm•−1

i=1 and set Md,m• = Md ⊕
(⊕m•−1

i=1 Md,i) Hd∈{0,1}. Then, give the messages M•
d = Md,1‖ . . .‖Md,m• Hd∈{0,1} to the challenger

who picks randomly b ∈ {0,1} and returns a ciphertext C? = (U,v?) representing the encryption of
message M•

b using the public key pk?. Upon receiving the challenger’s response, compute the values
vi, j = Ω•(v?⊕ H̄•

2 (j), i) Hm•
i

j=1H
m•
i=1, then return the ciphertext Cch = (U, [[vi, j]

m•
i

j=1]
m•
i=1).

Note. For adversary A◦, the ciphertext Cch represents a correct encryption of message Mb according
to policy Polch. In fact, the ciphertext C? is such that U = H1(Mb‖t) ·P (for some randomly chosen
t ∈ {0,1}m•.n), and v? = (Mb‖t)⊕H2(gr) where g = e(R?,Q?). Let ti = Ω•(t, i), then the following
holds

vi, j = Ω
•((Mb‖t)⊕H2(e(R?,Q?)r)⊕ H̄•

2 (j), i)

= Ω
•(Mb‖t, i)⊕Ω

•(H2([e((rβ•i, j
rα•i) ·R

?,(r−1
β•i, j

υ
•
i, jr

−1
α•i

ω
•
i) ·Q?)r]υ

•
i, j
−1

ω•
i
−1

)⊕ H̄•
2 (j), i)

= (Mi‖ti)⊕H•
2 (e((rβ•i, j

rα•i) ·R
?,

m•
i, j

∑
k=1

rγ•i, j,k
H0,l•i, j,k

)r, i, j) = (Mi‖ti)⊕H•
2 ([

m•
i, j

∏
k=1

e(Rκ•i, j,k
,H0,l•i, j,k

)]r, i, j)

Queries-2. Again, adversary A◦ performs a polynomial number of oracle queries adaptively.

Guess. Algorithm A◦ outputs a guess b′ for b. Algorithm A• outputs b′ as its guess for b.

The oracles CredGen-O and PolDec-O to which adversary A◦ makes queries during Queries-1 and
Queries-2 are described below. Without loss of generality, we assume that adversary A◦ always
makes the appropriate query on A to the random oracle H•

0 before making any query involving A to
oracles CredGen-O and PolDec-O.

– CredGen-O. Assume that adversary A◦ makes a query on a tuple (TAκ,A). Let [Aı,H0,ı,λı] be
the tuple from H list

0 such that Aı = A, then algorithm A• responds as follows:
1. If ı = l•i, j,1 and κ ∈ {κ•i, j,k}i, j,k, then report failure and terminate (event Ecred)
2. If ı 6= l•i, j,1 and κ ∈ {κ•i, j,k}i, j,k, then return (rκλı) ·R? = (rκs?) ·H0,ı
3. If κ ∈ {1, . . . ,N}\{κ•i, j,k}i, j,k, then return sκ ·H0,ı

– PolDec-O. Assume that adversary A◦ makes an oracle query on a tuple (C,Pol,{ j1, . . . , jm}).
Then, algorithm A• responds as follows:
1. If Pol 6= Polch and Pol involves a condition 〈TAκ,A〉 such that κ ∈ {κ•i, j,k} and A ∈ {Al•i, j,1

},
then report failure and terminate (event Edec)

2. If Pol 6= Polch and Pol does not involve any condition 〈TAκ,A〉 such that κ ∈ {κ•i, j,k} and
A∈ {Al•i, j,1

}, then do the following: (1) Run oracle CredGen-O multiple times until obtaining
the qualified set of credentials ς j1,..., jm(Pol), (2) Run algorithm PolDec on input the tuple
(C,Pol,ς j1,..., jm(Pol)) and return the resulting output back to adversary A◦

3. If Pol = Polch, then do the following: let C = (U, [[vi, j]
m•

i
j=1]

m•
i=1), then compute the val-

ues v•i = vi, ji ⊕ H̄•
2 (ji)Hm•

i=1, and make a decryption query to the challenger on ciphertext
C• = (U,ξ

f
n−n0

(v•1)‖ . . .‖ξ
f
n−n0

(v•m•)‖ξl
n0

(v•1)‖ . . .‖ξl
n0

(v•m•)). Upon receiving the challenger’s
response, forward it to adversary A◦

In the following, we analyze the simulation described above:

If algorithm A• does not report failure during the simulation, then the view of algorithm A◦ is
identical to its view in the real attack. In fact, observe first that the responses of algorithm A• to
all queries of adversary A◦ to oracle H•

0 are uniformly and independently distributed in group G1
as in the real IND-Pol-CCA attack. Second, all the responses of algorithm A• to queries made by
adversary A◦ to oracles CredGen-O and PolSig-O are consistent. Third, the ciphertext Cch given to
adversary A◦ corresponds to the encryption according to Polch of Mb for some random b ∈ {0,1}.

