
CrossTalk: A Data Dissemination-based Cross-
layer Architecture for Mobile Ad-hoc Networks

Rolf Winter, Jochen Schiller
Institute of Computer Science

Freie Universität Berlin, Germany
{winter, schiller}@inf.fu-berlin.de

Navid Nikaein, Christian Bonnet
Mobile Communications Department

Institut Eurécom, France
{nikaeinn,bonnet}@eurecom.fr

Abstract - Unlike infrastructure-based networks, mobile ad-hoc

networks suffer from severe performance problems due to their
dynamic nature. The medium is shared and interference-prone,
routes are unstable, energy can be a limiting factor for devices
such as sensor nodes just to name one. To overcome those
problems, cross-layer architectures are a promising new
approach. They can reduce the effect of the aforementioned
problems and therefore increase scalability and reliability of such
networks. This paper introduces CrossTalk, a cross-layer
architecture based on data dissemination that enables each node
in an ad-hoc network to evaluate its own status locally against that
of the network for decision processes such as routing.
Furthermore, we propose a load balancing algorithm based on
our architecture that achieves significant improvements in load
distribution and packet delivery delay.

I. INTRODUCTION

Layered approaches as used in most modern networking
environments have certain characteristics which make them
currently the primary architectural choice when designing a
new protocol stack. Their key advantages are the low design
complexity, the modularity and an improved maintainability
compared to monolithic stacks. Since each layer has a well
defined functionality, designing each layer can be done without
worrying about specific functionality of upper or lower layers.
This modularity allows for the combination of different
protocols, thereby helping to construct network stacks tailored
towards different networking environments. Layered protocol
stacks are easier to maintain since errors can be traced back
faster to a certain layer, which in turn can be updated, modified
or exchanged more easily. These characteristics are
predominant in commercially operated, large, infrastructure-
based, centrally administered and reliable networks and are the
reason for the success and longevity of layered approaches. On
the other hand, strongly layered approaches leave out various
possibilities to improve the performance of the network stack
and do not support applications with lower layer information
and vice versa.

In ad-hoc networks performance and scalability are key
issues. They are affected by many factors intrinsic to ad-hoc
networks, such as the shared, unreliable medium resulting in
bit errors, collisions, high delays and lowered throughput. In
addition, the fact that devices in such networks are likely to be
battery-driven and relatively weak in terms of computational
power imposes special constraints on the protocol stack. The

mobility of nodes also plays a significant role. It affects the
stability of routes through the network, possibly resulting in
broadcast storms which consume large amounts of the
available and scarce bandwidth. In such dynamic
environments, cross-layer approaches are promising since the
possible performance gains can significantly improve the
scalability, the delay performance and the throughput.

Layer IV

Layer III

Layer II

Layer I

Network Stack

Cross-layer
Entity

LocalGlobal

Fig. 1. The CrossTalk architecture

Cross-layering is not the simple replacement of a layered

architecture nor is it the simple combination of layered
functionality. Cross-layering tries to share information amongst
different layers, which can be used as input for algorithms, for
decision processes, for computations, and adaptations. This
process of sharing has to be coordinated and structured
somehow since cross-layering could potentially worsen the
performance problem that it intends to solve. This is due to
several effects. Optimization processes at different layers could
try to optimize a common metric in opposite directions.
Furthermore, two different metrics could have negative impacts
on each other when trying to optimize them, such as energy
efficiency and delay. A general problem is that altering a
metric at one layer often has an effect on other layers
implicitly. For example, altering the transmission power on the
physical layer can have an effect on the network layer as nodes
might disappear from the direct transmission range.

So instead of a replacement, cross-layering is the
enhancement of the traditional layered architecture. With cross-
layering every layer and system component can access and

provide information in a structured way, controlled by a
coordinating entity spanning the entire layered stack (compare
Fig. 1). This way the advantages of the layered approach can be
largely preserved, guaranteeing the longevity of the
architecture.

In addition to the performance improvements at lower layers,
cross-layering allows us to design new kinds of applications.
Especially affected are distributed applications and applications
sensitive to changing network conditions such as QoS-sensitive
multimedia applications. The information provided by the
cross-layer architecture could support decisions about where to
place objects and services or the choice of algorithms such as
algorithms for compression or error correction.

