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Abstract

We compare space-time coding (transmit diversity) and random “opportunistic”
beamforming in a SDMA/TDMA single-cell downlink system with random packet ar-
rivals, correlated block-fading channels and non-perfect channel state information at
the transmitter due to a feedback delay. Our comparison is based on system stability,
under the adaptive policy that stabilizes the transmit queues whenever the arrival rates
are in the system stability region. We compare the relative merit of transmit diversity
with some previously proposed “opportunistic” beamforming schemes. The ability of
accurately predicting the channel SNR dominates the performance of opportunistic
beamforming. Hence, we propose to exploit synchronous pseudo-random beamforming
matrices known a priori to the receivers in order to improve the channel state infor-
mation quality. Even under this optimistic assumption, it clearly appears that for a
given feedback delay the relative merit of opportunistic beamforming versus space-time
coding strongly depends on the channel Doppler bandwidth. Therefore, previous naive
conclusions on the fact that transmit diversity always hurts the system performance

under multiuser-diversity scheduling should be taken with great care.

Key words : transmit diversity, multiuser diversity, opportunistic beamforming, sta-
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1 Introduction

We consider the system shown in Fig.1 where a base station with M antennas serves K users,
each one equipped with a single antenna. Transmission is slotted and each slot comprises
T channel uses (complex dimensions). Information bits arrive randomly at the transmitter
and are locally stored into K queues, each associated to one user.

The base station operates in SDMA/TDMA mode: at each slot, B < M streams of coded
signal are generated by encoding packets of information bits from the K queues. Each stream
is destined to one user. Hence, the system serves simultaneously B users at any slot. The
B streams are transmitted by using some beamforming algorithm, that is generally referred
to as the signaling strategy. For a given signaling strategy, the resource-allocation policy
formed by queue selection (scheduling) and rate allocation is referred to as a SDMA/TDMA
policy.

Several results on SDMA/TDMA downlink schemes exist in the literature. Driven by
the information theoretic analysis of fading broadcast channels [1, 2], systems that serve
the user enjoying the best instantaneous channel conditions have been proposed for high-
data rate data packet downlink in evolutionary 3G system standardization [3—-5]. When the
base station has multiple antennas, random “opportunistic” beamforming has been proposed
in [6,7]. These systems generate 1 < B < M random time-varying beams, such that each
user can measure the rate that can be reliably received on each beam and feeds back this
information to the transmitter. The scheduling algorithm allocates the best user on each
beam at any slot. The ability of a system to serve a user at its peak rate conditions is
generally referred to as “multiuser diversity” [6-9].

A rather different use of the M antennas consists of improving the reliability of trans-
mission for each user by space-time coding (STC) (see for example [10-12] and references
therein). In this case, we have B =1 (TDMA) since all antennas are used to provide trans-

mit diversity to a single user. Scheduling can also be applied on top of STC and it is natural



to investigate the relative merit of transmit diversity and multiuser diversity. Partial an-
swers to this question have been provided, for example, in [13-15]. These works, as well as
many others, indicate essentially that transmit diversity always decreases the throughput of a
downlink system under SDMA /TDMA scheduling. In fact, multiuser diversity benefits from
highly variable user channel conditions. This effect is amplified, in some sense, by random
beamforming. On the contrary, transmit diversity tends to equalize the channel of each user
as the number of antennas increases (the “channel hardening” effect [14]). Therefore, while
the link of each user becomes individually more reliable, the system throughput is decreased.

The assumptions underlying these results are: 1) channel errors never occur, i.e., once
a user is scheduled and is allocated a given (channel dependent) rate, the message will be
successfully received with probability 1; 2) transmission queues have infinite buffers and all
users are backlogged. Assumption 1) implies that the rate that can be supported by the
channel can be perfectly known to the transmitter. Hence, it does not take into account the
possibility of channel measurement errors and of feedback delay which causes the transmit-
ter to allocate rates based on outdated information. It is obviously clear that, under this
assumption, STC is of no help. In fact, STC is geared to cope with bad fading channel con-
ditions unknown to the transmitter [16]. Assumption 2) implies that there are always bits
available for transmission for any user at any slot. This, in turns, implies that the schedul-
ing policy should try to maximize the system throughput subject to some fairness criterion.
Unfortunately, “fairness” is not a well-defined concept and many criteria exist. Indeed, sev-
eral different scheduling algorithms have been proposed that are optimal subject to different
fairness criteria (see for example [6,17-20] and references therein). The lack of a uniquely
defined criterion to rank the different SDMA/TDMA policies makes this comparison very
difficult.

Under random bits arrival, the notion of fairness is replaced by the notion of stability
[21,22]. In this setting, achieving any point in the system stability region (defined formally

later) subsumes any reasonable fairness criterion and may be considered as the single most



important goal of a downlink resource-allocation policy.

