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Abstract—Identification of the channel matrix is of main con-
cern in wireless multiple input multiple output (MIMO) systems.
To maximize the SNR, the best way to utilize a MIMO system is to
communicate on the top singular vectors of the channel matrix.
Here, we present a new approach for direct blind identification
of the main independent singular modes, without estimating the
channel matrix itself. The right and left singular vectors with max-
imum corresponding singular values are determined using pay-
load data and are continuously updated while at the same time
being used for communication. The feasibility of the approach is
demonstrated by simulating the performance over a noisy, fading
time-varying channel. Mathematically, the technique is related to
the iterative numerical Power method for finding eigenvalues of a
matrix as well as the “time reversal mirror” technique developed
within acoustics.

Index Terms—Channel identification, eigen-modes, MIMO sys-
tems, singular modes, singular value decomposition (SVD).

I. INTRODUCTION

WIRELESS multiple input multiple output (MIMO)
systems are capable of delivering large increases in ca-

pacity through utilization of parallel communication channels
[9], [10], [17]. Appearing first in a series of information theory
articles published by members of Bell Labs, MIMO systems
now constitute a major research area in telecommunications.
It is also considered to be one of the technologies that have
a chance to resolve the bottlenecks of traffic capacity in the
forthcoming broadband wireless Internet access networks
[Universal Mobile Telephone Services (UMTS)—and beyond].

Multiple antennas, both at the transmitter and the receiver,
create a matrix channel. The key advantage is the possibility of
transmitting over several spatial modes of the channel matrix
within the same time-frequency slot at no additional power ex-
penditure. In addition, if the channel matrix is known both at the
transmitter (TX) and the receiver (RX), certain spatial modes
(singular modes) of the matrix channel can be used to maxi-
mize the SNR for every realization of the channel. The singular
modes can be used to transport independent data streams (to
increase data rate), or one may choose to exploit the top mode
(associated with the largest singular value) in order to maximize
the spatial diversity advantage.
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For an receive transmit channel matrix of rank
, these modes are realized through the sin-

gular value decomposition (SVD) . Here, de-
notes the complex conjugate transpose. is the diagonal matrix
of singular values , and

(1)

(2)

are unitary matrices whose columns can be used as receive and
transmit vectors and , respectively. One can select a
number ( ) of transmit/receive vectors for commu-
nication. Using the top SVD elements, independent data
streams can be carried. With , the MIMO channel is used
to provide the maximum diversity benefit. In a scattering-rich
environment, MIMO channels will have full rank, but to pre-
serve a diversity advantage on each substream, it makes sense
to choose strictly below .

In practice, however, the singular modes are seldom utilized
for communication. The reason is that with present methods,
one would have to know the complete channel matrix at
both sides and perform computationally demanding SVD
operations. The cost, both in terms of reduced bandwidth and
processor capacity, has hitherto been considered too high to
make this approach practical. Current techniques typically
require knowledge of the channel matrix only at the receiver,
either through training data (e.g., V-BLAST, [9], [11]) or blind
estimation (e.g., [2], [7], [13], [15], [18]–[20]). Compared with
the singular vector approach, this implies that the transmit
array gain is not realized and that one is unable to transmit on
selected top singular vectors, those giving maximum perfor-
mance/complexity tradeoff.

In this paper, we further extend our method outlined in [3],
which treats a time division duplex (TDD) system exhibiting
reciprocity, i.e., if the uplink channel is at some point in time,
the downlink channel is . The technique allows estimation
and tracking of the singular vectors at both sides while, at the
same time, utilizing these singular vector estimates for two-way
communication. No explicit knowledge of is needed, and no
training data are required. The technique relies on a key “need
to know” observation: In order to both transmit and receive in
this way, one party needs only one set of the top singular
vectors, say, , and the other party only the corresponding
set ; no party needs both sets, and other aspects of are
irrelevant to both parties. The method estimates the necessary
eigenstructure directly in a distributed manner so that no party
is actually estimating the channel matrix per se, unlike other
classes of algorithms [7], [13], [15], [18], [19]. There is no need
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TABLE I
SUMMARY OF SYMBOLS

for SVD calculations or higher order statistics that would usu-
ally be needed if one wanted to estimate the complete channel
blindly.