The novel aspect of our cross-layer design is that it tries to
establish a network-wide, global view of one or multiple
metrics like load, battery status or degree in a distributed
fashion on every node in the network. Having such a global
view of the network allows a node to evaluate its own status
against the average status within the network at any time. For
example, a node could conclude whether it carries more load
than the average node and how much it is overloaded compared
to the average. Having this information, it can then use it for
decision processes such as routing, load balancing, position
estimation and so forth.

In ad-hoc networks a lot of wasteful operations in terms of
resources such as bandwidth have to be carried out. That
includes for example routing processes, where often, using
broadcast mechanisms, the whole network is involved to find a
route but only a few nodes take part in the actual routing
process for data packets after the route is established. On the
other hand, local operations are lightweight, but they lack
accuracy and ultimately can be inefficient. For example, if a
node is able to increase its performance locally by some means
(e.g. by boosting its output power), it might at the same time
significantly increase the interference with its neighbors. On a
multi-hop path, that might effectively lead to a lower overall
performance. Therefore the basis of our work is one general
principle: Act locally considering the global network status [1].
This way simple local actions achieve global objectives [2]. We
show the effectiveness of this principle by applying the global
view approach to a load balancing scheme which also
addresses the problem of rebroadcast redundancy.

The remainder of this paper is organized as follows. Section
II discusses related work. In Section III, we present the details
of the CrossTalk architecture together with the load balancing
reference application. Section IV deals with the verification of
the architecture and the application of it by analyzing and
evaluating experimental results. Section V concludes this paper
and gives a brief outlook on our future work.

II. RELATED WORK

Cross-layer design is becoming an increasingly investigated
research area. Various aspects within this field have been
studied. The research carried out so far reflects the diversity of
the problems caused by the system dynamics in ad-hoc
networks. Therefore, we do not present an exhaustive overview

here but merely the application domains of cross-layering and
related work for our reference application.

Ad-hoc networks are only one suitable application domain
for cross-layer design. In general, the most appropriate class of
networks for cross-layering are wireless networks, including
cellular [3] and sensor networks [4].

The specific problems analyzed comprise power and
topology control protocols [5], energy efficiency [4] and
Quality of Service (QoS) [6][7][8], to name a few. The work
spans from architectural thoughts [9][10] to detailed
simulations of performance gains and novel applications [11].
However, none of the existing approaches try to establish a
global view of the network to meet the challenges of ad-hoc
networks.

At the same time that cross-layering is increasingly
introduced in systems design, it has received some legitimate
criticism for its intrinsic potential problems [12]. That includes
unstructured design and code, unintended effects on other
system components and layers, adaptation loops and stability
issues.

Load balancing and the reduction of the problems caused by
the broadcast storm problem remain an investigated research
area. Zhou et al. designed [14] a cross-layer framework
together with a routing protocol to reduce redundant
broadcasts. Their algorithm PRDS-MR is dependant on some
positioning system, which our scheme is independent of.

In [15] load balancing is done implicitly by avoiding the core
of the network. Here, as well, some position information has to
be known including certain knowledge about the topology
since the distance of a node to the core of the network is
utilized as a metric. DLAR [16] works in a similar way to other
protocols that try to optimize routes according to a certain
metric. Every node adds its local value of that metric to the
route request. The destination node then has to wait for a
certain time before choosing the most appropriate path, in the
case of DLAR the least loaded route. In that respect LBAR [17]
works in a similar way. The advantage of our approach is that
the route selection phase at the destination is unnecessary with
our approach since we use the global view to act already during
the route discovery process.

III. SYSTEM DESIGN

As already mentioned, the general, novel idea of the
CrossTalk architecture is to establish a network-wide, global
view of a metric such as load at every node in the network. In
addition, the information from layers and system components
are made available locally to be utilized as for example
proposed in [14].

A. The CrossTalk architecture
The CrossTalk architecture consists of two views (see Fig.

1). There is the local view containing node specific
information. This is information contributed by each layer of
the stack or system component and can be used for local
optimizations as for example in [5] or novel applications [11].
This information could include current battery status, signal to

noise ratio (SNR), bit error rate, one hop neighbor count just to
name a few.

