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ABSTRACT

A specular approach to time-varying frequency-selective
MIMO channel modeling is proposed, that yields a parsi-
monious channel representation. Essentially, the vector of
channel impulse response coefficients lives in a subspace
that is subject to slow fading and hence is time-invariant
over a reasonable time interval. The subspace is param-
eterized by the (deterministic) slow path parameters, that
may comprise path delay, angle of departure and angle of
arrival. The channel expansion into this propagation sig-
nature subspace yields coefficients that are subject to fast
fading. They are modeled as independent lowpass autore-
gressive processes. We present an analysis of the identi-
fiability of specular channels, and an algorithm achieving
identification, as well as a performance evaluation over ac-
tual channel measurements.

1. INTRODUCTION

The use of specular models for wireless channel analysis
and tracking has been proposed by various authors seeking
to improve the ability to accurately estimate [1] or predict
[2, 3] the channel state. Specular methods constitute vi-
able candidates for channel tracking and prediction, since
the insight they provide into the actual channel structure –
namely, separation of the channel variation into its space
and time components – can improve the performance and
decrease the complexity of channel tracking and prediction.
Various methods have been proposed to estimate the under-
lying parameters, including MUSIC [2], ESPRIT [3] and
SAGE [1].

This paper is a follow-up to [4], with added experimen-
tal results. We propose to use a specular (pathwise) ap-
proach in order to gain access to a reduced parameter set
representing the channel state, in order to improve channel
estimation (smoothing) and prediction. After recalling the
specular channel model in section 2, and outlining in sec-
tion 3 how it makes channel estimation and prediction eas-

ier, we provide sufficient conditions for identifiability of a
specular channel in section 4, and an algorithm, based on si-
multaneous diagonalization of the covariance matrices, that
achieves identification is proposed in section 5. Section 6
presents experimental results.

2. SPECULAR CHANNEL MODEL

Let us consider a Multiple-Input Multiple-Output (MIMO)
frequency-selective channel, with

���
transmit (Tx) and

���
receive (Rx) antennas. The impulse response of the channel
between the �

���
Tx antenna and the �

���
Rx antenna is de-

noted by 	�

� ���
������� , where � is the time and � is the lag. We
will henceforth work under the assumption that the chan-
nel state evolves according to a specular model. In such a
model, each impulse response 	�

� ���
����� � is the superposition

of a finite number � of discrete paths at lag ��� 

� ��� !#" � 

� ��� %$'& ,( !*),+�+�+ � , resulting from either line-of-sight propagation,
or one or several reflections. This model relies upon the fact
that the paths between all the Tx-Rx antenna pairs have most
of their characteristics in common, except for what happens
near the antenna arrays. Hence, they share some properties,
namely their speed w.r.t. the reflectors, and the reflection
characteristics (hence their Doppler and gain are the same
whatever antenna pair is considered). Each path coefficient
can be decomposed into a product of two components:

- a space component ./� 

� ��� , which depends on the phys-
ical properties of path ( between Tx antenna � and Rx
antenna � , including antennas and reflectors position,
path loss, etc.

- a time component 0  �
��� which includes the Doppler
due to reflectors motion and the relative speed of the
transmitter w.r.t. the receiver.

The time components 0  �
��� are assumed to be indepen-
dent between paths, hence (*1! (32547698;: 0  �
����0  �< �
� 2 �>= !?A@ �
����� 2 � . Note that we consider a time scale where they



evolve significantly during time, e.g. due to the Doppler ef-
fect, and hence can be considered random processes, whereas
the physical properties of the problem, comprised of the
.,� 

� ��� , do not vary. In discrete time, the specular channel
model yields

	�� 

� ���8 � � �! 	�

� ����� $'& � "
$'& � ! ��� �	� 
��

 ���� . � 

� ��� 0 8 �  �� � � �	� 
��� � " �3� (1)

where we used the discretized version of the time compo-

nent 0 8 �  �! 0  ��� $'& � where $'& is the sampling interval at
the receiver. Let us assume that the impulse response has
finite support, and consider its discretized version� � 