In this work, we build on the framework of [21] and find the SDMA/TDMA stability
region under non-perfect channel state information at the transmitter (CSIT), that yields
non-zero decoding error probability. In our case, non-perfect CSIT is essentially due to a
delay in the feedback and to the fact that channels are time-varying. Then, we find the
adaptive transmission policy that stabilizes the system for all arrival rates inside the system
stability region. Finally, we apply the stability framework to provide a fair comparison
between STC (transmit diversity) and random beamforming. The realistic assumption of
non-perfect CSIT yields a non-trivial tradeoff between the transmit diversity achieved by
STC and the multiuser diversity achieved by opportunistic beamforming. This tradeoff is
missed by the analysis of [6,7,13-15,17-20] that neglects the fact that decoding errors may
occur with non-zero probability. In our more refined and realistic setting, the ability of
accurately predicting the channel SNR clearly emerges as one of the main limiting factors of
multiuser diversity-based schemes. Therefore, we also propose an improvement of the random
beamforming where each user is synchronized with a common random number generator that
produces beamforming matrices. Hence, the matrices can be considered a priori known'! and
can be used for channel estimation. This makes the rate of variation of the random beams
and the ability of estimating the channels unrelated, whereas the latter depends only on the
physical channel rate of variation.

Even with the proposed scheme, that represents a “best case” for opportunistic beam-
forming, our results show that for a given feedback delay the relative merit of opportunistic
beamforming versus STC strongly depends on the channel Doppler bandwidth. In partic-
ular, for slowly-varying channels the opportunistic beamforming with B = M achieves the
best average delay, while for faster channels STC is best. In light of these results, the utility

of random beamforming with B = 1 is fully questionable.

!'Notice that in practical CDMA systems each user is synchronized with the random spreading/scrambling

code of the base station. Therefore, this assumption is fully realistic.



2 System model and definition of stability

We assume a frequency non-selective block-fading channel where the signal received at user

k terminal in slot ¢ is given by

yi(t) = X(8)hy(t) + wi(t) (1)

where X(t) € CT*M is the transmitted codeword, hy(t) € CM*! denotes the M-input 1-
output channel response, assumed constant in time and frequency over each slot, and wy(t) €
C"™! is a complex circularly symmetric AWGN with components ~ CN'(0,1). The base
station has fixed transmit energy per channel use denoted by v, that is, tr(X(¢)X (¢)7) < T,
for all £. Due to the noise variance normalization, vy takes on the meaning of transmit SNR.

Coding and decoding is performed on a slot-by-slot basis. We assume that 7" is large
enough such that powerful codes exist whose error probability is characterized by a threshold
behavior: letting R(t) denote the transmission rate on a given slot ¢ and R(t) denote the
supremum of the coding rates supported by the channel, which is a random variable because
of fading, the decoding error probability in slot ¢ is equal to 1{R(¢) < R(t)}, i.e., the decoder
makes an error with very large probability if the transmission rate is above the maximum
achievable rate of the channel, while error probability is negligibly small if it is below.? We
shall refer to the probability P(R(t) < R(t)) as the outage probability. In order to handle
decoding errors, we assume an ideal ARQ protocol such that the unsuccessfully decoded
information bits are left in the transmission buffer and shall be re-scheduled for transmission
at a later time.

A SDMA/TDMA policy is generally a function of the Channel State Information at the

Transmitter (CSIT) and of the state of the transmitter queues. CSIT can be obtained in

2This threshold behavior of block error probability can be approached in practice by concatenated coding
schemes such as inner trellis codes with Reed-Solomon outer coding, turbo codes and low-density parity-
check codes, and it is closely related to the concept of information outage probability [23] and of e-capacity,

or outage capacity [24], which are widely used in the information-theoretic analysis of block-fading channels.



several ways depending on the system. For the systems considered in this work, specific
idealized models for CSIT and for the signaling strategies will be specified in Section 4. In
general, we assume that at the beginning of each slot ¢, both a CSIT signal a(t) € A and
the queue buffer states are revealed to the transmitter, where A denotes the CSIT signal
alphabet. The arrival process of queue k is denoted by A(¢), an ergodic process with arrival
rate A, = LE[A(t)] (bit/channel use). The buffer size of queue k is denoted by Sk(t) (bit).
We let o = {a(r) : 7 =1,...,t} € A’ denote the sequence of CSIT signals up to time ¢,
and S} = {S1(7),...,Sk(r) : 7 =1,...,t} € RE" denote the queue buffer state sequence up
to time t. An SDMA /TDMA resource allocation policy is formally defined by two sequences

of functions

P® A x REt — [0,1)K*B

RO . A x REt - RI*P (2)
for ¢t = 1,2,..., such that each user k on each slot ¢ is given a fraction pg,)j(atl,Sﬁ) of
dimensions of stream j = 1,..., B, and transmits at rate R,(f,)j(atl, S!) bit/channel use. The

function P must satisfy the SDMA /TDMA feasibility constraint

> pp <1 (3)

for each j = 1,...,B and for all t. Notice also that the functions P® and R® depend
causally on the CSIT and queue state sequences.