Additionally, there is the global view that is constructed
from information gathered by our data dissemination process.
First of all, the local information has to be propagated. To keep
the overhead low, no extra messages are sent. Instead the local
information taken from the local view is piggybacked onto
outgoing packets, keeping the overhead at a minimum. Only
the source of a packet is adding its local information.
Forwarding nodes do not include their information on top. By
doing this, there is only a slight increase in the packet size,
resulting in a small overall footprint of our system. Every node
inspects received packets for that information, extracts it and
adds it to its global view. This way, the global view collects
numerous samples of local information from various nodes
within the network. The samples can be augmented with
additional information to give them a weight such as distance if
that information is available. Also, they are given a timestamp
since samples are purged after their useful lifetime. Clearly,
following this approach the global view will never be 100%
correct and that is not what we aim at. Instead we want to have
a reasonably up-to-date and correct view of the network, which
allows a node to evaluate its own status. For example, if a node
runs at 50% of its capacity, that number as such has no
immediate meaning. However, if the rest of the nodes in the
network run at 10%, that means that the node is clearly
overloaded. Therefore, with our approach we want to provide a
node with information to compare its own local information
with in order to be able to act upon that comparison.

Part of the global view are algorithms to compute the
network-wide view from the collected samples. We evaluated
two general types of algorithms one being the simple mean
value and the second type being weighted moving averages.
For both types we considered different variants, each one
following a different intuition. For one variant we excluded
local information samples from one-hop neighbors. The
intuition behind this is that direct neighbors can have a similar
value for local information. For example, the degree (number
of neighbors) could be similar due to the proximity of the
nodes, eventually influencing the computed mean value. The
weighted moving average variants vary in weighting factor and
weighting function:

∑

∑
=

=

=

== ni

i
i

ni

i
ii

global

w

sw
v

1

1

The above formula denotes the general structure of a
weighted moving average, where n is the number of samples, w
is the weight and s is the sample value. w is calculated using a
linear, triangular or exponential function with distance or time
as a metric (see Fig. 2 for an example). The intuition behind the
linear distance weighted function is that the further away a
node is from the node trying to establish the global view, the
less information the node will get from that node and the more
the value might differ due to the distance. Therefore, such a
sample will get more weight than a sample from a node close

by. The triangular distance weighted function has a slightly
different intuition. The values furthest away will most likely
come from nodes at the edge of the network. Here, due to
lower node density or other effects, the values might not reflect
the actual average well and are therefore weighted less. Nodes
close by are also weighted less for the same reasons that
neighbors are excluded, that is, that the proximity of the nodes
might be reflected in the disseminated information. The other
weighting factor is time. The more recent a sample is, the
higher it should be weighted since it more accurately reflects
the current state of the network. With time as a weighting
factor, we evaluated two weighting functions. One is a linear
function giving the highest weight to the most recent sample
and the other one gives exponentially more weight to more
recent samples.

w
ei

gh
t

distanceMinimum
known distance

Maximum
known distance

M
in

im
um

w
ei

gh
t

M
ax

im
um

w
ei

gh
t

w
ei

gh
t

distanceMinimum
known distance

Maximum
known distance

M
in

im
um

w
ei

gh
t

M
ax

im
um

w
ei

gh
t

Fig. 2. Triangular weighting function

As summary, our architecture consists of two views both

responsible to hold, organize and provide data. In addition,
they provide a set of algorithms to compute more significant
data, which in turn can be accessed and utilized as shown in the
following section.

B. Reference application
In this section we exemplarily apply our architecture to a

load balancing and load reduction algorithm using AODV for
routing. Balancing the load in ad-hoc networks is important
since nodes with a high load burden deplete their batteries
quickly, thereby increasing the probability of disconnecting or
partitioning the network. Additionally, if the network is more
balanced, the spatial reuse of the spectrum allows for a higher
throughput and relieves the center of the network [18]. The
second aspect of our algorithm, the load reduction, tries to
attenuate the effects of the broadcast storm problem [13], which
are a higher collision probability of packets and unnecessary
resource consumption.

