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ABSTRACT

There is growing interest in the area of cross-layer design.
This paper addresses the problem of multi-user diversity
scheduling together with channel prediction. Recent work
demonstrates that the mobile radio channel can be linearly
predicted, quite accurately, several milliseconds ahead in
time for realistic Doppler spreads. We show how this in-
formation can be exploited in an original fashion to im-
prove the so-called throughput-fairness trade-off in multi-
user wireless fading channel scheduling. Simulations show
that the proposed algorithm can give considerable through-
put gains without compromising fairness. The current ap-
proach builds on the proportional fair scheduling technique
but can also be generalized to other criteria.

1. INTRODUCTION

There has been considerable interest recently in so-called
cross-layer design techniques. In the area of user resource
allocation for wireless fading channels, the gain of channel-
dependent scheduling exploiting multi-user diversity was
clearly demonstrated [1]. In this approach, channel access
is granted to the user with the best channel quality among
the cell users (max SNR or max capacity strategy). To cope
for the case of unequal fading statistics or average SNRs, it
was later proposed to exploit fairness-aware criteria which
offer a compromise between cell throughput and equity be-
tween the users. This is exemplified among others in the
proportional fair algorithm [2, 3]. In the particular case of
proportional fair scheduling (PFS), a time constant parame-
ter can be chosen to specify over what time period fairness
(in terms of realized throughputs) between the users should
be maintained.

In parallel, recent work on channel modeling and pre-
diction has shown the feasibility of prediction of Rayleigh
fading channels over horizons of up to 0.25 wavelengths
with reasonable accuracy [4, 5, 6]. In this paper we propose
to combine channel prediction with resource allocation with
the aim of improving the system capacity. Although intu-
itively appealing, this problem has received little attention

so far. In [7] scheduling together with prediction was ad-
dressed from the point of view of prioritization of traffic
flow with different QoS classes.

Here we address a single antenna system although the
proposed concepts can be generalized to the multi-antenna
case. We make the following key points:

1. There exists a fundamental trade-off between total cell
throughput and fairness in wireless multi-user sche-
duling. Schemes allowing to push the trade-off (by
improving one metric while not degrading the other)
are therefore of great interest.

2. For system scenarios where fairness is to be main-
tained over long periods of time (as compared to the
coherence time of the fading), capacity maximization
is obtained through a normalized max SNR strategy.
Thus channel prediction is of minor interest since we
tend to give access to the user with the best current
channel compared to the average channel quality.

3. For scenarios where tighter fairness constraints are
used, there is a significant gain to be obtained from
a channel prediction-aware scheduler.

In the paper, we give both qualitative and quantitative expla-
nation to this phenomenon. More specifically we propose a
generalization of the PFS algorithm capable of exploiting
fading prediction. The generalization is based on the opti-
mization of a specific multi-user utility function. We pro-
pose both an optimal and a sub-optimal (low complexity)
greedy multi-user scheduling algorithm for the optimiza-
tion. We also propose the use of the so-called Jain’s fair-
ness index [8] as a tool for measuring the fairness within
the context of wireless scheduling. Jain’s fairness index has
been used to measure the performance of networking proto-
cols, but is little known within the wireless communication
theory community. We demonstrate how the proposed algo-
rithm can improve the throughput-fairness trade-off while
being robust with respect to decaying prediction quality (for
increased prediction horizons). The algorithm is evaluated
through extensive Monte Carlo simulations and intuitive re-
sults are provided.



2. SYSTEM MODEL

We consider the downlink of a single interference-free cell
with N simultaneously active users served by one base sta-
tion (BS). The scheduling is organized on a slot by slot ba-
sis, i.e. one and only one user is served during any given
slot. The scheduler resides at the BS and decides prior to
each slot which user the BS shall transmit data to. We use
i∗(k) to denote the user scheduled in slot k.

Our key assumption is that estimates of the users’ sup-
ported data rates for the current and L − 1 future slots are
available to the scheduler. The supported rate for the ith
user in slot k + l, as predicted in slot k, will be denoted
R̂i(k + l|k). Ri(k) will be shorthand for R̂i(k|k).