� ���8 �!�� 	�� 

� ���8 � � � +�+�+ 	�� 

� ���8 � ��� ����� � (2)

with � chosen such that all the channel coefficients out-
side the lag interval : ? +�+�+ ���! ) � $ & = are zero. Let us fur-
ther stack these into a row vector with

���>��� � coefficients� 8 �! � � � � � � �8 � +�+�+ � � � � "�#��8 � � � � $ � � �8 � +�+�+ � � "�%>� "�#��8 � � � . We

emphasize the fact that
� 8 constitutes a snapshot of all the

channel impulse response coefficients at time � $ & . With
this notation, (1) can be rewritten in more compact form as� 8 !'&)( 8 (3)

where * � 

� ��� �! .,� 

� ��� + � � � �	� 
��� � ? � +�+�+ � � � �	� 
��� ���, ) �.- , *  �!
+ * � � � � � +�+�+ * � � � "�#�� �/* � $ � � � +�+�+ * � "�%>� "�#�� - � , & �! : * � � +�+�+ �/* � = ,
and ( 8 �! �
0 8 � � � +�+�+ ��0 8 � � � � .

3. SPECTRAL FACTORIZATION AND LINEAR
ESTIMATION

In this section, we outline the possible improvements in
channel tracking that can be achieved by deconstructing a
specular channel, i.e. by separating the time and space prop-
erties as enounced in the previous section before doing any
kind of smoothing or prediction. We seek to model the
discrete-time random process 0 � 8�1 from its noisy measure-
ments 2� 8 ! � 84365 8 where the noise 0 5 871 is white Gaus-
sian, i.i.d., independent from 0 � 8 1 . Assuming that both0 � 871 and 0 5 871 are wide-sense stationary (WSS), let us de-

fine the (matrix) covariances 8:9; 9; ��<�� �! 698 � 2� 8�=?> 2� @8 � and

8 ; 9; ��<�� �! 698 � � 8�=?> 2� @8 � , where 698�: � = is the expectation op-

erator taken over � , and the A -transforms

B 9; 9; ��A�� �! =DC
> � � C 8E9; 9; ��<��?A �
>

and

B ; 9; ��A�� �! =DC
> � � C 8 ; 9; ��<��?A �
> + (4)

Note that due to the independence between 0 5 8�1 and 0 � 8�1 ,B ; 9; ��A�� ! B ; ; ��A�� and
B 9; 9; ��A�� ! B ; ; ��A�� 3 BGF F ��A�� .

Spectral factorization of
B 9; 9; ��A�� , of the formB 9; 9; ��A�� !IH ��A��.8KJ HML ��A � L � + (5)

is desirable, since the best linear estimator (in terms of mean
square error) of

� 8�=DN �PORQ ?
given 0 2� S 1 8 S � � C is defined

through its A -transform by [5]

T ��A�� !VU A N B ; 9; ��A�� H � L ��A � L �XW = 8KJ � � H � � ��A�� + (6)

In general, spectral factorization is hard to compute in the
case of vector-valued processes, and (6) is not feasible.

3.1. Specular model and spectral factorization

Under the assumption that the channel variations follow the
specular model (3), the covariances become

8E9; 9; ��<�� !Y& 698 � ( 8�=?> ( @8 � & @ 3 698[Z 5 8�=?>\5 @8^] (7)

!Y& 8K_ _ ��<�� & @ 3 8 F F ��<���� (8)

8 ; 9; ��<�� !Y& 698 � ( 8�=?> ( @8 � & @ !'& 8K_ _ ��<�� & @ + (9)