To support the decisions our algorithm has to make, we
distribute the local load using our data dissemination process.
To calculate the local load we count the number of packets sent
by a node on behalf of other nodes during a fixed time frame or
slot t (see Fig. 3). We do not include our own packets to
provide a degree of fairness. To eliminate fluctuations which
might have occurred during a slot, we use n slots to calculate
the actual load over a time period of n * t. To account for

changes in the load during that period, we calculate the
weighted moving average of all slots except the current slot
with a weight being equal to the slot number as shown in Fig.
3.

Time

Slot time

Number
of packets
handled

Current Slot

1 2 3 4 nn-3 n-2 n-1

Fig. 3. Load calculation

The algorithm itself is a two-phase algorithm and works as

follows:
Whenever an AODV route request reaches a node, it

calculates the global view and compares its own local load
against that view. If the node is not overloaded compared to the
global view, it resumes “normal” operation in terms of AODV.
When the node finds itself overloaded, it calculates the
overload degree, that is the ratio of the own local load and the
global view of the load. From the point of being overloaded
(overload degree > 1) up to a predefined threshold, the delay
bound (compare Fig. 4), the node will hold back the route
request for a certain amount of time before forwarding it. This
delay grows proportionally with the overload degree up to the
delay bound, where the delay reaches its maximum. By
delaying the route request, the probability increases that an
alternative route (through other nodes) will be established
circumventing the overloaded area, which is likely to be the
core of the network [18]. This way the following data packets
will not have to be forwarded by the overloaded node, which
would have even further increased the load and at the same
time increased the collision probability with other packets in
the overloaded area. With the delay being proportional to the
overload degree, a route will be established balanced between
being short in terms of the hop count and carrying mild load.
Once its delay bound is reached, a node holds back packets
with a maximum delay d. Even if the load is beyond the delay
bound, packets will not be delayed longer than d.

overload degree

max. drop rate

drop bound

max. delay

delay bound

drop zone

delay zone

de
la

y
bo

un
d

dr
op

 b
ou

nd

Fig. 4. Load balancing algorithm

The second phase of our algorithm covers the load reduction
functionality. When a node has an overload degree beyond the
delay bound, it starts dropping route requests at a certain rate,
otherwise delaying them for the maximum delay time d. The
drop rate also grows proportionally with the overload degree
up to a certain threshold, the drop bound. Beyond the drop
bound, route requests will be dropped at a predefined
maximum drop rate r or delayed by d. By dropping route
requests, the heavily overloaded nodes make sure that the path
towards the requested destination will not lead through highly
overloaded nodes. Additionally, the broadcast storm problem
in highly overloaded zones is reduced. The maximum drop rate
should never reach 100% since an extremely overloaded node
might be so for the simple reason that it is the only node
connecting parts of a network. Since it does not accept every
route request, the node keeps up a certain path quality for
existing paths through it, by limiting the amount of paths
through that node.

IV. EXPERIMENTAL RESULTS

The first paragraph of this section deals solely with the
experimental validation of the global view. Before it can be
applied, it has to be proven to be correct and functional within
certain bounds. The second part of this section analyzes the
experimental results of our load balancing and load reduction
algorithm. The analysis itself is based on simulations using ns-
2 together with AODV-UU [19]. For every data point in a
graph, 20 simulation runs were averaged to compensate for
marginal phenomena. Every run in turn was running for 600
simulated seconds.

For the experimental evaluation, we wanted to isolate the
effects of various parameters such as network size, network
density, mobility and more on the global view and our
reference application. For this reason, we keep all parameters
fixed except the one we want to evaluate. The standard
simulation network is a static, 200 node network on a
2000x2000 meter square plain. Each node has a transmission
range of 250 meters. The nodes are placed randomly onto the
plain, each running a traffic pattern agent that searches for a
new destination every 10 seconds and sends one packet per
second afterwards. For the reference application, the delay
bound was chosen to be 1.8 and the drop bound 2.5 using a
maximum delay of 100ms and a maximum drop rate of 67%.