For a given signaling strategy and SDMA/TDMA policy {P® R®}, let Ry ;(t) denote
the supremum of the coding rates supported by the channel for user k£ on stream j in slot
t. Notice that Ry ;(t) depends on the instantaneous channel realization, and is therefore a
random variable. Under the assumptions given above, the queue buffer states evolve in time
according to the stochastic difference equation

B
Sk(t+1) = [Sk(t) =T Y pRY R < Rey(0)} | + Ax(®) (4)

Jj=1 +



forallk =1,..., K, where [-]; 2 max{-,0}. The presence of the indicator function 1{R,(:)] <
Ry ;(t)} is due to the ARQ mechanism illustrated before: only if decoding is successful, i.e., if
the scheduled rate R,(:)] is indeed achievable, the corresponding information bits are removed
from the transmission buffer.

In order to define stability, we follow [21] and define the buffer overflow function g, (S) =
limsup,_,, + St 1{Sk(r) > S}. We say that the system is stable if limg o gx(S) = 0
for all k = 1,..., K. For a given signaling strategy, we define the system SDMA/TDMA

stability region €2 as the set of all arrival rates K-tuples A € Rf such that there exists a

feasible policy in the form (2) for which the system is stable.

3 Stability region and max-stability adaptive policy

In this section we make some key simplifying assumptions that allow us to obtain a very
simple characterization of Q and a simple adaptive SDMA /TDMA policy that achieves any
A € Q. We assume that: 1) the channel vectors {hi(t) : £ = 1,..., K}, the CSIT signal
a(t) and the arrival processes {Ag(t) : k =1,..., K} evolve according to a jointly stationary
ergodic Markov process; 2) the arrival processes have E[A(t)?] < oo; 3) for a given signaling

strategy, for every sufficiently large ¢, the following Markov chain holds:
o= at) 5 {Ry;(t):k=1,...,K,j=1,...,B} (5)

In particular, the third condition implies that for all k£, 7 and sufficiently large ¢, the condi-

tional outage probability depends only on the current CSIT value, i.e., it satisfies
P(Ry;(t) < Rlat) = P(Ry;(t) < Rlex(t)) (6)

We can cast the stability problem for the general SDMA/TDMA system into a stability-
wise equivalent, but simpler, problem for which the results of [21] are almost immediately

applicable. In a new (virtual) system, c(¢) takes on the role of the channel state, and the



instantaneous effective rate R,(:)Jl{R,(:)] < Ry ;(t)} is replaced by the conditional outage rate,
defined by
R (a) =sup R(1—P(Ri; < Rla = a)) (7)

R>0

which is a function of the current CSIT value o = a € A.3 In Appendix A we prove:
Theorem 1 [Stability region|. Under the above system assumptions, for any fixed
signaling strategy, the system stability region is given by
B
Q = coh U {A eERN : N < Z]E [pk,j(a)Rg‘,;.t(a)]} (8)
PecP j=1
where “coh” means closure of the convex hull and where P is the set of stationary SDMA /TDMA
policies P : A — [0, 1]%® that map the current CSIT o = a € A into an array [p,;(a)]
satisfying (3). This stability region is achieved by the stationary rate allocation policy R*,
defined by
R; ;(a) = arg sup R(1—P(Ry; < Rla = a)) 9)

R>0

O
The following comments are in order: 1) Under the conditions assumed in this paper, we
have that the rate allocation function R* in (9) is optimal for any stationary P € P and
any SDMA /TDMA signaling scheme. This reduces the problem of the stability-optimal re-
source allocation policy to the determination of P € P alone; 2) under any stationary policy
(P,R*), the user average service rates fi(t) = TZJL-; Prj(ee(t)) R (ex(t)) (bit/slot) are
linear functions of P € P and P is a convex set. It follows that no convex-hull operation is
needed in (8); 3) we can introduce the class Py, _ofr 0f randomized on-off SDMA /TDMA poli-
cies such that for every P € P, there exists P’ € P,,_og defined as follows: for all a € A and
j=1,...,B, let user k; be served on the whole slot on stream j where x; € {1,..., K} is a

random variable generated according to the probability mass function (p; ;(a),...,pk (a)).