The basic principle utilized follows from a simple result in
matrix theory: If an arbitrary initial data vector is transmitted
over the same reciprocal and noiseless TDD MIMO channel
multiple times, the result will converge toward a top singular
vector of the matrix—the left top vector on one side and the
right top vector on the other side. In numerical linear algebra,
this result forms the basis for the so-called Power method, which
is an iterative method for finding eigenvectors and eigenvalues
of a matrix [12]. (“Power” here refers to the fact that the method
raises the matrix to higher and higher powers.) This result from
matrix theory also underpins the time reversal mirror technique
developed by Fink [8] in acoustics. By repeatedly sending a
sound pulse into a medium, recording the reflected signal and
resending it after normalization and time-reversal (i.e., complex
conjugation in the frequency domain), convergence toward a top
eigenvector is reached. This physical process is nothing but a
Power method.

Computationally, our approach basically comes at the ex-
pense of a QR decomposition (essentially a Gram–Schmidt or-
thogonalitation) for every singular vector update. This is far less
than for an SVD, which involves the estimation of eigenvec-
tors/eigenvalues and extraction of square roots etc. In fact, the
QR is commonly used as a starting point for the SVD [12].

We believe that our approach has the potential for making
the singular vector approach feasable for TDD MIMO systems.
It does not reduce the effective bandwidth since no training
data are required, and the computational burden is modest. The
critical test for the method will be if the quality of the sin-
gular vector estimates are sufficiently good to produce accept-
able BER values for fading, time-varying channels at common
SNRs. In [3], we gave a first presentation of basic principles for

the BPSK case; here, we provide a full description in a more
general setting and further simulation results. To keep matters
simpler, we consider the number of singular modes to use as
a fixed design parameter and load all singular modes equally
(no water filling).

Other authors have also commented on sending-resending
schemes. Andersen [1] has observed independently that such a
procedure leads to convergence toward the top singular mode of
the channel. Kilfoyle [14], on the other hand, uses training data
to find singular modes in a nonflat fading (underwater) channel
but also comments that there is important information in the data
vectors sent up and down. However, none of these estimate the
singular modes while using the channel for communication.

The paper is organized as follows. In Section II, we present
the algorithm, and in Section III, we demonstrate performance
and convergence by simulations. In Section IV, we conclude on
the findings and discuss lines of further research.

The symbols used in the subsequent elaborations are summa-
rized in Table I.

II. ALGORITHM

A. Preliminaries: Algebraic Power Method

We briefly recapture the basic version of the Power method,
which is an iterative numerical method for finding the top eigen-
vector of real symmetric matrices. For a full reference, see [12].
Assume a symmetric matrix of rank . It has
an eigen-decomposition

(3)

where are the orthonormal eigenvectors cor-
responding to the strictly positive and ordered eigenvalues
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. Now, decompose an arbitrary vector
:

(4)

for some , where and are in the range and null space
of , respectively. Assuming without loss of gener-
ality (numerically this is always the case), repeated premultipli-
cation of by leads to the Power term :

The null space component disappears, and

(5)

will be dominated by the term when tends to infinity. If
the vector is normalized after each iteration, this becomes
a method for finding the top eigenvector . An extension of
this technique called the method of orthogonal iterations com-
putes several top eigenvectors by including a QR othogonaliza-
tion step (basically a Gram–Schmidt procedure) in each itera-
tion. It also carries over to nonsymmetric and nonreal matrices
[12]. A related algorithm (sometimes called NIPALS [21]) can
be used for finding singular vectors, which is what we are inter-
ested in.