A. Global view
For our experimental evaluation, we added thresholds for the

calculation of the global view. Whenever the global view
contains an insufficient number of samples, our cross-layer
entity will not calculate a network-wide average on request
forcing “normal” mode. The composition of the samples is also
evaluated. If more than two-thirds of the samples are from
direct physical neighbors, the cross-layer entity will not
calculate a global view for that metric preventing cross-layer
operation, either.

When a node joins the network, we added an initialization
procedure. The joining node would broadcast an initialization
request to its neighbors. The neighbors reply with a message

containing their global view, which in turn is used at the newly
joined node to fill the first slot of the load calculation
algorithm.
We also exploit the fact that AODV is sending periodic hello
messages. Instead of only using this kind of message to
distribute our own local information, we also enrich hello
messages alternatingly with information of our one hop
neighbors. This way, we use the one-hop broadcast hello to
disseminate recent and close by information more effectively.

We identified several parameters for our experiments. Since
the global view’s correctness is based on the amount and
quality of the samples, the network structure has to be
considered. For this purpose, we evaluated the parameters
density (50 – 150 nodes/km²), network size (50 – 400 nodes),
mobility (1.4m/s) and topology geometry (1:1 – 1:9), which in
our experiments is the ratio of the topology’s width and height.
Since we do not generate any messages, the global view is also
dependant on the traffic pattern and on the load. Therefore, we
tested our CrossTalk architecture under different load scenarios
(0.5 – 2 pkts/s). The traffic pattern we apply distinguishes
between local and distant communication. Within a certain
radius (in hops), a node considers the communication local,
whereas beyond that radius the traffic is considered distant
traffic. In our simulations, we evaluate different ratios of local
and distant traffic (25% - 100% within 3 hops). Finally, we
analyzed the global view under churn conditions for the simple
reason that the global view will become more accurate over
time since it most probably aggregated more samples (each
node fails every 60 – 250s). With churn, there are constantly
nodes joining the network with an empty global view
influencing the correctness of the local evaluation process.

We show the quality of the global view using three different
metrics which have been analyzed for all the scenarios
described above. Due to space limitation and the similarity of
the results we are not showing all results graphically here. The
first metric to show the global view’s accuracy is the average
value of all global views. This value is compared with the
average value of all local views in the network. Ideally the two
values should match.

Global - local view (Mobility)

6

8

10

12

14

16

18

20

0 100 200 300 400 500 600

time [s]

lo
ad

Fig. 5. Global and local view comparison

The average alone does not reflect the quality of the global

view accurately enough. The second metric reflects the global
view’s uniformity across nodes, which is the standard deviation

of the global view at each node in the network. This value is
compared against the standard deviation of the local view at
each node in the network. Ideally, the global views’ standard
deviation is zero, independently from the local views’ standard
deviation.

The third metric we termed correctness. We calculate the
average local view artificially and then compare the local view
of each individual node against it. If this comparison and the
comparison of local and global view at each node yield the
same result (overloaded vs. not overloaded), the node evaluates
its status correctly, otherwise it fails to do so. The correctness
is the percentage of nodes in the network that evaluate their
status correctly.

Fig. 5 shows the impact on the global view over a 600
seconds simulation run with mobility. The chosen mobility
model was the random waypoint model with a minimum and
maximum speed of 1.4m/s, which is fast walking speed, and 20
seconds pause time between two node movements. We are
aware that random mobility is not a realistic model. However,
it is a worst case mobility model for our reference application
analyzed later on. For reasons of clarity, we omitted the legend
since the curves shown in the graph are extremely close. The
figure shows all analyzed global view algorithms together with
the actual average of all local views within the network. The
closer the graphs are together, the more accurate the global
view is. As can be seen, the graphs are very close showing the
precision of all global view algorithms. In all other tested
scenarios the global view performs similarly and therefore the
graphs are omitted, as mentioned before.

Global - local view standard deviation (load)

0

5

10

15

20

25

30

0.5 0.7 0.9 1.1 1.3 1.5 1.7 1.9
packets/s

st
an

da
rd

 d
ev

ia
tio

n

Avrg stdDev local view

Fig. 6. Global and local view’ standard deviation

Fig. 6 depicts the dependency of the standard deviation of

the global view algorithms. As can be clearly seen, the
algorithms are robust against load differences. The results
shown are similar in all the tested scenarios tested. If we zoom
into the graph, we would see that the best performing algorithm
is the simple mean value followed by the time weighted
averages. In relative dimensions the simple mean algorithm
outperforms the distance weighted averages by a factor of 3.
Absolute, these differences are marginal though.