3Here and in the following we let o denote a random vector over A with the same distribution of a(t),

which is independent of ¢ because of stationarity.



Clearly, € is achieved by restricting the union to the policies in Py, og. In practice, random-
ized on-off policies are preferable since handling a single user per slot per stream is much
easier. Therefore, we shall restrict to these policies in the following; 4) from the convexity
of €, the region boundary 92 can be obtained by letting 8 = (1,...,0x) € RE and find-
ing \,(0) = ZlelE [pk,j(a)Rz:‘jt(a)}, for the policy P € P solution of the maximization

problem

max 3700 > E (@) R )] (10)

Then, 09 is the convex upper envelope of the points {A(0) : @ € R, >, 6, = 1}.

For given values @ € R¥, the solution of (10) is readily obtained as

1 k= arg maxy Op 3)%(a)

(11)

Prj(a) =
0 k # arg maxy Oy R} (a)

This means that, as expected, the points on 0 are achieved by time-sharing (convex-
hull operation) of deterministic on-off policies that schedule the best user, given by k£ =
arg maxy Gk'Rz}‘fj(a), on each stream j. Notice that time-sharing of deterministic on-off
policies yields the class of randomized on-off policies Po,_o, as expected.

For given A € () there exists some memoryless stationary policy Py € Pon_on that
stabilizes the system. However, in order to determine Py the a priori knowledge of A is
generally required. This might not be available in practice. Hence, a policy that achieves
stability for all A € Q adaptively (i.e., without prior knowledge of the arrival rates) is of
great practical interest [21,22]. We shall refer to this policy as the “max-stability” adaptive
policy. We have,

Theorem 2 [Max-stability adaptive policy]. Under the above system assumptions,

for any fixed signaling strategy, the max-stability adaptive policy is given by

. )1 k = arg maxy Op Sp R (a)
O k 7é arg Imaxy Gk’Sk’RzP’E' (a)

for any strictly positive weights 6, > 0. O

10



Theorem 2 follows by applying the theory of Lyapunov drift [21,22] and follows closely the
proof of Theorem 3 in [21]. It is omitted for the sake of space limitation. The max-stability
adaptive policy allocates on each stream j in slot ¢ the user maximizing the weighted outage
rate O Sy (1) Ry (a(t)). The adaptive nature of the max-stability policy is evident from
the fact that P is a memoryless stationary function of the current CSIT a(t) and of the
current queues state S(t), rather than of a(t) alone. Intuitively, the buffer state represents

an empirical observation of the arrival rate.

4 Space-time coding vs. opportunistic beamforming

In this section we apply the max-stability adaptive policy obtained before to STC (transmit
diversity) and random opportunistic beamforming. We assume that the channel vectors hy (%)
are mutually statistically independent for different index £ and i.i.d. for different antennas.
Focusing without loss of generality on a scalar channel coefficient h(t) where we drop the
user and antenna index because of the i.i.d. assumption, we assume that h(t) evolves from

slot to slot according to a stationary ergodic L-order Gauss-Markov process, given by

Bty == geh(t — £) + v(t) (13)
=1

where v(t) ~ CN(0,0?) is an i.i.d. process. We make the optimistic assumption that the
receivers can estimate ezactly their channel vector and feed back the corresponding value
without distortion (unquantized and noiseless). However, due to a fixed delay of d slots
in the feedback link, the CSIT is given by e(t) = {hy(t — ¢ —d) : k = 1,...,K,{ =
0,...,L —1}. We hasten to say that this CSIT model is just a convenient idealization for
which the assumptions yielding the stability region and max-stability policy obtained in
Section 3 hold exactly. In practice, many other sources of uncertainty are present, such as
noisy channel observations [25], a rate-constrained feedback link [3,26], or an unquantized but

noisy feedback link [25]. As a matter of fact, for a fixed signaling strategy and a fixed delay d
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in the feedback, any degraded version of a(t) defined above can only worsen the performance.
This is an immediate consequence of the Markov nature of the channel processes. Hence,
our assumption yields an optimistic scenario in favor of the opportunistic schemes.

Notice also that we consider only fixed signaling strategies that do not make full use of
the CSIT a(t). In fact, the goal here is not to find the best possible signaling strategy for a
given type of CSIT, but compare given fixed strategies under the max-stability policy. It is
clear that neither opportunistic beamforming nor STC would be the best strategy under the
assumed CSIT if one has full freedom of optimizing the system with respect to the signaling
strategy. We compare the following signaling strategies.