Algorithm A• reports failure if either event Ech, event Ecred or event Edec occurs during the simula-
tion. Since events Ecred and Edec are independent, the following statement holds

AdvA• ≥ Pr[¬Ecred∧¬Ech∧¬Edec].ε ≥ Pr[¬Ech|¬Ecred∧¬Edec].Pr[¬Ecred].Pr[¬Edec].ε (1)

From the simulation described above, we have

Pr[Ecred]≤
qcm∨∧m∨

Nq0
(2)

Adversary A• picks the challenge policy from a set of ϒ(Nq0,m∨∧,m∨,m∧) distinct policies. Then,
the following statement holds

Pr[¬Ech|¬Ecred∧¬Edec]≥
1

ϒ(Nq0,m∨∧,m∨,m∧)
(3)

The total number of policies, distinct from policy Polch, that may be specified by adversary A•

during queries to oracle PolDec-O, and that involve at least one of the conditions 〈TAκ,A〉 such that
κ ∈ {κ•i, j,k} and A∈{Al•i, j,1

} could be upper bounded by ϒ′(Nq0,m∨∧,m∨,m∧)= ϒ(Nq0,m∨∧,m∨,m∧)−
ϒ(Nq0− (m∨∧m∨)2,m∨∧,m∨,m∧)−1. Then, the following statement holds

Pr[Edec]≤
qdϒ′(Nq0,m∨∧,m∨,m∧)

ϒ(Nq0,m∨∧,m∨,m∧)
(4)

Finally, statements (1), (2), (3) and (4) lead to the result

F(qc,qd ,q0,N,m∨∧,m∨,m∧) = (1− qcm∨∧m∨
Nq0

).(1− qdϒ′(Nq0,m∨∧,m∨,m∧)
ϒ(Nq0,m∨∧,m∨,m∧)

).
1

ϒ(Nq0,m∨∧,m∨,m∧)

Note. In the particular case where N = m∨∧ = m∨ = m∧ = 1, our PBE scheme is equivalent to the
New-FullIdent scheme of [12]. In this case, note that our results match Result 5 of [12]. In fact, in
this case we have ϒ′(Nq0,m∨∧,m∨,m∧) = 0 and ϒ(Nq0,m∨∧,m∨,m∧) = q0. �

B Proof of Lemma 2

We construct an algorithm A• that uses A◦ to mount an attack against CDHP. The game between
the challenger and algorithm A• starts with the Initialization stage which we describe below.

Initialization. The challenger gives to adversary A• the BDH parameters (q,G1,G2,e,P) as well
as a CDHP-instance (P,a ·P,b ·P) = (P,P1,P2) for these parameters. Then, algorithm A• does the
following:

1. Choose the values i• ∈ {1, . . . ,m∨∧}, j• ∈ {1, . . . ,m∨} and m•
i•, j• ∈ {1, . . . ,m∧}

2. Pick at random the values κ•i•, j•,k ∈ {1, . . . ,N} and li•, j•,k ∈ {1, . . . ,q0} H
m•

i•, j•

k=1

3. Pick at random θ•i•, j•,k ∈ Z∗
q H

m•
i•, j•

k=2 , then compute θ•i•, j•,1 = ∑
m•

i•, j•

k=2 θ•i•, j•,k

The interaction between algorithm A• and adversary A◦ consists of three stages: Setup, Probing
and Forge which we describe below.

Setup. Algorithm A• does the following: (1) Let I • = (q,G1,G2,e,P,n,H•
0 ,H•

4) be the global in-
formation, where the oracles H•

0 and H•
4 are controlled by algorithm A•, the tuple (q,G1,G2,e,P) is

given to algorithm A• in the Initialization stage, and the value n ∈N∗ is chosen by algorithm A•, (2)
Define the set of trusted authorities T = {TA1, . . . ,TAN} as follows: for κ∈ {κ•i•, j•,k}, the public key
of TAκ is Rκ = rκ ·P1 for some randomly chosen rκ ∈Z∗

q, whereas, for κ∈ {1, . . . ,N}\{κ•i•, j•,k}, the
public key of TAκ is Rκ = sκ ·P for some randomly chosen sκ ∈ Z∗

q, (3) Give the global information
I • and the trusted authorities’ public keys Rκ HN

κ=1 to adversary A◦.