In the present paper, we consider the application of
these ideas to two-way transmission over an unknown and
time-varying TDD MIMO channel. Transmission and retrans-
mission take the role of the iterations in the Power method.
Reciprocity is maintained by assuming that the ping-pong
time—the time between the begining of a downlink (DL) frame
and the begining of the next uplink (UL) frame—is small
compared to the channel variability.

B. Estimating the Top Singular Vector Pair Without
Communication Data

We start by introducing the basic feedback scheme under-
lying the procedure and neglect communication data for the time
being. Consider first transmission of single vectors only (block
length 1) over a (noiseless) flat-fading complex channel

uplink (6)

downlink (7)

Here, and are the UL and DL vectors, respectively.
Feedback is introduced as follows:

Here, the bar denotes the complex conjugate vector (element-
wise, without vector/matrix transposition). In effect, this states
that the signal received by one party is returned to the other party
after it has been complex conjugated. This scheme is turned into

an algebraically equivalent form that lends itself more easiliy to
analysis. To do this, rewrite (7) as follows:

and when conjugating the latter equality, we get

(8)

Through this complex conjugation trick, (6) and (8) will serve
as the basis for our analysis.

Following the Power method, transmission starts with an ar-
bitrary vector . Let be the
SVD of including only the singular vectors corresponding
to the strictly positive singular values. Decomposing , we
get for some set of constants.

Neglecting , which is the component in the null space of ,
we obtain

(9)

(10)

Continuing this way, one arrives at the following recursion, for
:

(11)

(12)

Clearly, will be dominated by , and by as .
If, after each iteration, normalization is applied, e.g.,

(13)

(14)

where denotes the norm, then and
as up to multiplication of unit norm complex numbers.
The uplink party will therefore hold , and the downlink will
have .

C. Estimating Singular Vector Pairs Without
Communication Data

Now, assume that some estimates and are known. The
following iterations are then used to estimate the second pair of
singular vectors, , :

(15)

(16)

where and are again arbitrary. Normalization of the
vectors , must be included in the same way as in (13)
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and (14). The Gram–Schmidt-like operations on the right of (15)
and (16) remove the contribution of the first singular vector pair
in the sums. Consequently, and will now converge to-
ward the second pair of singular vectors and , provided
that the estimates of the first singular vectors are sufficiently
good. With an obvious generalization of the equations above, we
can find all desired singular vector pairs by keeping succes-
sive estimates perpendicular to each other and of unit length. If
one wants to estimate the th singular vector pair ( ),
and the previous pairs are already computed, one uses

(17)

(18)

always with a subsequent normalization.
Introducing blocks, the following algorithm implements the

above approach in an efficient way, holding the full set of
singular vectors as columns of , .

1) random
2)
3) , ,
4)
5) , ,
6) Increase , and repeat from 2) until
convergence.

Here, is the UL block, and is
the DL block. Note that denotes the decomposition
of a matrix into one unitary matrix and one matrix ,
which is upper triangular with real positive diagonal elements.
The matrices , converge to the matrices of singular vectors

, up to multiplication of unit norm complex
numbers. This follows from an extension of the proof of the
method of orthogonal iteration [12].

Note that one part of the job (recording, orthogonalization,
conjugation, and resending) is carried out by one party and the
corresponding (but independent) part by the other one. This
gives an operational framework where only the left set of sin-
gular vectors or the right set are known by each party,
which is sufficient for operating the channel modes.

D. Simultaneous Singular Vector Estimation and Two-Way
Communication

The above algorithm is generalized so that two-way transmis-
sion of information occurs simultaneously with blind tracking
and estimation of the singular vectors. To introduce the com-
plete algorithm, assume first that the singular vector pairs
, are known. One could then use the transmit vectors

(19)

(20)

where are the information-bearing data symbols to
be transmitted uplink and downlink. When these vectors are
transmitted, and assuming no noise for now, they will be re-
ceived as

(21)

(22)

The symbols are then decoded using corresponding sets of the
singular vectors:

(23)

(24)

Using a slicer, the (scaled) symbols and can be decided.
Note that to both transmit and receive, each party needs only one
set of singular vectors—either or —but not both.