3. PROPORTIONAL FAIR SCHEDULING

For the PFS algorithm the user scheduled in time slot k is
given as

i∗(k) = arg max
i=1,.,N

Ri(k)
Ti(k)

, (1)

where Ti(k) is the ith user’s average throughput in a past
window. The average throughputs are updated each time
slot according to

Ti(k+1) =




(
1 − 1

tc

)
Ti(k) + 1

tc
Ri(k) i = i∗(k)(

1 − 1
tc

)
Ti(k) i �= i∗(k)

(2)

where tc is a time constant adjusted to maintain fairness
over a pre-determined time horizon.

Alternatively the PFS algorithm can be defined in terms
of the system utility function

U(k) =
N∑

j=1

log Tj(k), (3)

where log Tj(k) should be interpreted as the level of “satis-
faction” or utility for user j. Let Tj(k+1|i) denote Tj(k+1)
given that user i is scheduled in time slot k, then (1) is equiv-
alent to

i∗(k) = arg max
i=1,.,N

U(k + 1|i), (4)

where

U(k + 1|i) =
N∑

j=1

log Tj(k + 1|i).

A proof can be found in the Appendix. Thus, the user who
gives the largest instantaneous reward in the system utility
function U(k) is scheduled in each time slot.

4. PREDICTIVE SCHEDULING

In this section we extend the PFS algorithm to a predic-
tive scheduling scenario. The basic idea will be to use both
current and future rate estimates to maximize the long-term
average value of the system utility function U(k).

Let Û
(
k + L|(i1, i2 . . . iL)

)
denote the estimated value

of U(k+L) in time slot k, given that user il is served in time
slot k+l−1. The scheduling vector i∗(k) =

(
i∗(k), i∗(k +

1), . . . , i∗(k+L−1)
)

in time slot k that maximizes U(k+L)
is obtained according to

i∗(k) = arg max
i∈F

Û(k + L|i), (5)

where F = {1, 2 . . .N}L is the set of feasible scheduling
combinations. Through a full search the scheduling is opti-
mized over a block of L time slots at a time, instead of only
one time slot as in (4). Note that for L = 1 this reduces to
the standard PFS algorithm.

The main problem with the scheduling strategy outlined
above is that we rely on estimates of the future supported
rates to compute Û(k + L|i). Reliable short range predic-
tors for the received power have been proposed [4, 5, 6] and
these predictors can be used to predict the supported data
rates. However these predictions degrade rapidly for longer
prediction ranges. To fix the schedule for a long block might
result in large errors. A more robust approach is to redo the
scheduling for each time slot k and only effectuate the first
component of the scheduling vector.

For each time slot k:

1. Update the prediction of the supported rates, R̂i(k +
l|k).

2. Compute a scheduling vector

i∗(k) =
(
i∗1(k), i∗2(k), . . . , i∗L(k)

)
,

that suggests to which users’ time slots k to k+L−1
should be allocated.

3. Schedule the user given by the first component of
i∗(k) in time slot k, i.e. i∗(k) = i∗1(k). The other
components of i∗(k) serve as auxiliary variables.

Another drawback of the algorithm is the complexity of
the full search for the scheduling vector. A low complexity
algorithm that renders good but possibly suboptimal results
is presented in the following.

4.1. An iterative algorithm for obtaining i∗(k)

As opposed to doing a full search for the optimal scheduling
vector we propose a coordinate ascent-type algorithm. At
each iteration one component of the scheduling vector is



updated with the other components held fixed. In order to
describe the algorithm we use the following notation.

- Let in(k) =
(
in1 (k), . . . , inL(k),

)
denote the com-

puted scheduling vector after n iterations.

- For an arbitrary vector i =
(
i1, . . . , iL

)
, let i←l i de-

note the vector
(
i1, . . . , il−1, i, il+1, . . . , iL

)
.

The coordinate ascent algorithm can now be described as
follows.