Note. For κ ∈ {κ•i•, j•,k}, the master key of TAκ is sκ = rκa

Algorithm A• controls the random oracle H•
0 as follows: algorithm A• maintains a list of tuples

[Aı,H0,ı,λı] which we denote H list
0 . The list is initially empty. Assume that adversary A◦ makes a

query on assertion A ∈ {0,1}∗, then adversary A• responds as follows:

1. If A already appears on the list H list
0 in a tuple [Aı,H0,ı,λı], then return H0,ı

2. If A does not appear on H list
0 and A is the l•i•, j•,1-th distinct query to oracle H•

0 , then compute
H0,l•i, j,1

= r−1
κ•i•, j•,1

· (P2−θ•i•, j•,1 ·P), return H0,l•i•, j•,1
, and add the entry [A,H0,l•i•, j•,1

,null] to H list
0

3. If A does not appear on H list
0 and A is the l•i•, j•,k-th distinct query to oracle H•

0 (for k > 1), then
compute H0,l•i•, j•,k

= (r−1
κ•i•, j•,k

θ•i•, j•,k) ·P, return H0,l•i•, j•,k
, and add [A,H0,l•i•, j•,k

,r−1
κ•i•, j•,k

θ•i•, j•,k] to H list
0

4. Otherwise, pick at random λ ∈ Z∗
q, return λ ·P and add [A,λ ·P,λ] to H list

0

Note. The random oracle H•
0 is such that the following holds

τ
•
i•, j• =

m•
i•, j•

∏
k=1

e(Rκi•, j•,k ,H0(Ai•, j•,k))

= e(rκi•, j•,1 ·P1,r−1
κi•, j•,1

· (P2−θi•, j•,1 ·P))∗
m•

i•, j•

∏
k=2

e(rκi•, j•,k ·P1,(r−1
κi•, j•,k

θi•, j•,k) ·P)

= e(P1,P2− (θi•, j•,1−
m•

i•, j•

∑
k=2

θi•, j•,k) ·P) = e(P1,P2) = e(P,ab ·P) �

Probing. Adversary A◦ performs a polynomial number of oracle queries adaptively.

Forging. Algorithm A◦ outputs a message Mf, a policy Polf and a signature σf. The adversary wins
the game if PolVrf(Mf,Polf,σf) =>.

The oracles that adversary A◦ may query during Probing are defined below. We assume without
loss of generality that adversary A◦ always makes the appropriate query to the random oracle H•

0
on assertion A.

– CredGen-O. Assume that adversary A◦ makes a query on a tuple (TAκ,A). Let [Aı,H0,ı,λı] be
the tuple from H list

0 such that Aı = A, then algorithm A• responds as follows:
1. If ı = l•i•, j•,1 and κ ∈ {κ•i•, j•,k}, then report failure and terminate (event Ecred)
2. If ı 6= l•i•, j•,1 and κ ∈ {κ•i•, j•,k}, then return (rκλı) ·P1 = (rκa) ·H0,ı = sκ ·H0,ı

3. If κ ∈ {1, . . . ,N}\{κ•i•, j•,k}, then return sκ ·H0,ı
– PolSig-O. Assume that adversary A◦ makes a query on a tuple (M,Pol). Algorithm A• responds

as follows:
1. Pick at random hi,1 ∈ Z∗

q Hm
i=1 and Yi, j ∈G1 Hmi

j=1H
m
i=1

2. Compute τi, j = ∏
mi, j
k=1 e(Rκi, j,k ,H

•
0 (Ai, j,k)) Hmi

j=1H
m
i=1

3. Compute xi, j+1 = e(P,Yi, j)∗τ
hi, j
i, j , then compute hi, j+1 = H4(M‖xi, j+1‖m‖i‖ j +1) Hmi−1

j=1 Hm
i=1.

In order to compute the value hi, j, algorithm A• maintains a list of tuples [(Mı,xı,mı, iı, jı),H4,ı]
which we denote H list

4 . If (M,xi, j,m, i, j) appears on H list
4 in a tuple [(Mı,xı,mı, iı, jı),H4,ı],

then algorithm A• sets hi, j = H4,ı. Otherwise, it picks at random H ∈ Z∗
q, sets hi, j = H and

adds the tuple [(M,xi, j,m, i, j),H] to H list
4 .

4. Let xi,1 = e(P,Yi,mi)∗ τ
hi,mi
i,mi

and hi,1 = H4(M‖xi,1‖m‖i‖1), then
(a) If (M,xi,1,m, i,1) already appears on the list H list

4 in a tuple [(Mı,xı,mı, iı,1),H4,ı] such
that H4,ı 6= hi,1, then report failure and terminate (we refer to this event as Esig).

(b) Otherwise, add the tuple [(M,xi,1,m, i,1),hi,1] to H list
4 .

5. Compute Y = ∑
m
i=1 ∑

mi
j=1Yi, j, then return ([xi, j]

mi
j=1]

m
i=1,Y) to adversary A◦.