In the proposed algorithm, the true singular vectors are re-
placed by their estimates using the approach described in the
previous section. Introduce first the symbol blocks

(uplink and downlink, respectively) corresponding to a
slot size . These blocks contain vectors of size to be
transmitted over the independent channel modes. The basic
version of the proposed algorithm is given below. A flowchart is
shown in Fig. 1, where the complex conjugation trick has been
replaced by the actual operations taking place on each side.

BIMA – Blind Iterative MIMO Algorithm
1) random, random,

.
________________
2)
________________
3) Decide from
4) ,
5)
________________
6)
________________
7) Decide from
8) ,
9)
________________
10) Increase , repeat from 2).

Here, the symbol denotes the pseudo-inverse (Moore–Pen-
rose) operator. In the above, and are the data
blocks transmitted uplink and downlink, respectively. and

are the correspondingly received data blocks.
If the symbols are decoded correctly (steps 3 and 7), then

, ( ), and this algorithm is
completely equivalent to the one in the preceding section. Con-
vergence is then assured. For random initial conditions for
and , convergence has to be determined from simulations, as
have the effects of channel variability and noise.
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Fig. 1. Overall flowchart of the BIMA algorithm, showing the main
computations that each party has to perform.

The flowchart and the algorithm are slightly simpler than
the actual implementation. In practice, subblocks of length

, , and of full rank are used to estimate and
track the singular vectors within each UL/DL frame. This
improves the performance under time-varying conditions and
makes the pseudo inverse computationally cheap. In addition,
some smoothing is applied to the singular vectors to reduce the
influence of noise. This is done by averaging singular vector
estimates while making sure that orthogonality is preserved
(see [5] for details). In addition, we assume that the channels
are color coded so that the different bit streams can be recog-
nized by the recipient once separated (a typical blind MIMO
estimation ambiguity). In addition, the convergence speed is
boosted by sorting the column vectors of the matrices to be
QR-decomposed by their norm.

As the singular vectors are determined up to multiplication
by a complex number of unit norm, differential coding and de-
coding have to be added to the BIMA algorithm in order to avoid
symbol rotation problem, as in any blind MIMO approach.

III. RESULTS

This section presents results for BIMA in a simulated TDD
MIMO environment, using differentially encoded quadrature
phase shift keying (QPSK). Several issues are investigated
with emphasis on convergence, tracking capabilities, and
performance in cases where multiple nonzero singular values
occur.

A prior concern is the estimation of the singular vectors. For
constant channels with separate singular values, the estimation
error for, say, a left singular vector estimate of can be
measured as

(25)

where is the true singular vector. If several singular modes
( ) are in operation, the average error is used:

(26)

Fig. 2. Ensemble averages of � (now averaged over both left and right
singular vectors) for singular vector estimates over 100 constant, randomly
chosen 3TX� 3RX channels as a function of the iteration number. The upper
curve is the error for the two second singular vectors (combining u , v ), and
the lower is the corresponding measure for the first ones. (a) Errors on a linear
scale. (b) Errors on the decibel scale.