The correctness of the global view is pivotal. As stated
before, we do not aim at having a 100% accurate view of the
network but a correctness well above 90% is our goal. Fig. 7
displays the correctness in differently sized networks and under
churn over a 600s simulation run. We omitted the variants that

leave out samples from neighbors since they were similarly
performing to their corresponding counterparts. Here again the
simple mean value outperforms the other algorithms. The main
advantage though can be seen in small networks. With
increasing network size, the distance based algorithms gain.
The graph from the churn scenario shows that in the beginning
of the simulations, when all the nodes are initializing their
global view, the time based algorithms perform best since they
more accurately reflect the sudden load increase in the network
(up to 8 % more accurate).

Global view correctness (churn)

86

88

90

92

94

96

98

100

0 100 200 300 400 500 600

time [s]

co
rr

ec
tn

es
s

[%
]

simple mean
distance weighted, triangular
distance weighted, linear
time weighted, linear
time weighted, exponential

Global view correctness (network size)

94

95

96

97

98

99

100

50 100 150 200 250 300 350 400

network size [number of nodes]

co
rr

ec
tn

es
s

[%
]

simple mean

distance weighted, triangular

distance weighted, linear

time weighted, linear

time weighted, exponential

Fig. 7. Global views’ correctness

Global - local view (load change)

0

5

10

15

20

25

30

35

40

45

0 100 200 300 400 500 600

time [s]

lo
ad

Fig. 8. Global and local view under load change

Finally we evaluated how reactive the global view

algorithms are to extreme changes of the observed metric. The
beginning of a simulation can be seen as an extreme increase in
traffic (all nodes starting at zero) and from the simulations we

could analyze the reactivity to that (see Fig. 6). We then
evaluated the reactivity to extreme drops in traffic. We let
applications run at each node for the first 100 seconds of a
simulation run and then reduced the packet rate by a factor of 5
and the lookup rate for new destinations by 2. The results are
displayed in Fig. 8, clearly showing the ability to react to
extreme metric changes.

B. Load balancing
Our load balancing algorithm was also tested in all the

scenarios described in the previous section. An important thing
we wanted to make sure was that our cross-layer approach does
not perform worse than the “traditional” approach.
Performance was measured according to the following metrics.
The average number of messages sent per node during a
simulation run reflects whether there is an actual load reduction
effect or not. The on average most overloaded node reflects the
reduction of the bottlenecks within the network. The coefficient
of variance, which is the ratio of the standard deviation to the
mean multiplied by 100, shows the actual load balancing effect
amongst nodes when applied to the average number of packets
send per node. Additionally, we measured the average delay
per hop, which is influenced by both effects (load reduction
and load balancing) since both reduce the likelihood of
collisions. Since we drop packets, there is the potential
problem that our packet delivery ratio (PDR) declines.
Therefore, we also monitored the PDR. To calculate the global
view we followed the KISS (Keep It Simple, Stupid) principle
and applied the simple mean value algorithm.

Average number of packets sent per node

(load)

7000

7500

8000

8500

9000

9500

10000

10500

11000

0 0.5 1 1.5 2 2.5

load [pkts/s]

nu
m

be
r o

f p
kt

s

cross-layer
"traditional"

Fig. 9. Average number of packets sent per node

Average per hop link delay (geometry)

0

0.02

0.04

0.06

0.08

0.1

0.12

0 1 2 3 4 5 6 7 8 9 10

topology geomerty ratio

de
la

y
[s

]

"cross-layer"
"traditional"

Fig. 10. Average per hop delay

Fig. 9 shows the load reduction effect. As can be seen, as the
load increases the load reduction effect grows. In this particular
case we only have an average saving of up to 5%. The
maximum saved amount was 15% for the topology geometry
scenarios discussed later on. This shows that, although not the
primary goal, our reference application is able to reduce the
load.