Algorithm A• controls the random oracle H•
4 as follows: assume that adversary A◦ makes a query

to the random oracle H•
4 on input (M,x,m, i, j), then algorithm A• responds as follows:

1. If the tuple (M,x,m, i, j) already appears on H list
4 in a tuple [(Mı,xı,mı, iı, jı),H4,ı], then output H4,ı

2. Otherwise, pick at random H ∈ Z∗
q, output H and add [(M,x,m, i, j),H] to H list

4

In the following, we analyze the simulation described above:

Let w be the whole set of random tapes that take part in an attack by adversary A◦, with the en-
vironment simulated by algorithm A•, but excluding the randomness related to the oracle H•

4 . The
success probability of adversary A◦ in forging a valid ring signature scheme is then taken over the
space (w ,H•

4). Let S be the set of successful executions of adversary A◦, then the following holds

AdvA◦ = Pr[(w ,H•
4) ∈ S]≥ ε (5)

Let E0 be the event that adversary A◦ succeeds in forging the signature σf = ([xf
i, j]

mi
j=1]

m
i=1,Y

f) with-
out making a query to the random oracle H•

4 on at least one of the tuples (Mf,xf
i, j,m, i, j). Then, the

following holds

Pr[E0]≤
m∨∧m∨

q
(6)

Let E ′
0 be the event that event Esig occurs at one of the queries made by adversary A◦ to the oracle

PolSig-O. Then, the following holds

Pr[E ′
0]≤

m∨∧qsq4

q
(7)

Let S ′ be the set of successful executions of adversary A◦ for which it has made queries to the
random oracle H•

4 on the all the tuples (Mf,xf
i, j,m, i, j), then the following holds

Pr[(w ,H•
4) ∈ S ′] = Pr[¬E0].Pr[¬E ′

0].Pr[(w ,H•
4) ∈ S]

≥ (1− m∨∧m∨
q

).(1− m∨∧qsq4

q
).ε (8)

Let Q1, . . . ,Qq4 denote the different queries made by adversary A◦ to the random oracle H•
4 . We

denote by Qβi, j (for βi, j ∈ {1, . . . ,q4}) the query made by adversary A◦ to the random oracle H•
4 on

the tuple (Mf,xf
i, j,m, i, j). Let ilq and jlq be the indexes such that for all (i, j) 6= (ilq, jlq), βi, j < βilq, jlq .

The value βilq, jlq is called the last-query index. We define S ′
βilq, jlq

to be the set of executions from S ′

whose last-query index is βilq, jlq . Since βilq, jlq may range between β≤ β = m∨∧m∨ and q4, this gives
us a partition of S ′ in at least q4 +1−β classes.

Let E1 be the event that algorithm A• obtains a successful execution (w 1,H•1
4) ∈ S ′

β1
ilq, jlq

, for some

last-query index β1
ilq, jlq , after invoking t1 times adversary A◦ with randomly chosen tuples (w ,H•

4).
In the particular case where t1 = (Pr[w ,H•

4) ∈ S ′])−1, and since (1− 1
X)X ≤ e−1 (for X > 1), the

following statement holds

Pr[E1] = 1− (1−Pr[(w ,H•
4) ∈ S ′])t1 ≥ 1− e−1 >

3
5

(9)

We define the set J of last-query indexes which are more likely to appear as follows:

J = {βilq, jlq s.t. Pr[(w ,H•
4) ∈ S ′

βilq, jlq
|(w ,H•

4) ∈ S ′]≥ γ}, where γ = 1
2(q4+1−β)

Let S ′J = {(w ,H•
4) ∈ S ′

βilq, jlq
s.t. βilq, jlq ∈ J} be the subset of successful executions corresponding to

the set J . Since the subsets S ′
βilq, jlq

are pairwise disjoint, the following holds

Pr[(w ,H•
4) ∈ S ′J |(w ,H•

4) ∈ S ′] = ∑
βilq, jlq∈J

Pr[(w ,H•
4) ∈ S ′

βilq, jlq
|(w ,H•

4) ∈ S ′]

= 1− ∑
βilq, jlq /∈J

Pr[(w ,H•
4) ∈ S ′

βilq, jlq
|(w ,H•

4) ∈ S ′]

≥ 1− (
1
2γ
−|J |).γ ≥ 1

2
(10)

Let α = (1− m∨∧m∨
q).(1− m∨∧qsq4

q).ε.γ, then equation (8) leads to the following statement

Pr[(w ,H•
4) ∈ S ′

βilq, jlq
] = Pr[(w ,H•

4) ∈ S ′].Pr[(w ,H•
4) ∈ S ′

βilq, jlq
|(w ,H•

4) ∈ S ′]≥ α (11)