1. To initialize the algorithm let

i0(k) =
(
i∗2(k − 1), i∗3(k − 1), . . . , i∗L(k − 1), 1

)
.

Note that the last component of i0(k) is set to 1. This
is merely for convenience and will not affect later it-
erations.

2. At each subsequent iteration we recompute one com-
ponent of the scheduling vector. The (n + 1)th itera-
tion is given by

in+1(k) = in(k)←l in+1
l (k),

where l = L − (n mod L) and

in+1
l (k) = arg max

i=1,.,N
Û

(
k + L|in(k)←l i

)
. (6)

3. When in(k) = in−L(k) we will have im(k) = in(k)
for all m ≥ n and we have converged to a solution.

We can see from 2. that at each iteration we can only
obtain a better solution in the sense that

Û
(
k + L|in+1(k)

)
≥ Û

(
k + L|in(k)

)
.

Hence the algorithm will necessarily converge to a maxi-
mum. Furthermore, fast convergence can be expected as
only limited amounts of new channel state information is
introduced at each time step and the initial scheduling vec-
tor is based on a scheduling vector rendering a maximum in
the previous time step. We next state a result that indicates
that the computational complexity for each iteration can be
significantly reduced.

Lemma: Let

T̂i

(
k + L|(i1, . . . , iL)

)
= (1 − 1

tc
)LTi(k)

+
L∑

l=1

1
tc

(1 − 1
tc

)L−lR̂i(k + l − 1|k)δ(i − il), (7)

where δ(·) is the Kronecker delta function, Ti(k) is given
by (2) and R̂i(k + l − 1|k) is a prediction of the rate of the
ith user l − 1 time slots ahead. Then (6) is equivalent to

in+1
l (k) = arg max

i=1,.,N

R̂i(k + l − 1|k)

T̂i(k + L|in(k)←l 0)
. (8)

Proof: See Appendix.

Thus it is not necessary to explicitly evaluate the func-
tion Û

(
k+L|in(k)←l i

)
, for each user i, as suggested in (6).

5. SIMULATIONS

In this section, we evaluate the performance of the proposed
algorithm through simulations. We consider the case where
all users have infinite backlogs. The simulation results are
obtained for Rayleigh fading channels with time correla-
tions given by Jake’s model. The average SNR is 0 dB and
the time slot Doppler frequency product is 0.01 for each
user. This means that the terminals move one wavelength
in 100 time slots. We use the Shannon Capacity to estimate
the supported data rates.

In order to generate realistic estimates of the users’ fu-
ture supported rates we use a linear FIR MMSE predictor
with 128 coefficients to predict the future complex fading
gains from past noisy observations of the channel. The
channel power gain used in the Shannon Capacity is ob-
tained as the absolute square of the predicted complex fad-
ing gain. The quality of the prediction will depend on the
Channel to Estimation Error Ratio which is set to 20 dB.
The NMSE for the complex fading gain prediction ten time
slots ahead is roughly 10−2 but for one step ahead it is only
10−3. Thus, the error in the estimated rate for one time slot
ahead can be disregarded.

We first demonstrate the performance of the iterative
predictive algorithm introduced in Section 4.1 in a quali-
tative manner. Consider a scenario with 10 users, tc = 100
and L = 21. Figure 1(a) shows a snapshot of the supported
rates for one user, where a superimposed cross corresponds
to an allocated slot. Note that all allocated slots are tightly
clustered around local fading peaks. By comparing with
Figure 1(b), which shows the same scenario with the stan-
dard PFS algorithm, we can conclude that there appears to
be significant increase in performance by using prediction.

We next try to validate these claims in a more rigorous
manner. We now consider a system with 15 users. Figure 2
shows the system throughput for the standard and the pre-
dictive PFS algorithm as a function of the parameter tc. The
prediction horizon L − 1 is set to 10 slots for the predic-
tive algorithm. On average 20 iterations were required to
obtain convergence. It can be seen that there is an increase
in throughput with the predictive algorithm for all values
of tc. Note however, that the largest gains (20%) occur for



smaller tc values. This is intuitive because for large tc both
algorithms approaches the max SNR scheduler which takes
neither the past nor the future into account.
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(a) Predictive PFS, tc = 100 and L = 21.
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(b) Standard PFS, tc = 100.