Fig. 10 presents the improvements of the per hop delay,
which is the time from a packet being received at one hop till it
is received at the next hop. In almost all tested scenarios the
delay performance of our cross-layer approach was better than
with the “traditional”, layered approach, the only exception
being highly dense networks (however, there was still a
significant load balancing effect). The maximum delay
improvement measured was 65%.

Maximum packets sent per node (density)

0

5000

10000

15000

20000

25000

40 60 80 100 120 140 160

density [nodes/km²]

nu
m

be
r o

f p
kt

s

cross-layer
"traditional"

Fig. 11. Maximum packets sent per node

Bottlenecks in the network are most likely the first ones to

fail due to the depletion of their batteries. They also are a cause
for regions with high collision rates and delay. Fig. 11 depicts
the reduction of the load at the worst bottleneck nodes in the
network. It shows the independence of the network density on
this effect. In this particular scenario the reduction at the most
overloaded node goes up to 25%. This load relief effect at
highly overloaded nodes was observed in all tested scenarios.

Coefficient of variance of packets sent per
node (traffic pattern, 3 hop local)

10

15

20

25

30

35

0 20 40 60 80 100 120

local traffic ratio [%]

co
ef

fic
ie

nt
 o

f v
ar

ia
nc

e cross-layer
"traditional"

Fig. 12. Coefficient of variance

The last performance metric for the evaluation of our load

balancing reference application is the coefficient of variance of
the average packets sent per node during a simulation run. We
can’t use the simpler standard deviation here, since with our

algorithm we send fewer packets per node, which makes a
direct comparison of the standard deviations impossible. In Fig.
12 the coefficient of variance is show dependent of the local
traffic ratio, which in this case is the amount of traffic to
destinations within 3 hops. In the tested scenarios the
coefficient is up to 20% smaller using our cross-layer approach
and can be observed in all scenarios.

Application-packet delivery ratio

62

64

66

68

70

72

74

76

0 1 2 3 4 5 6 7 8 9 10

topology geometry ratio

PD
R

 [%
]

cross-layer
"traditional"

Fig. 13. Packet delivery ratio

In our tested mobility scenario our cross-layer architecture

was only slightly outperforming the “traditional” approach.
This is due to the fact that with random mobility load balancing
comes as a side effect since nodes traverse differently loaded
areas constantly. Still, our algorithm achieves a coefficient of
variance of 7.92 compared to 8.61 with the layered architecture
and an average maximum load of 8941.5 compared to 9564.55.

In only one scenario the PDR dropped slightly below the
reference PDR of the layered protocol stack. The PDR of the
cross-layer approach was 64 compared to 68.4 in the topology
with an aspect-ratio of 1:9 (see Fig. 13). This phenomenon can
be explained by the fact that in topologies with such an aspect-
ratio, or an even higher one, there are only few paths through
the network. Those are extremely overloaded compared to
nodes at the edges of the network, for example. Nodes on these
paths most likely operate beyond the drop bound.

V. CONCLUSION & FUTURE WORK

The deployment of TCP in wireless ad-hoc environments
made it very clear that simply adopting technologies from
infrastructure-based networks into highly dynamic network
environments can be very inefficient. Cross-layer designs are a
promising new paradigm to provide an architectural framework
for more efficient network stacks, especially for wireless
networks.

We presented CrossTalk, a generic architecture for cross-
layer optimizations. The novel feature of our system is the
ability to reliably establish a network-wide, global view of the
network of one or multiple metrics. Having such a global view
of the network a node can use that information for local
decision processes. We thoroughly analyzed the global view
approach to make sure it is suitable for the complex system
dynamics of ad-hoc networks.

We also exemplary applied our architecture to a load
balancing algorithm. With this algorithm we were able to
reduce the per hop packet delay up to 65%. We also could
relief the bottleneck nodes from up to 25% of their packet load.
Additionally, we could reduce the coefficient of variance of the
packets send per node by up to 20%.

In the future we plan several improvements to our
architecture. For example we want to dynamically find out
when we should and when we shouldn’t piggyback information
to further reduce the overhead of the data dissemination
process. For the same purpose we want to restrain information
exchange to clusters.