The oracle H•
4 can be written as a pair (H̃4,hilq, jlq), where H̃4 corresponds to the answers for all the

queries to oracle H•
4 except the query Qβilq, jlq

whose answer is denoted as hilq, jlq . We define the set
Ωβilq, jlq

as follows:

Ωβilq, jlq
= {(w ,(H̃4,hilq, jlq)) ∈ S ′ s.t. Prhilq, jlq

[(w ,(H̃4,hilq, jlq)) ∈ S ′
βilq, jlq

]≥ δ−α}

Lemma 3. (Splitting Lemma defined in [20]) Let A ⊂ X ×Y s.t. Pr[(x,y) ∈ A] ≥ ε. Given α < ε,
define the set B = {(x,y) ∈ X ×Y |Pry′∈Y [(x,y′) ∈ A]≥ ε−α}. The following statements hold:

1. Pr[(x,y) ∈ B|(x,y) ∈ X ×Y]≥ α

2. ∀ (x,y) ∈ B, Pry′∈Y [(x,y′) ∈ A]≥ ε−α

3. Pr[(x,y) ∈ B|(x,y) ∈ A]≥ α

ε

For δ = 2α and according to the splitting lemma, the following statements hold

∀ (w ,(H̃4,hilq, jlq)) ∈ Ωβilq, jlq
, Prhilq, jlq

[(w ,(H̃4,hilq, jlq)) ∈ S ′
βilq, jlq

]≥ α (12)

Pr[(w ,(H̃4,hilq, jlq)) ∈ Ωβilq, jlq
|(w ,(H̃4,hilq, jlq)) ∈ S ′

βilq, jlq
]≥ α

δ
=

1
2

(13)

Assume that event E1 occurs and that the successful execution (w 1,(H̃1
4 ,h1

ilq, jlq)) is in S ′J . Let E2

be the event that algorithm A• obtains, for some last-query index β1
ilq, jlq , a successful execution

(w 1,(H̃1
4 ,h2

ilq, jlq))∈Ω
β1

ilq, jlq
such that h2

ilq, jlq 6= h1
ilq, jlq , after invoking t2 times adversary A◦, with fixed

(w 1, H̃1
4) and randomly chosen hilq, jlq . In the particular case where t2 = (α− 1

q)−1, the following
holds

Pr[E2] = 1− (1− (α− 1
q
))t2 ≥ 1− e−1 >

3
5

(14)

Consider (w 1,(H̃1
4 ,h1

ilq, jlq)) and (w 1,(H̃1
4 ,h2

ilq, jlq)), the two successful executions of the attack ob-
tained by algorithm A• if events E1 and E2 occur. For the two considered executions, the random
tapes w are identical, whereas the answers of the random oracle H•

4 to the queries of adversary A◦

are identical only until the query Q
β1

ilq, jlq
.

Let σ1
f = ([x1

i, j]
m1

i
j=1]

m1

i=1,Y
1) and σ2

f = ([x2
i, j]

m2
i

j=1]
m2

i=1,Y
2) be the signatures forged by adversary A◦

through the two considered successful executions respectively. With probability greater than 1
∑

m∨
l=1 l!(m∨

l) ,

we have m1 = m2 = m and m1
i = m2

i = mi Hm
i=1. In this case, the following statements hold

1. x1
i, j = x2

i, j Hmi
j=1H

m
i=1

2. h1
i, j = h2

i, j H j 6= jlqHi 6=ilq , h1
ilq, jlq 6= h2

ilq, jlq

The fact that σ1
f and σ2

f are valid ring signatures leads to the equality e(P,Y 2−Y 1) = τ
h1

ilq, jlq
−h2

ilq, jlq

ilq, jlq .
With probability greater than 1/qm∨∧m∨

0 , we have τ•i•, j• = τilq, jlq . In this case, note that adversary A◦

does not make a query to oracle CredGen on assertion Al•i•, j•,1
(event Ecred does not occur). This case

leads to the equality τilq, jlq = e(P,ab ·P), and so Y 2 −Y 1 = (h1
ilq, jlq − h2

ilq, jlq) · (ab ·P). Thus, with
probability Pr[A• wins], algorithm A• succeeds to obtain ab ·P by computing the quantity (h1

ilq, jlq −
h2

ilq, jlq)−1 · (Y 2 −Y 1). From statements (9), (10), (13) and (14), we have AdvA• = Pr[A• wins] ≥
9

100qm∨∧m∨
0

. 1
∑

m∨
l=1 l!(m∨

l) .