Fig. 1. Snapshot of supported rates for one user. A superim-
posed cross corresponds to an allocated slot with (a) the predictive
(b) the standard PFS algorithm. The predictive algorithm leads to
higher throughputs since the allocated slots are more tightly clus-
tered around the fading peaks.

To quantify the degree of fairness over shorter time in-
tervals we use Jain’s fairness index [8], which is defined as

J =

(∑N
i=1 Ti

)2

N
∑N

i=1 T 2
i

,

where Ti is user i’s average throughput (computed over a
rectangular window of size W slots1). Jain’s fairness index

1Note that by adjusting the window size W the time horizon that fair-

measures the spread in the users’ average throughputs Ti

and will always be in the range 1/N to 1. It can easily be
verified that J = 1 indicates absolute fairness and J = 1/N
indicates no fairness, i.e all resources are allocated to one
single user.

100 200 300 400 500 600 700 800 900 1000
0.8

1

1.2

1.4

1.6

1.8

2

2.2

t
c

T
ot

al
 th

ro
ug

hp
ut

 in
 b

ps
/H

z

max SNR
P−PFS
PFS
Round Robin

Fig. 2. Total throughput as function of tc for the predictive and
the standard PFS algorithm. The prediction horizon L− 1 is set to
10 slots for the predictive algorithm.
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Fig. 3. Average Jain’s fairness index as function of window
size for the predictive and the standard PFS algorithm with tc =
100, 1000.

Figure 3 shows Jain’s fairness index, averaged over mul-
tiple windows, as a function of window size for the standard
and predictive PFS algorithm with tc = 100, 1000. Observe
that the level of fairness is virtually the same for the two
algorithms. There is a negligible reduction in fairness for

ness is computed over is adjusted accordingly.



tc = 100 and a slight increase in fairness for tc = 1000
with the predictive algorithm.

Figure 3 also shows the corresponding plots for the Ro-
und Robin and max SNR algorithm. Not unexpectedly there
is a large penalty in fairness with the Max SNR algorithm.
One should also note that even though the Round Robin al-
gorithm is perfectly fair when allocating the radio resource
in time, it is not perfectly fair when considering the actual
throughputs over a finite window.

6. CONCLUSION

In this paper we have introduced a wireless scheduling algo-
rithm capable of exploiting fading predictions. At a reason-
able increase in complexity and without compromising fair-
ness the total throughput was significantly increased com-
pared to the standard PFS algorithm.

7. APPENDIX

PROOF OF EQUIVALENCE BETWEEN (6) AND (8)

We first note that T̂i

(
k + L|(i1, . . . , iL)

)
as defined in (7),

equals the estimated value of Ti(k +L) in time slot k based
on the predicted rates and that user il is served in time slot
k + l − 1. This can easily be verified by solving (2) as a
difference equation. We can therefor write

Û
(
k + L|in(k)←l i

)
=

N∑
j=1

log T̂j(k + L|in(k)←l i). (9)

Observe next that

T̂j(k + L|in(k)←l i) = T̂j(k + L|in(k)←l 0)

for j �= i and

T̂j(k + L|in(k)←l i) =

T̂j(k + L|in(k)←l 0) +
1
tc

(1 − 1
tc

)L−lR̂j(k + l − 1|k)

for j = i. Equation (9) can therefore be written as

Û
(
k + L|in(k)←l i

)
=

N∑
j=1

log T̂j

(
k + L|in(k)←l 0

)

+ log

(
1 +

1
tc

(1 − 1
tc

)L−l R̂i(k + l − 1|k)

T̂i

(
k+L|in(k)←l 0

)
)

.

This completes the proof since only the last term in the
expression above depends on i and log(·) is a monotone in-
creasing function. We finally note that for L = 1 and l = 1
we obtain the equivalence between (1) and (4) as a special
case.
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