We also want to improve the presented load balancing
algorithm. We plan to dynamically set the thresholds e.g. from
evaluating the standard deviation of collected samples or react
to changing path loads. In addition we will test more
aggressive strategies to further improve the algorithm. Finally,
we want to evaluate the system again with more realistic
mobility models such as an attraction point mobility model.

REFERENCES

[1] D.B. Johnson, J.-P. Hubaux, “Report on the Third ACM
International Symposium on Mobile Ad Hoc Networking and
Computing (MobiHoc 2002)”, in Mobile Computing and
Communicaitons Review, Volume 6, Number 3, 2002
[2] I. Stojmenovic, “Position-Based Routing in Ad Hoc Networks”, In
IEEE Communications Magazine, July 2002
[3] S. Shakkottai, T.S. Rappaport, P.C. Karlsson, “Cross-layer Design
for Wireless Networks”, in IEEE Communications Magazine, October
2003
[4] A. Safwat, H. Hassanein, H. Mouftah, “Optimal Cross-Layer
Designs for Energy-Efficient Wireless Ad hoc and Sensor Networks”,
IEEE IPCCC 2003
[5] V. Kawadia, P.R. Kumar, “Principles and Protocols for Power
Control in Wireless Ad Hoc Networks”, in IEEE Journal on Selected
Areas in Communications, January 2005

[6] Q. Zhang, W. Zhu, Y.-Q. Zhang, “A cross-layer QoS-Supporting
Framework for Multimedia Delivery over Wireless Internet“, in
International Packetvideo Workshop 2002
[7] J. Chen, T. Lv, H. Zheng, “Joint Cross-layer Design for Wireless
QoS Content Delivery”, IEEE International Conference on
Communication 2004
[8] U.C Kozat, I. Koutsopoulos, L. Tassiulas, “A Framework for
Cross-layer Design of Energy-efficient Communnication with QoS
Provisioning in Multi-hop Wireless Networks”, IEEE INFOCOM
2004
[9] M. Conti, G. Maselli, G. Turi, S. Giordano, “Cross-Layering in
Mobile Ad Hoc Network Design”, in IEEE Computer Magazine,
February 2004
[10] M. Issoufou Tiado, R. Dhaou, A.-L. Beylot, “UCL: A new
Method for Cross-Layer Network Modelling”, Technical Report IRIT
(2005-1-R) 2005
[11] H. Ritter, R. Winter, S. Schiller, “A Partition Detection System
for Mobile Ad-Hoc Networks”, IEEE SECON 2004
[12] V. Kawadia, P.R. Kumar, “A Cautionary Perspective on Cross
Layer Design”, in IEEE Wireless Communication Magazine, February
2005
[13] Y.C. Tseng, S.-Y- Ni, Y.-S. Chen, J.-P. Sheu, “The Broadcast
Storm Problem in a Mobile Ad Hoc Networks”, IEEE/ACM
MOBICOM 1999
[14] B. Zhou, A. Marshall, J. Wu, T.-H. Lee, J. Liu, “A Cross-layer
Route Discovery Framework for Mobile Ad Hoc Networks”,
Technical Report, 2004, available at
http://www.ee.qub.ac.uk/dsp/research/telecomms/research/PRSM/Pub
lication/archive.htm
[15] C. Maihöfer, T. Leinmüller, R. Eberhardt, “Improving the Usable
Capacity of Ad Hoc Networks”, KiVS 2005
[16] S.-J. Lee, M. Gerla, “Dynamic Load-Aware Routing in Ad hoc
Networks”, IEEE ICC 2001
[17] H. Hassanein, A. Zhou, “Routing with Load Balancing in
Wireless Ad hoc Networks”, ACM MSWiM 2001
[18] B.-J. Kwak, N.-O. Song, L. E. Miller, “On the Scalability of Ad
Hoc Networks: a traffic analysis at the center of a network”, IEEE
WCNC 2004
[19] H. Lundgren, E. Nordström, C. Tschudin, “Coping with
Communication Gray Zones in IEEE 802.11b based Ad hoc
Networks”, WoWMoM 2002

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