For q ≥ Max{2m∨∧m∨,2m∨∧qsq4} and ε ≤ 32(q4 +1−m∨∧m∨)/q, the running time of adversary
A• is such that the following holds

tA• = (t1 + t2).tA◦ = (
γ

α
+

1
α−1/q

).tA◦ ≤ (
4
ε

+
32(q4 +1−m∨∧m∨)

ε
).tA◦ ≤ 32q4 +4

ε
.tA◦

C A PBE scheme from the Boneh-Franklin IBE scheme

In this section, we present a PBE scheme (denoted BF-PBE) which may be seen as an extension to
the policy setting of the original Boneh-Franklin IBE scheme [8]. After describing the scheme, we
analyze its security under the IND-Pol-CCA model.

C.1 Description

The BF-PBE scheme consists of the algorithms described below.

Setup. On input of a security parameter k, do the following: (1) Run algorithm BDH-Setup to obtain
a tuple (q,G1,G2,e,P), (2) Let M = {0,1}n and C = G1× ({0,1}n)∗×{0,1}n (for some n ∈ N∗),
(3) Define four hash functions: H0 : {0,1}∗ → G1, H1 : {0,1}∗ → Z∗

q, H2 : {0,1}∗ → {0,1}n and
H3 : {0,1}∗→{0,1}n, Let I = (q,G1,G2,e,P,n,H0,H1,H2,H3).

TA-Setup. Let T = {TA1, . . . ,TAN} be a set of trusted authorities. Each trusted authority TAκ ∈ T
picks at random a secret master key sκ ∈ Z∗

q and publishes the corresponding public key R = sκ ·P.

CredGen. On input of TAκ ∈ T and A ∈ {0,1}∗, this algorithm outputs ς(Rκ,A) = sκ ·H0(A).

PolEnc. On input of message M ∈ M and policy Pol, do the following:

1. Pick at random ti ∈ {0,1}n Hm
i=1

2. Compute r = H1(M‖t1‖ . . .‖ta), then compute U = r ·P
3. Compute πi, j = ∏

mi, j
k=1 e(Rκi, j,k ,H0(Ai, j,k)) Hmi

j=1H
m
i=1

4. Compute µi, j = H2(πr
i, j‖i‖ j), then compute vi, j = ti⊕µi, j Hmi

j=1H
m
i=1

5. Compute W = M⊕H3(t1‖ . . .‖ta)
6. Return C = (U, [[vi, j]

mi
j=1]

m
i=1,W)

PolDec. On input of ciphertext C = (U, [[vi, j]
mi
j=1]

m
i=1,W), policy Pol, and the qualified set of creden-

tials ς j1,..., ja(Pol), do the following:

1. Compute π̃i, ji = e(U,∑
mi, ji
k=1 ς(Rκi, ji,k

,Ai, ji,k)) Hm
i=1

2. Compute µ̃i, ji = H2(π̃i, ji‖i‖ ji), then compute ti = vi, ji ⊕ µ̃i, ji Hm
i=1

3. Compute M = W ⊕H3(t1‖ . . .‖ta), then compute r = H1(M‖t1‖ . . .‖ta)
4. If U = r ·P, then return the message M, otherwise return ⊥

Note. The BF-PBE scheme is such that the decryption information ϕ j1,..., jm(C =(U, [[vi, j]
mi
j=1]

m
i=1,W),Pol)

consists of the values U,W and the pairs (vi, ji ,∧
mi, ji
k=1〈TAκi, ji,k

,Ai, ji,k〉) Hm
i=1. �

C.2 Security

Theorem 4. The BF-PBE scheme is IND-Pol-CCA secure in the random oracle model under the
assumption that BDHP is hard.

Proof. Theorem 4 follows from a sequence of three reduction arguments: (1) In [8], the public-key
encryption scheme BasicPub is shown to be IND-CPA secure in the random oracle model under the
assumption that BDHP is hard, (2) In [12], it is shown that an IND-CCA attack on BasicPubhy can be
converted into an IND-CPA attack on BasicPub, (3) Lemma 4 shows that an IND-Pol-CCA attack on
the BF-PBE scheme can be converted into an IND-CCA attack on BasicPubhy.

Lemma 4. Let A◦ be an IND-Pol-CCA adversary with advantage AdvA◦ ≥ ε when attacking the
PB-PBE scheme. Assume that A◦ has running time tA◦ and makes at most qc queries to oracle
CredGen-O, qd queries to oracle PolDec-O as well as q0 queries to oracle H0. Then, there exists an
IND-ID-CCA adversary A• the advantage of which, when attacking the BasicPubhy scheme, is such
that AdvA• ≥ F(qc,qd ,q0,N,m∨∧,m∨,m∧).ε. Its running time is tA• = O(tA◦).

Proof of Lemma 4 is similar to proof of Lemma 1 described in Appendix A. In the following, we
first construct an IND-ID-CCA adversary A• that uses adversary A◦ to mount an attack against the
FullIdent scheme. The game between the challenger and algorithm A• starts with the Initialization
stage which we describe below.