Note that in eqs. (7) and (9) the factor & is independent of
the lag < . Therefore, the A -transforms can be factored asB 9; 9; ��A�� !Y& B _ _ ��A�� & @ 3 BGF F ��A�� and (10)B ; 9; ��A�� !Y& B _ _ ��A�� & @ + (11)

Note that
B _ _ ��A�� is diagonal, since we assume that the 0  �
���

are independent. Therefore, let us denoteB _ _ ��A�� ! diag +X` � � �aba ��A���� +�+�+ � ` � � �aba ��A��.- , where

` �  �aba ��A�� �!
=DC
> � � C 698GZ 0 8�=?> �  0 L8 �  ] A �

>
for ( ! ),+�+�+ � +

(12)
This structure allows to obtain the spectral factorization ofB 9; 9; ��A�� by performing � independent, scalar spectral fac-

torizations of the ` �  �aba ��A�� (equivalently, this means that the
random process 0 � 8 1 can be accurately tracked by tracking
� scalar processes).

In the following sections, we will address the follow-
ing identifiability problem: assuming the knowledge of the
spectrum

B 9; 9; ��A�� , we show that if the ` �  �aba ��A�� are linearly in-
dependent polynomials, it is possible to identify them up to
a permutation and a complex scalar coefficient. Fortunately,
this is sufficient for our needs, since all possible solutions
yield the same predictor

T ��A�� . We subsequently derive an
algorithm that achieves identification.



4. IDENTIFIABILITY

In this section, we show that Let us assume that & has full
column rank, and let ��� � � +�+�+ ��� � � be an orthonormal base

of the column subspace of & . Let
� �! : � � � +�+�+ ��� � = . Let�

denote the representation of & in this base, such that& ! � � . Let us assume that
B ; 9; ��A�� has an alternative fac-

torization
B ; 9; ��A�� !�� B _ < _ < ��A�� � @ � and show that & and� are identical up to a permutation and a linear scaling of

their columns. Using the fact that
� @ � !�� � , the decom-

position in (11) yields
B _ _ ��A�� ! � � � � @ B ; 9; ��A�� � � � @ .

Hence, defining the �
	 � matrix � �! � � � � @ � ,B _ _ ��A�� ! B B _ < _ < ��A�� B @ . Therefore we need to prove that
B

is the product of a permutation matrix and a diagonal matrix.
Let � 
 ��� ! ),+�+�+ � denote the columns of � . The diagonal

structure of
B _ < _ < ��A�� yields

B _ _ ��A�� !�
 �
 ��� � 
 � @
 ` � 
 �_ < _ < ��A�� .
This implies that each � 
 � @
 is diagonal, otherwise the off-
diagonal terms would yield an identically zero linear com-
bination of ` � 
 �_ < _ < ��A�� ’s, which contradicts the linear indepen-
dence assumption. This implies that each � 
 has at most one
non-zero coefficient, which is equivalent to saying that

B
represents the product of a permutation matrix and a diago-
nal matrix.

5. PRACTICAL IDENTIFICATION METHOD

The previous discussion has shown that any factorization
of the form of (4) is an equally good way of decomposing0 � 871 into scalar, independent processes. Let us now derive
an algorithm to find one of these decompositions. Let us
assume that the noise level is known, or has been estimated,
hence

B ; ��A�� is known, or equivalently, 8 ; ; ��<�� is known
for <���� . The algorithm that we present here computes
a matrix � that decomposes

B ; ��A�� into independent pro-
cesses, i.e. � B ; ��A���� @ is diagonal. We restrict the problem
to the signal subspace, and consider

� @ 8 ; ; � ? � � . Since it
is positive semi-definite, it can be decomposed according to
its eigenstructure:

� @ 8 ; ; � ? � � !������ @ � (13)

where � is a ��	 � unitary matrix, and � is diagonal,
and contains the (non-negative) eigenvalues. Notice that
� ��� � �;� ��� � � @ constitutes a Cholesky decomposition

of
� @ 8 ; ; � ? � � . Since � ��� 8K_ _ � ? �! "� ��� 8K_ _ � ? �! @ is

also a Cholesky decomposition of the same matrix, they are
unitarily similar [6], i.e. there exist an unitary matrix # s.t.

+ ��$ 8K_ _ � ? �.- @ ! # +%� � � - @ + (14)

Obviously, finding # would let us identify
�

up to the
scalar uncertainties contained in

� 8K_ _ � ? � . In order to find

it, we use the fact that

+&� � � - � � � @ 8 ; ; ��<�� � +%� � � - � @
! # @ 8K_ _ ��<��.8K_ _ � ? � � � # @ <'�(� + (15)

Under our assumptions, there is a unique way (up to a per-
mutation ) ) of diagonalizing the spectrum matrix, as demon-
strated in section 4, hence if * is a unitary matrix that
diagonalizes * � � � � � @ � @ 8 ; ; ��<�� � � � � � � * @ for
all <���� , then # ! ) � * . Finding * is a so-called si-
multaneous diagonalization problem, and can be done nu-
merically [7]. It follows that 0 � 8 1 is transformed into an
arbitrary vector process 0,+ 8 1 , with

+ 8 �! * � � � � � @ � @ � 8 ! ) $ 8K_ _ � ? � � � ( 8 � (16)

and
B.- ��A�� is diagonal: * � � � � � @ � @ is a possible � .

The uncertainties outlined in section 4 appear clearly in (16):
each component of 0,+ 8 1 is normalized to unitary variance,
and the permutation ) is unknown.

Obviously, the theoretical identifiability outlined in sec-
tion 4, is not realistic in practice, since implementation con-
straints would restrict the knowledge of 8 ; ; ��<�� to a limited
range of < . Also, the requirement of linear independence of
the columns of & , as well as the linear independence of theA -spectrums of the time coefficients, are not guaranteed to
be fulfilled in real life. However, our experiments show that
these limitations do not seem to incur significant problems
in practice.

6. EXPERIMENTAL RESULTS

The proposed identification method was applied to experi-
mental data obtained from a prototype UMTS TDD link [8]
operating on a 3.84MHz wide channel in the 1900-1920MHz
IMT-2000 TDD band. The setting is comprised of two roof-
top antennas connected to the base station, and a terminal
connected to a portable antenna that was operated inside the
building. The channel measurements were performed on
the uplink channel, in the framework of an actual UMTS
connection. The considered channel has 1 Tx and 2 Rx an-
tennas, and the length of the observed impulse responses is� !�/10 samples. The complete SIMO channel impulse re-
sponse is estimated every 10ms using conventional channel
estimation techniques, by exploiting the training sequences
embedded in the UMTS traffic. The oscillators of both Rx
antennas are synchronized.� is first computed by applying the proposed algorithm
to a series of consecutive channel measurements, and the
corresponding series + 8 is computed according to (16). The
algorithm operates with approximate covariance matrices
estimated from a finite-length measurement interval of 50
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Fig. 1. Example of modal decomposition, fixed setting.

successive realizations (spanning 500ms) of 0 � 8 1 . The num-
ber � 2 of independent random processes to track is set arbi-
trarily. Two series of measurements were conducted. In the
first setting (fixed setting), the MT antenna lies on a table
and no noticeable movement is made around the antennas.
In the second setting (moving setting), the MT antenna is
hand-held and moved rapidly by a human operator.

Figure 1 presents an example of the output of the al-
gorithm for the fixed setting. The top plot represents the
angles of the coefficients of + 8 associated with the � 2 !/ strongest modes. The bottom plot shows the profile of
the modes as identified by the algorithm (each mode cor-
responds to a column of

� � � � * @ , the generalized in-
verse of � ). Since

� 8 contains the impulse responses from
both Rx antennas, � has a similar structure, and therefore
the left part of the plot represents the channel impulse re-
sponse seen by the first Rx antenna, while the right part rep-
resents the channel impulse response seen by the second Rx
antenna. Note that the arbitrary scaling has been partially
resolved by normalizing each component of + 8 to unit av-
erage energy, so that the three modes can be plotted on the
same scale. Figure 2 was obtained for the second series of
measurements (moving setting) through the same process.
In both cases, the time-varying components exhibit a high
predictability. In particular, the linear phase evolution ex-
hibited by the fixed setting can be accurately predicted by
an auto-regressive (AR) model of order 1. As expected, the
temporal evolution of the channel in the moving setting does
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Fig. 2. Example of modal decomposition, moving setting.

not exhibit such a linear behaviour, although it could be pre-
dictable by an higher-order AR model.

It is noticeable from both figures 1 and 2 that the modes
spans both Rx antennas. This indicates that the channel
structure is correlated between the antennas, and that the
algorithm has correctly identified a common structure in
their temporal evolution. This is not contradictory with the
fact that this setting provides antenna diversity, since the ac-
tual impulse responses are linear combinations (with time-
varying weights) of the modes plotted here. Although the
result can vary rapidly, the knowledge of the underlying
structure allows for a more accurate long-term tracking.

In order to evaluate the feasibility of channel prediction,
let us now present results obtained from one-step prediction
applied to the time-varying coefficients. For each time in-
stant � , after computing � , the time-series corresponding to
the last 50 channel realizations + 8 ����� +�+�+ + 8 is extrapolated
using an AR model. The resulting value

�+ 8�= � is used to

compute the predicted channel
�� 8�= � ! � � � � * @ �+ 8�= � .

Since the true channel value is not known, a noise metric de-

fined as . �! 698 ��� �� 8�= � � $ �	� 698 ��� �� 8�= �  �� 8�= � � $ � , that can

be computed from the noisy channel measurements, was
used. There is a saturation effect associated with this met-
ric, since even if the prediction is perfect (

�� 8�= � ! � 8�= � ),
. goes to the input SNR. For comparison, the input SNR
is 11.5dB for the fixed measurements, and 11.9dB for the
moving measurements.
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Fig. 3. Predictor noise figure . .

Figure 3 shows the evolution of . (in dB) for various or-
ders of the AR predictor, and for various numbers of paths
� 2 , for both sets of measurements. As expected, the channel
in the fixed setting exhibits a very high predictability, and
the predictor reaches the optimality ( . ! B�� 8 ) for � 2 !��
tracked paths. Increasing � 2 over this values slightly in-
creases the amount of noise on the output, although for � 2
ranging from 3 to 8 paths, . is only a fraction of a dB from
the optimality. Varying the order of the AR predictor has
little influence on the performance in the fixed setting, as
evidenced by the three almost superimposed curves.

This optimality is not reached for the moving setting,
with . getting no closer than 2.5dB from the bound set by
the SNR. The maximum accuracy is reached by tracking 6
subspaces. Note that this does not necessarily mean that
6 paths are identified, since this can be caused by the fact
that the channel model can not be assumed stationary over
the .5s analyzed here. The order of the AR predictor seems
more critical in this case, as exemplified by the fact that the
AR2 performs significantly better than the AR1, especially
when � 2 is underestimated. This could be explained by the
fact that an AR2 model can better track a mixture of AR
processes than an AR1, although no definitive conclusion
can be drawn at this point.

7. CONCLUSION

We presented a channel modeling method based on the as-
sumption that the channel follows a specular structure. We
showed how this structured model, by separating space and
time-components, lends itself to simplified tracking, includ-
ing smoothing and prediction, once the underlying space
and time characteristics are separated. We proposed an iden-
tification algorithm for this structure, based on simultaneous

diagonalization of the covariance matrices. We evaluated
the performance of the proposed method on experimental
data, and showed that it successfully identifies the long-term
channel structure of a typical UMTS wireless channel.
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