Space Time Coding. In this case, X(¢) € C"*M denotes the transmitted space-time
codeword. One user is served in each slot, i.e., B = 1 (in this case we drop the stream
index j for notation simplicity). The system cannot exploit spatial multiplexing since the
user terminals have only one antenna. Hence, STC yields only M-fold transmit diversity.
The supremum of the rates supported by the channel under any coding scheme is given by
the channel instantaneous capacity R(t) = log, (1 + 2= |hk(t)|?). The conditional outage
probability is given by

P(Ri(t) < Rla(t) =a) =1— Qu (\/2|g(;;(2t)|2’ \/2M(2R — 1)> (14)

2
Y0

where Qs denotes generalized Marcum’s Q function [27], o2 denotes the prediction MMSE 4
of hy(t) from a(t) and where gy (¢) is the MMSE predictor of hy,(¢) from e (t). Expression (14)
is easily obtained by using the fact that hi(¢) and a(t) are jointly Gaussian. In a practical
implementation, each user sends back (a suitably quantized version of) the estimated channel
gain |g.(t)|>/M. Hence, the amount of feedback required by this scheme is very small.
Improved Opportunistic Beamforming. We consider opportunistic beamforming

using 1 < B < M mutually orthogonal pseudorandom beams, as proposed in [6,7]. The

*We define 02 = E[|h(t) — E[h(t)|h(t — d),...,h(t —d — L + 1)]|?], which is the same for all components

of h(t) and all users, under the symmetry assumptions considered.
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transmitted signal is given by
X(t) =) _si(t)e; (¢) (15)

(CTXI (CMXI

where s;(t) € is the signal associated to beam (stream) j, ¢;(t) € is the beam-

forming vector for beam j in slot ¢, and it is assumed that qb;-q (t)@,,(t) = djm. The signal-

to-interference plus noise ratio (SINR) of user k& in beam j is equal to

SINRy (1) = |#; ()hy(2)]” (16)

B+ Yoz [ ()i (1)

Assuming user codes drawn from an i.i.d. Gaussian distribution (or making a Gaussian

approximation of interference), the supremum of the rates supported by beam j for user & is
given by Ry ;(t) = log, (1 + SINRg ;()). In the schemes analyzed in [6,7], each user measures
its SINR for each of the B transmit beams and feeds back its best SINR and the index of
the beam achieving it. The SINR values are considered instantaneously and perfectly known
to the transmitter. This is clearly not a realistic assumption. Moreover, in these works it is
not clear how the SINRs are estimated and at which rate the random beamforming matrix
changes. The next result, proved in Appendix B, establishes a simple relationship between
the average transmission delays and the speed of variation of the random beamformer, in

the ideal case of perfect CSIT (zero outage probability). By Little’s theorem [28] we let

E[Dg] = ] denote average delay of user k expressed in slots.
Theorem 3 [Bound on the average delay]. Assume that CSIT is perfect, i.e.,
R{™(t) = Ry,;(t), and that the channels change independently every N slots. Then, the

average user delays E[Dy] obtained by the max-stability adaptive policy satisfies

NK

Zﬁk/\k]E D] < 55 (17)

2 _
where K = 31 E [(A’“T(t)) } +BY N O Zle E [(Rk,;(t))?], and where 6 > 0 indicates
the distance of the arrival rate vector from the stability region boundary. U
Under perfect CSIT and static physical channels, the average delays are bounded by a

function that increases linearly with /V, the number of slots over which the combination of
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physical channels and random beamformers remain constant. Hence, it is clear that under
perfect CSIT it is convenient to make the random beamformers vary as fast as possible (i.e.,
change independently at each slot). In practice, however, if the beamformers change too
rapidly the users are not able to reliably estimate their SINRs. We conclude that, under
any realistic scheme to obtain CSIT, there must be a tradeoff between the goal of letting the
channels rapidly varying and the need of estimating the SINRs accurately.

Motivated by this consideration, we propose the following improvement: each user in
the system is synchronized with a common random number generator that generates the
random beamforming matrices. Hence, the matrices can be considered a priori known by
all users logged into the system. Moreover, since they are unitary, they have no impact
on the estimation of the underlying physical channel that can be achieved by usual pilot-
aided schemes. In this way, the rate of variation of the random beams is independent of the
ability of estimating the channels, that depends uniquely on the physical channel Doppler
bandwidth. In the numerical results in Section 5 , we let N = 1, which can be regarded as
a best case for the average transmission delay.

By using standard methods of characteristic functions of Hermitian quadratic forms of
Gaussian random variables [29] it is possible to compute numerically the conditional outage
probability, which is needed to compute the instantaneous rate request Rz,j(t) and the cor-
responding outage rate. It can be shown that this probability depends on a(t) only through
the two real numbers \qurgk(t)\Q and > . |l g1 (t)|?, where again g (t) denotes the MMSE
prediction of hy(¢) from e(t). The details of this calculation are given in [30]. In a practical
implementation, each user feeds back (a suitably quantized version of) the B real numbers
{|¢;‘-ng(t)\2 :j=1,...,B}, from which the max-stability policy can be computed. Hence,

also in this case the amount of feedback required by this scheme is moderately small.
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5 Numerical Results

Simulation setting. We considered mutually independent arrival processes such that
Ag(t) = Z;.Vi’“l(t) byj(t), where My(t) is an i.i.d. Poisson distributed sequence that counts
the number of packets arrived to the k-th buffer at the beginning of slot ¢ and {by ;(¢)} are
i.i.d. exponentially distributed random variables expressing the number of bits per packet.
We take E[bg ;(t)] =T (T = 2000 in our simulations), so that A\ coincides with the average
number of packets arrived in a slot (7" channel uses). We considered a Gauss-Markov process
of order L = 5 where the coefficients in (13) are chosen in order to approximate (see [31,32])
Jakes’ autocorrelation model [33], typical of wireless mobile channels. Inspired by the HDR,
system [3], we let the duration of a slot be 1.67 msec, and the feedback delay d = 2 slots.
Under this setting, the mobile speeds v = 0, 25, 40, 60, 80 km/h yield a channel predic-
tion MMSE o2 = 0.00, 0.05, 0.10, 0.40, 0.60 respectively. The average SNR is set equal to
~v = 10 dB. For opportunistic beamforming, we generate a new independent set of random
beamforming vectors in every slot that are assumed to be known a priori by the users as
explained before.

Maximum sum rate. We evaluate the maximum sum rate of STC and opportunistic
beamforming. Since the maximum sum-rate is given by the intersection between the bound-
ary of the stability region and the symmetric arrival vector A\; = --- = Ak, this allows us
to know exactly the total arrival rate where the buffer size diverges under the max-stability
policy. The maximum sum-rate is obtained by scheduling at each time and on each stream
the user with the largest outage rate, irrespectively of the buffers state.

Figs. 2 and 3 show the maximum sum-rate vs. the number of users for mobile speed
v = 0km/h and v = 25,60 kin/h by using STC and opportunistic beamforming respectively.
In Fig. 3 we let B = M. The case M =1 in both figures is the same and coincides also with
the performance of the opportunistic single-beamforming [6] with M > 1 and B = 1.

In Fig. 2 we observe that number of users after which transmit diversity becomes harmful

15



depends heavily on the CSIT quality. We have K = 2 for ideal CSIT (02 = 0), and K = 5,28
for o2 = 0.05,0.40, respectively. In Fig. 3 we observe large gain with M = 2,4 beams
especially for K > 10,15, for the case of perfect CSIT. Unfortunately, the advantage of
multiple beams decreases dramatically as the quality of the CSIT worsens. For o2 = 0.40,
multiple beams seem to be harmful even for a large number of users in the system, i.e.,
multiuser diversity has completely disappeared.

Impact of the beamforming variation speed on delay. We consider opportunistic
beamforming with B = M = 4 over a static channel for a system with 50 users with
symmetric arrival. Fig. 4 shows the average delay, given by > E[Dy]/K, as well as its
upper bound derived in Theorem 3 for different N. The upper bound becomes relatively
tighter as the arrival rate gets closer to the stability region boundary. Clearly, at arrival
rates between zero and the stability boundary, N =1 yields the smallest average delay.

Average delay vs. mobile speed. We evaluated the average delay of STC and
opportunistic beamforming as a function of the mobile speed by letting the total arrival
rate fixed (to 2.5 bit/channel use in this case). We consider the symmetric arrival case.
Figs. 5,6 and 7 show the average delay vs. the mobile speed for a system with 50 users with
STC, random beamforming with B = 1 and random beamforming with B = M, respectively.
Clearly, the case M = 1 is the same in all three figures and refers to a standard single-antenna
system.

For a very slowly-varying channels (close to v = 0 km/h) the STC system becomes non-
ergodic and there is a positive probability of buffer overflow. This probability is reduced
by increasing transmit diversity, thanks to channel-hardening effect: ergodicity which is lost
in time is eventually recovered in the spatial domain by increasing the number of transmit
antennas.

As seen from Figs. 6 and 7, opportunistic random beamforming decreases the average
delay by making the channel vary almost i.i.d.. When the channel is slow (below 40 km/h),

opportunistic beamforming with M beams achieves the smallest delay. As v increases (i.e.,
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the quality of CSIT becomes worse), STC outperforms random beamforming due to its
better outage rate. Interestingly, the opportunistic beamforming systems become unstable
(the average delay diverges) with M = 2,4 and v larger than 60 km/h. This means that
at this speed users are essentially allocated on the wrong beam with high probability. It
is also noticed that, with the parameters of this simulation, the M-antenna B = 1 random
beamforming scheme proposed in [6] is outperformed by the B = M random beamforming
scheme for low mobile speed and by STC for larger mobile speed. Therefore, it is never

useful.

6 Conclusions

We have compared two simple SDMA /TDMA schemes for downlink transmission in a mobile
wireless system where the base station has multiple antennas and the user terminals have
one antenna: space-time coding and random “opportunistic” beamforming. Beyond their
simplicity, these schemes are also relevant since they are currently considered for standard-
ization in evolutionary 3G systems. Our comparison is made under a general max-stability
SDMA /TDMA scheduling and rate allocation policy that is relevant and more meaningful
than “fairness” policies in the case of random arrivals and finite-length transmission queues.
Moreover, unlike previous works, we took into account the key aspect of non-perfect CSIT,
which allows for decoding errors, and a simple ARQ protocol that retransmits packets that
are not successfully decoded.

Our results evidenced that the ability of accurately estimating the channel (or beams)
SINRs has a fundamental impact on the performance of opportunistic beamforming schemes.
In the case of mobile communications, with a delay in the feedback, the transmitter cannot
have perfect CSIT and there exists a non-trivial tradeoff between multiuser diversity and
transmit diversity. It clearly appears that the multiuser diversity gain disappears as soon

as the channels change too rapidly. Hence, while random beamforming with B = M beams
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should be chosen for very slow channels, space-time coding should be chosen for faster
mobility terminals. This result cannot be observed under the somehow naive assumption of
no feedback delay made by other works.

We have also proposed and demonstrated an improvement of the random beamforming
system such that the users are synchronized and have a priori knowledge of the (pseudo-
) random beamforming matrices. This decouples the problem of channel estimation and
prediction from the speed of variation of the beamformers.

Curiously, it appears that the opportunistic single beamforming scheme is not attractive
since its performance is dominated by either STC for large Doppler bandwidth or by the

opportunistic M-beam scheme for small Doppler bandwidth.

Appendix

A Proof of Theorem 1.

For a fixed policy {P®, R®}, the instantaneous service rate (information bits per slot) for
user k is given by (see (4)) px(t) = TZfZl pg)JR,(:)] l{R,(:)] < Ry ;(t)}. The results in [21]
applied to our setting yield that under the assumption of Section 3 the system is stable if

and only if

t
/\kSHkZIigglftiTzluk(T), k=1,...,K (18)
T—

Let Q denote the stability region of a new system with channel state a(t) and feasible rate
R°"(¢). The instantaneous service rate (information bits per slot) of user k£ in the new
system is given by fig(t) = TZfZl p,(:’)ij‘fjt(a(t)), which is linear (hence concave) and non-
decreasing in P(*). Theorem 1 of [21] yields that the stability region Q) of the new system is
given by (8). Hence, the theorem is proved if we show that the two stability regions coincide.

By restricting the resource allocation policies for the original system to the stationary

policies {P,R*}, for P € P and R* defined by (9), the arrival processes {Ax(t)} and the
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service rates {ug(t)} become jointly Markov modulated [21] and it is immediate to show,
by ergodicity, that liminf, o 7= S () = Zf:ﬂE [prj(@) RY" (x)]. Hence, any point
X € Qs also in Q and it is stabilized by a policy {P, R*} for some P € P. This shows that
QcQ

In order to show that Q2 C (~2, let’s assume that the channels and CSIT signals take
on values in finite discrete sets (the proof can be extended for well-behaved continuous
processes by using standard discretization and continuity arguments). By ergodicity and

from the definition of liminf, for any € > 0 there exists a sufficiently large t. such that,

simultaneously,
Na(t,
LA
1 t« B ‘
t.T Z Z“M(T) > P, €
1 B [
m Z l{Tk,j < Rk,j(T)} < 1- P(Rk,j < Tk,j‘a = a) +e€ (19)
a,p,r\v¢

TENa,p,r(te)

where we define the sets Napr(t) = {7 € {1,...,1} : a(r) =a,P") =p,RM =1}, N,,(t) =
U: Nap,r(t) and Na(t) = U, Nap(t), and where Py(a) = P(cv = a) denotes the stationary
probability of a(t), which exists by assumption, and where we use the short-hand notation

i (1) = Tp,(:)JR,(:)Jl{R,(:)] < Ry ;(t)} to denote the instantaneous service rate for user k on
stream j in slot ¢.

The last inequality in (19) follows since by assumption any feasible resource allocation
policy is a causal function of the CSIT process, the CSIT process is ergodic, and Rk,j (1) is
independent of a] ™' given (7).

Consider any stable arrival rate vector A. By the necessary condition of [21, Lemma
1](see above), there exists some not necessarily stationary policy {P® R®} such that, for

alk=1,..., K,

te

B
1
Me Sty <m0 pg(n) +e (20)

=1 j=1
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By using (19), we have

> ZkaR,(fjl{Rk]<R (Y +¢

TENa(te) .7 1

1 5 _
Z Pa Z | ,p, Na P r(te)| Z Zpk,ka’jl{rk’j < Rk’j (T)} * 61

acA T€Napr(te) j=1

< Y Pala z' |Zpkmm (R < riglec = ) + ¢

acA

< ZPa Zpk] )RR (a) + €

acA
= Xe+e€ (21)

o< X Palaiy

acA

IN

where (a) follows from the definition of R}"(a) (see (7)) and by letting

pk,j Z |

Nap(te) _

Since by assumption Zszl prj < lforallj=1,..., B on every slot, and since Zp A

1, it follows that 25:1 Pr,j(@) < 1forall jand a € A, i.e., the stationary policy {py,;} defined
above is feasible. Hence, X with k-th component given by the last line of (21) is a point in
Q. Since € > 0 is arbitrary, and €’ — 0 as € — 0, we have that A < A€ KNZ, which eventually

implies that Q and Q coincide.

B Proof of Theorem 3.

The feasible rates Ry ;(t) = log,(1 4+ SINR;(¢)) change randomly and independently every
N slots. We shall refer to a block of NV slots over which the feasible rates are constant as a
frame. Theorem 3 can be proved by considering the stability of a frame-based modification
of max-stability policy, which maximizes ), 0;Sk(t)/ix(t) subject to the SDMA/TDMA
feasibility constraint (3) at every frame and keeps the same policy during all N slots in a

frame irrespectively of the arrival processes.
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For the general theory of the Lyapunov drift (see [21,34]), defining the Lyapunov function

S) = ie,cs,f (22)

if for some constants K; and v the condition
K
E[L(S(t+ N)) — L(S(t))[S(t)] < K1 — ) vk Sk(t) (23)
k=1
on the Lyapunov drift holds, then ), v,E[S,(t)] < K; and by Little’s theorem, we obtain

> Uk AME[Dy] < % Let consider an arbitrary time t, and the N-slot buffer evolution

to+N—1
Sk(to + N) = | Sk(to) — NTZp;” to)Rijto)| + > Axl(r (24)
7j=1 T=1o

It is immediate to show that the Lyapunov drift can be bounded as
E[L(S(to + N)) = L(S(t0))[S(te)] < N*T?K — 2NT Y _ 0Se(to) (E[, (t)|S (fo)] — Ae) (25)
k

where we define 71, (to) = Zf 1 Pij(to)Rej(to) and Ay = + S0t N=L 4, (7) and where K =

T=t%o

to+N—1

> wOE [( k) ] + 3, 0kE [z (t0)|S(to)]- In order to bound this term by a constant, we have
A\? 1 A’
T 2oy 2 BTy
k T=to
Ak(1)\?
T

where inequality (a) follows from Jensen’s inequality and equality (b) follows from the i.i.d.

,\
INS

D OE
k

[E

-]
>
B
=

arrival assumption.

Then, we also have that

i@k]E [Ee(to)IS(to)] < iakE [(iiﬂi ) (Z Rk] to ) 'S tO)]

k=1 k=1



where inequality (c) follows from Cauchy-Schwartz inequality and inequality (d) follows from
> p?; < B for any k. By letting K = 3, 64E [(AkT“))Q] +BY K 0,8 B[R, (1)]
we have K < K. It follows that Theorem 3 holds for the frame-based policy. Finally, we
argue that the frame-based policy is a suboptimal policy that deliberately ignores the buffer
state at times t # to + mN, for m = 1,2,.... With little effort it is possible to show that
the frame-based policy also achieves the system stability region for any finite N and that
if the max-stability (slot-based) policy and the frame-based policy are applied to the same
initial state S(t,) then 3, ORE[S! ()] < 3=, OE[S]"*™(t)] for all ¢ > ;. Then, Theorem 3

applies also to the max-stability policy.
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Figure 1: Block diagram of the SDMA/TDMA downlink
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Figure 2: max. sum-rate vs. number of users (STC)
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Figure 5: average delay vs. speed (STC)

105 T T T T T T T E
P o M=t arrival rate=0.05[bit/ch.use/user]
ot~ M=2 50users, SNR=10dB ]
= ~4- M=4 delay = 2slot 5
9,
>
®
[}
©
(0]
(@]
o
[}
>
©
opportunistic single beamforming
0 1 1 1 1 1 1
10

0 10 20 30 40 50 60 70 80
mobile speed [km/h]

Figure 6: average delay vs. speed (B = 1 beamforming)
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Figure 7: average delay vs. speed (B = M beamforming)
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