Initialization. On input of the security parameter k, the challenger first generates the public key
pk? = (q,G1,G2,e,P,R?,Q?,m?.n,H1,H2,H3) such that m? ∈ {1, . . . ,m∨∧} and R? = s? ·P, where
s? ∈Z∗

q is the private key corresponding to pk?. Upon receiving pk?, algorithm A• does the following:

1. Let m• = m?, then choose the values m•
i ∈ {1, . . . ,m∨} and m•

i, j ∈ {1, . . . ,m∧} Hm•
i

j=1H
m•
i=1

2. Pick at random α•i ∈ {1, . . . ,m∨∧} and rα•i ,ω
•
i ∈ Z∗

q Hm•
i=1

3. Pick at random β•i, j ∈ {1, . . . ,m∨} and rβ•i, j
,υ•i, j ∈ Z∗

q Hm•
i

j=1H
m•
i=1

4. Pick at random l•i, j,k ∈ {1, . . . ,q0} , γ•i, j,k ∈ {1, . . . ,m∧} and rγ•i, j,k
∈ Z∗

q H
m•

i, j
k=1H

m•
i

j=1H
m•
i=1

5. Pick at random θ•i, j,k ∈ Z∗
qH

m•
i, j

k=2H
m•

i
j=1 Hm•

i=1, then compute θ•i, j,1 = ∑
m•

i, j
k=2 θ•i, j,k Hm•

i
j=1H

m•
i=1

6. Compute κ•i, j,k = ((α•i −1).m∨+β•i, j)−1).m∧+ γ•i, j,k and rκ•i, j,k
= rγ•i, j,k

rβ•i, j
rα•i H

m•
i, j

k=1H
m•

i
j=1H

m•
i=1

7. Choose a hash function: H̄•
2 : {1, . . . ,m∨∧}→ {0,1}n

8. Define the function ∆• : {0,1}m•.n×{1 . . . ,m•}→{0,1}n which on input of a tuple (X , i) returns
the ith block of length n of the binary string X i.e. the bits from (i−1).n+1 to i.n of X .

The interaction between algorithm A• and adversary A◦ consists of five stages: Setup, Queries-1,
Challenge, Queries-2 and Guess which we describe below.

Setup. Algorithm A• does the following: (1) Let I • = (q,G1,G2,e,P,n,n0,H•
0 ,H1,H•

2 ,H3) be the
global information, where the oracles H•

0 and H•
2 are controlled by algorithm A• and the tuple

(q,G1,G2,e,P,n,n0,H1,H3) is taken from params?, (2) Define the set of trusted authorities T =
{TA1, . . . ,TAN} as follows: for κ ∈ {κ•i, j,k}, the public key of TAκ is Rκ = rκ ·R?, whereas, for
κ ∈ {1, . . . ,N} \ {κ•i, j,k}, the public key of TAκ is Rκ = sκ ·P for some randomly chosen sκ ∈ Z∗

q,
(3) Give the global information I • and the trusted authorities’ public keys Rκ HN

κ=1 to adversary A◦.

Algorithm A• controls the random oracle H•
0 as follows: algorithm A• maintains a list of tuples

[Aı,H0,ı,λı] which we denote H list
0 . The list is initially empty. Assume that adversary A◦ makes a

query on assertion A ∈ {0,1}∗, then adversary A• responds as follows:

1. If A already appears on the list H list
0 in a tuple [Aı,H0,ı,λı], then return H0,ı

2. If A does not appear on H list
0 and A is the l•i, j,1-th distinct query to oracle H•

0 , then compute
H0,l•i, j,1

= r−1
γ•i, j,1

· ((r−1
β•i, j

υ•i, jr
−1
α•i

ω•
i) ·Q?−θ•i, j,1 ·P), return H0,l•i, j,1

, and add [A,H0,l•i, j,1
,null] to H list

0

3. If A does not appear on H list
0 and A is the l•i, j,k-th distinct query to oracle H•

0 (for k > 1), then
compute H0,l•i, j,k

= (r−1
γ•i, j,k

θ•i, j,k) ·P, return H0,l•i, j,k
, and add the entry [A,H0,l•i, j,k

,r−1
γ•i, j,k

θ•i, j,k] to H list
0

4. Otherwise, pick at random λ ∈ Z∗
q such that λ ·P does not appear on the list H list

0 , return λ ·P,
and add the entry [A,λ ·P,λ] to H list

0

Algorithm A• controls the random oracle H•
2 as follows: on input of a tuple (G, i, j), algorithm A•

returns the value ∆•(H2(Gυ•i, j
−1

ω•
i
−1

)⊕ H̄•
2 (j), i).