For time-varying channels, the situation is slightly different.
Then, the singular values will at times approach one another and
cross over. This is well known from the perturbation theory of
the SVD [12]. For identical singular values, any linear combina-
tion of singular vectors is itself a singular vector. To determine
the performance under such conditions, observe that valid sets
of singular vectors and are always eigenvectors of

and , respectively. For an estimate , we then de-
fine the error measure

(27)

It follows that with the lower bound achieved
only when is an eigenvector. A corresponding measure is
used for . If several singular vectors are tracked, an average
similar to (26) is used. To compute the performance of the
channel over a time-frame , evaluate the error
at times , and compute the average

(28)

A. Estimation of Singular Vectors for Constant Channels

Consider first a noise-free case where 100 Monte Carlo
simulations were performed for constant, randomly chosen
3TX 3RX systems, estimating the two top singular vectors
while simultaneously performing differentially encoded QPSK.
The rate of convergence for our method is illustrated in Fig. 2,
where the ensemble averages of over the left and right
singular vectors are shown on a linear scale (a) and on the
decibel scale (b). In such cases, a trained approach would yield
correct channel estimates with a few symbols from which the
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Fig. 3. Convergence of the singular vectors plotted as function of iteration step
(slot index) at various SNRs. Here, K = 2 is the number of singular modes
(channels) used for a fixed 3TX� 3RX system. (a) Ensemble average of � =
(1=K) ku �û k for the left singular vectors. (b) Corresponding error
for the right singular vectors.

exact singular vectors could be found. Although less efficient
than training, the figure shows rapid convergence for BIMA.

Consider now a fixed 3TX 3RX system with additive noise.
Fig. 3 shows the convergence of the two top singular pairs from
1000 random starting points. Here, , , ,
and various levels of channel noise are tested. The errors in both
singular modes are averaged and convergence for the left and
right hand side vectors plotted. Rapid convergence takes place
above a certain SNR, and this behavior has been demonstrated
over a range of other simulation scenarios. However, the initial
bit error rates may be unacceptable, and hence, an initial acqui-
sition period should be used in practice.

B. Tracking and Communication Over Time-Varying Channels

Here, we study a fast time-varying, Rayleigh-fading
4TX 4RX channel ( Doppler spread), with a
transmission rate of kBit/s per eigen-mode, using

independent channels and a ping-pong time corre-
sponding to 1 ms. This implies a block length bits.
Fig. 4 shows a typical example of the environment in which
we are working. The singular values are plotted as functions
of time over a period of 100 ms. At this Doppler spread, the
channel is completely changed every 20 ms. The two crosses
indicate positions where there is a shift in the order of the
singular values as the third singular value overtakes the second.

1) Eigenmode Tracking: The error measure in (28),
taken over the two top singular vectors left and right, are
plotted for several SNR scenarios (Fig. 5). This indicates the
accuracy with which the singular vectors are tracked for this
fast time-varying channel.

2) Bit Error Rates—Comparison with Trained
Methods: Ten simulations were performed for each SNR
scenario and the mean BER over these simulations taken.
In Fig. 6, we plot the BER obtained with our method after
an initial acquisition period. For comparison, we also show
results for the clairvoyant case (perfectly known SVD) and
cases where 5% and 20% of the data, respectively, are used for
training. The loss between BIMA and the other cases is in the

Fig. 4. Example of a time-varying 4TX� 4Rx channel, fading at 50 Hz
Doppler over a period of 0.1 s. The singular values are plotted as functions of
time. The two crosses indicate shifts in the order of the singular values.

Fig. 5. � error measure (28) for singular vectors, mean over two top singular
modes, right- and left-hand side.

range 2–5 dB, depending on the noise level. (Training-based
methods may be improved if knowledge of a certain space-time
precoding structure is employed at the transmitter [16]. This is
not the case here.) There seems to be a “flooring effect,” which
is even more prominent for faster fading channels, but which
disappears for slower channels (e.g., 10- or 20-Hz Doppler
spread). The reason is probably the inherent delay in estimating
the singular vectors in highly time-varying channels.

It is of interest to see how successfully the BIMA algorithm
retains the MIMO advantage, despite the blindness. Fig. 7 shows
bit error rates for time-varying SISO and MIMO channels with
the same doppler (50 Hz, as above) and various SNRs. It is seen
that the diversity advantage of the MIMO channel is well ex-
ploited by the blind algorithm.

C. Crossing Singular Values

As noted, Fig. 4 shows two cases where the third singular
value overtakes the second and takes its place. Here, BIMA
switches correctly and continues to track the top two singular
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Fig. 6. Mean BER values for various SNRs for a 4TX � 4RX channel using
two eigen-modes, fading at 50 Hz Doppler, and transmitting at f = 22 kBits/s.
BIMA is compared to cases where 5% and 20% of the data, respectively, are
used for training.

Fig. 7. Comparison of BIMA with a SISO time-varying channel, fading at 50
Hz doppler, with a transmit frequency of f = 220 kBits/s and a ping-pong
period corresponding to 1 ms.

modes. However, this switching results in a transient increase
in the BER.

This situation is further investigated in Fig. 8. For the sake
of a simple illustration, one top singular mode of a 3TX by
3RX channel matrix is initially tracked [see Fig. 8(a)]. The cor-
responding singular value is decreasing while another singular
mode with an increasing singular value is also present. At a cer-
tain point in time, the latter singular value overtakes the first
and becomes the leading one. Fig. 8(b) shows the bit error rates
versus the SNR. The upper curve is for BIMA, and the lower is
the theoretical optimum (known singular vectors). The middle
curve shows the BER for a similar channel but without the swap
in the singular values. This illustrates the extra loss associated
with crossing singular values.

Fig. 8. Crossing singular values. (a)Singular values for a 3TX� 3RX
channel. (b) BER for various SNR scenarios, both for the BIMA algorithm
(top), the theroetical optimum (bottom) and BIMA for the constant channel
without changing singular values.

Fig. 9. Bit error rates for various choices of n. The algorithm is stable with
respect to this choice, and the loss is only a few decibels for most SNRs.

D. Choice of

The slot size is a design parameter closely related to the
ping-pong time of the channel through the transmission fre-
quency. We simulated the performance of the algorithm with
three different slot sizes , , and , again
in the 50-Hz Doppler fading 4TX 4RX environment, using

singular modes. The results in Fig. 9 show that BIMA
is robust with respect to choice of the slot size; there is a loss of
only a few decibels for most relevant SNRs.

IV. DISCUSSION

We have shown that top singular modes of the channel
matrix can be estimated and tracked without training data,
without the need for a statistical estimate of , and without
performing an actual SVD. These results are based on a channel
exhibiting reciprocity. Transmission and retransmission in a
MIMO system of an initially arbitrary vector will lead to
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convergence toward the right and left singular vectors of the
main mode. By combining an orthogonalization procedure with
this transmission/retransmission scheme, multiple singular
vector pairs can be extracted as part of the normal operation.

More work needs to be done both on theoretical and prac-
tical aspects, which could lead to further improvements. For
example, in numerical linear algebra, the Power method for
finding eigenvectors has been replaced by more efficient Krylov
methods [12], which do not rely on the convergence of the it-
erative process but utilize intermediate iterates. Such methods
could form the basis for improved estimation of the singular
MIMO vectors.

In the simulations, we assumed that color coding was applied
to separate the channels at the recipient side. However, as sin-
gular value estimates are available for channel marking, it is
possible to avoid this extra cost. Then, one must deal with the
issue of continuous ordering of the singular values. This can be
taken care of by adopting a leader-follower strategy: One party
takes responsibility for switching the singular vectors when the
difference between singular values is too big to be caused by
noise-driven errors. This is explained in more detail in [5].

In other work [4], we develop a method for blind estimation of
singular modes in a frequency division duplex (FDD) channel.
In this case, the uplink channel matrix is generally not the trans-
pose of the downlink channel, and therefore, BIMA iterations
cannot be used. Other techniques are needed to blindly esti-
mate these modes, which are now double in number (one set for
the downlink channel, another for the uplink). Initial work [5]
shows that singular modes can still be estimated, provided the
two parties consider the task to be a joint optimization problem,
and devise suitable cooperative strategies.
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