The policy Polcr = ∧m•
i=1∨

m•
i

j=1∧
m•

i, j
k=1〈TAκ•i, j,k

,Al•i, j,k
〉 is called the ’crucial’ policy. Algorithm A• hopes

that the ’target’ policy Polch, which will be chosen by adversary A◦ in the Challenge stage of the
IND-Pol-CCA game, will be equal to policy Polcr.

Queries-1. Adversary A◦ performs a polynomial number of oracle queries adaptively.

Challenge. Once adversary A◦ decides that the stage Queries-1 is over, it outputs two equal length
messages M0 and M1 as well as a policy Polch on which it wishes to be challenged. Algorithm A•

responds as follows: (1) If Polch 6= Polcr, then report failure and terminate (we refer to this event as
Ech), (2) Otherwise, give the messages M0,M1 to the challenger who picks randomly b ∈ {0,1} and
returns a ciphertext C? = (U,v?,W) representing the encryption of message Mb using the public key
pk?. Upon receiving the challenger’s response, compute the values vi, j = ∆•(v?⊕ H̄•

2 (j), i) Hm•
i

j=1H
m•
i=1,

then return the ciphertext Cch = (U, [[vi, j]
m•

i
j=1]

m•
i=1,W).

For adversary A◦, the ciphertext Cch represents a correct encryption of message Mb according to
policy Polch. In fact, the ciphertext C? is such that U = H1(Mb‖t) ·P (for some randomly chosen
t ∈ {0,1}m•.n), and v? = t⊕H2(gr) where g = e(R?,Q?). Let ti = ∆•(t, i), then the following holds

vi, j = ∆
•(t⊕H2(e(R?,Q?)r)⊕ H̄•

2 (j), i)

= ∆
•(t, i)⊕∆

•(H2([e((rβ•i, j
rα•i) ·R

?,(r−1
β•i, j

υ
•
i, jr

−1
α•i

ω
•
i) ·Q?)r]υ

•
i, j
−1

ω•
i
−1

)⊕ H̄•
2 (j), i)

= ti⊕H•
2 (e((rβ•i, j

rα•i) ·R
?,

m•
i, j

∑
k=1

rγ•i, j,k
H0,l•i, j,k

)r, i, j) = ti⊕H•
2 ([

m•
i, j

∏
k=1

e(Rκ•i, j,k
,H0,l•i, j,k

)]r, i, j)

Queries-2. Again, adversary A◦ performs a polynomial number of oracle queries adaptively.

Guess. Algorithm A◦ outputs a guess b′ for b. Algorithm A• outputs b′ as its guess for b.

The oracles CredGen-O and PolDec-O to which adversary A◦ makes queries during Queries-1 and
Queries-2 are described below. Without loss of generality, we assume that adversary A◦ always
makes the appropriate query on A to the random oracle H•

0 before making any query involving A to
oracles CredGen-O and PolDec-O.

– CredGen-O. Assume that adversary A◦ makes a query on a tuple (TAκ,A). Let [Aı,H0,ı,λı] be
the tuple from H list

0 such that Aı = A, then algorithm A• responds as follows:
1. If ı = l•i, j,1 and κ ∈ {κ•i, j,k}i, j,k, then report failure and terminate (event Ecred)
2. If ı 6= l•i, j,1 and κ ∈ {κ•i, j,k}i, j,k, then return (rκλı) ·R? = (rκs?) ·H0,ı
3. If κ ∈ {1, . . . ,N}\{κ•i, j,k}i, j,k, then return sκ ·H0,ı

– PolDec-O. Assume that adversary A◦ makes an oracle query on a tuple (C,Pol,{ j1, . . . , jm}).
Then, algorithm A• responds as follows:
1. If Pol 6= Polch and Pol involves a condition 〈TAκ,A〉 such that κ ∈ {κ•i, j,k} and A ∈ {Al•i, j,1

},
then report failure and terminate (event Edec)

2. If Pol 6= Polch and Pol does not involve any condition 〈TAκ,A〉 such that κ ∈ {κ•i, j,k} and
A∈ {Al•i, j,1

}, then do the following: (1) Run oracle CredGen-O multiple times until obtaining
the qualified set of credentials ς j1,..., jm(Pol), (2) Run algorithm PolDec on input the tuple
(C,Pol,ς j1,..., jm(Pol)) and return the resulting output back to adversary A◦

3. If Pol = Polch, then do the following: let C = (U, [[vi, j]
m•

i
j=1]

m•
i=1,W), then compute the values

v•i = vi, ji ⊕ H̄•
2 (ji) Hm•

i=1, and make a decryption query to the challenger on ciphertext C• =
(U,v•1‖ . . .‖v•m• ,W). Upon receiving the challenger’s response, forward it to adversary A◦

The analysis of the simulation described above is similar to the one in Appendix A.

�

