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Abstract - Unlike infrastructure-based networks, mobile ad-hoc 

networks suffer from severe performance problems due to their 
dynamic nature. The medium is shared and interference-prone, 
routes are unstable, energy can be a limiting factor for devices 
such as sensor nodes just to name one. To overcome those 
problems, cross-layer architectures are a promising new 
approach. They can reduce the effect of the aforementioned 
problems and therefore increase scalability and reliability of such 
networks. This paper introduces CrossTalk, a cross-layer 
architecture based on data dissemination that enables each node 
in an ad-hoc network to evaluate its own status locally against that 
of the network for decision processes such as routing. 
Furthermore, we propose a load balancing algorithm based on 
our architecture that achieves significant improvements in load 
distribution and packet delivery delay. 

I. INTRODUCTION 

Layered approaches as used in most modern networking 
environments have certain characteristics which make them 
currently the primary architectural choice when designing a 
new protocol stack. Their key advantages are the low design 
complexity, the modularity and an improved maintainability 
compared to monolithic stacks. Since each layer has a well 
defined functionality, designing each layer can be done without 
worrying about specific functionality of upper or lower layers. 
This modularity allows for the combination of different 
protocols, thereby helping to construct network stacks tailored 
towards different networking environments. Layered protocol 
stacks are easier to maintain since errors can be traced back 
faster to a certain layer, which in turn can be updated, modified 
or exchanged more easily. These characteristics are 
predominant in commercially operated, large, infrastructure-
based, centrally administered and reliable networks and are the 
reason for the success and longevity of layered approaches. On 
the other hand, strongly layered approaches leave out various 
possibilities to improve the performance of the network stack 
and do not support applications with lower layer information 
and vice versa. 

In ad-hoc networks performance and scalability are key 
issues. They are affected by many factors intrinsic to ad-hoc 
networks, such as the shared, unreliable medium resulting in 
bit errors, collisions, high delays and lowered throughput. In 
addition, the fact that devices in such networks are likely to be 
battery-driven and relatively weak in terms of computational 
power imposes special constraints on the protocol stack. The 

mobility of nodes also plays a significant role. It affects the 
stability of routes through the network, possibly resulting in 
broadcast storms which consume large amounts of the 
available and scarce bandwidth. In such dynamic 
environments, cross-layer approaches are promising since the 
possible performance gains can significantly improve the 
scalability, the delay performance and the throughput. 
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Fig. 1. The CrossTalk architecture 

 
Cross-layering is not the simple replacement of a layered 

architecture nor is it the simple combination of layered 
functionality. Cross-layering tries to share information amongst 
different layers, which can be used as input for algorithms, for 
decision processes, for computations, and adaptations. This 
process of sharing has to be coordinated and structured 
somehow since cross-layering could potentially worsen the 
performance problem that it intends to solve. This is due to 
several effects. Optimization processes at different layers could 
try to optimize a common metric in opposite directions. 
Furthermore, two different metrics could have negative impacts 
on each other when trying to optimize them, such as energy 
efficiency and delay. A general problem is that altering a 
metric at one layer often has an effect on other layers 
implicitly. For example, altering the transmission power on the 
physical layer can have an effect on the network layer as nodes 
might disappear from the direct transmission range. 

So instead of a replacement, cross-layering is the 
enhancement of the traditional layered architecture. With cross-
layering every layer and system component can access and 



provide information in a structured way, controlled by a 
coordinating entity spanning the entire layered stack (compare 
Fig. 1). This way the advantages of the layered approach can be 
largely preserved, guaranteeing the longevity of the 
architecture. 

In addition to the performance improvements at lower layers, 
cross-layering allows us to design new kinds of applications. 
Especially affected are distributed applications and applications 
sensitive to changing network conditions such as QoS-sensitive 
multimedia applications. The information provided by the 
cross-layer architecture could support decisions about where to 
place objects and services or the choice of algorithms such as 
algorithms for compression or error correction. 

The novel aspect of our cross-layer design is that it tries to 
establish a network-wide, global view of one or multiple 
metrics like load, battery status or degree in a distributed 
fashion on every node in the network. Having such a global 
view of the network allows a node to evaluate its own status 
against the average status within the network at any time. For 
example, a node could conclude whether it carries more load 
than the average node and how much it is overloaded compared 
to the average. Having this information, it can then use it for 
decision processes such as routing, load balancing, position 
estimation and so forth.  

In ad-hoc networks a lot of wasteful operations in terms of 
resources such as bandwidth have to be carried out. That 
includes for example routing processes, where often, using 
broadcast mechanisms, the whole network is involved to find a 
route but only a few nodes take part in the actual routing 
process for data packets after the route is established. On the 
other hand, local operations are lightweight, but they lack 
accuracy and ultimately can be inefficient. For example, if a 
node is able to increase its performance locally by some means 
(e.g. by boosting its output power), it might at the same time 
significantly increase the interference with its neighbors. On a 
multi-hop path, that might effectively lead to a lower overall 
performance. Therefore the basis of our work is one general 
principle: Act locally considering the global network status [1]. 
This way simple local actions achieve global objectives [2]. We 
show the effectiveness of this principle by applying the global 
view approach to a load balancing scheme which also 
addresses the problem of rebroadcast redundancy. 

The remainder of this paper is organized as follows. Section 
II discusses related work. In Section III, we present the details 
of the CrossTalk architecture together with the load balancing 
reference application. Section IV deals with the verification of 
the architecture and the application of it by analyzing and 
evaluating experimental results. Section V concludes this paper 
and gives a brief outlook on our future work. 

II. RELATED WORK 

Cross-layer design is becoming an increasingly investigated 
research area. Various aspects within this field have been 
studied. The research carried out so far reflects the diversity of 
the problems caused by the system dynamics in ad-hoc 
networks. Therefore, we do not present an exhaustive overview 

here but merely the application domains of cross-layering and 
related work for our reference application.  

Ad-hoc networks are only one suitable application domain 
for cross-layer design. In general, the most appropriate class of 
networks for cross-layering are wireless networks, including 
cellular [3] and sensor networks [4]. 

The specific problems analyzed comprise power and 
topology control protocols [5], energy efficiency [4] and 
Quality of Service (QoS) [6][7][8], to name a few. The work 
spans from architectural thoughts [9][10] to detailed 
simulations of performance gains and novel applications [11]. 
However, none of the existing approaches try to establish a 
global view of the network to meet the challenges of ad-hoc 
networks. 

At the same time that cross-layering is increasingly 
introduced in systems design, it has received some legitimate 
criticism for its intrinsic potential problems [12]. That includes 
unstructured design and code, unintended effects on other 
system components and layers, adaptation loops and stability 
issues. 

Load balancing and the reduction of the problems caused by 
the broadcast storm problem remain an investigated research 
area. Zhou et al. designed [14] a cross-layer framework 
together with a routing protocol to reduce redundant 
broadcasts. Their algorithm PRDS-MR is dependant on some 
positioning system, which our scheme is independent of. 

In [15] load balancing is done implicitly by avoiding the core 
of the network. Here, as well, some position information has to 
be known including certain knowledge about the topology 
since the distance of a node to the core of the network is 
utilized as a metric. DLAR [16] works in a similar way to other 
protocols that try to optimize routes according to a certain 
metric. Every node adds its local value of that metric to the 
route request. The destination node then has to wait for a 
certain time before choosing the most appropriate path, in the 
case of DLAR the least loaded route. In that respect LBAR [17] 
works in a similar way. The advantage of our approach is that 
the route selection phase at the destination is unnecessary with 
our approach since we use the global view to act already during 
the route discovery process. 

III. SYSTEM DESIGN 

As already mentioned, the general, novel idea of the 
CrossTalk architecture is to establish a network-wide, global 
view of a metric such as load at every node in the network. In 
addition, the information from layers and system components 
are made available locally to be utilized as for example 
proposed in [14].  

A. The CrossTalk architecture 
The CrossTalk architecture consists of two views (see Fig. 

1). There is the local view containing node specific 
information. This is information contributed by each layer of 
the stack or system component and can be used for local 
optimizations as for example in [5] or novel applications [11]. 
This information could include current battery status, signal to 



noise ratio (SNR), bit error rate, one hop neighbor count just to 
name a few. 

Additionally, there is the global view that is constructed 
from information gathered by our data dissemination process. 
First of all, the local information has to be propagated. To keep 
the overhead low, no extra messages are sent. Instead the local 
information taken from the local view is piggybacked onto 
outgoing packets, keeping the overhead at a minimum. Only 
the source of a packet is adding its local information. 
Forwarding nodes do not include their information on top. By 
doing this, there is only a slight increase in the packet size, 
resulting in a small overall footprint of our system. Every node 
inspects received packets for that information, extracts it and 
adds it to its global view. This way, the global view collects 
numerous samples of local information from various nodes 
within the network. The samples can be augmented with 
additional information to give them a weight such as distance if 
that information is available. Also, they are given a timestamp 
since samples are purged after their useful lifetime. Clearly, 
following this approach the global view will never be 100% 
correct and that is not what we aim at. Instead we want to have 
a reasonably up-to-date and correct view of the network, which 
allows a node to evaluate its own status. For example, if a node 
runs at 50% of its capacity, that number as such has no 
immediate meaning. However, if the rest of the nodes in the 
network run at 10%, that means that the node is clearly 
overloaded. Therefore, with our approach we want to provide a 
node with information to compare its own local information 
with in order to be able to act upon that comparison. 

Part of the global view are algorithms to compute the 
network-wide view from the collected samples. We evaluated 
two general types of algorithms one being the simple mean 
value and the second type being weighted moving averages. 
For both types we considered different variants, each one 
following a different intuition. For one variant we excluded 
local information samples from one-hop neighbors. The 
intuition behind this is that direct neighbors can have a similar 
value for local information. For example, the degree (number 
of neighbors) could be similar due to the proximity of the 
nodes, eventually influencing the computed mean value. The 
weighted moving average variants vary in weighting factor and 
weighting function: 

∑

∑
=

=

=

== ni

i
i

ni

i
ii

global

w

sw
v

1

1  

The above formula denotes the general structure of a 
weighted moving average, where n is the number of samples, w 
is the weight and s is the sample value. w is calculated using a 
linear, triangular or exponential function with distance or time 
as a metric (see Fig. 2 for an example). The intuition behind the 
linear distance weighted function is that the further away a 
node is from the node trying to establish the global view, the 
less information the node will get from that node and the more 
the value might differ due to the distance. Therefore, such a 
sample will get more weight than a sample from a node close 

by. The triangular distance weighted function has a slightly 
different intuition. The values furthest away will most likely 
come from nodes at the edge of the network. Here, due to 
lower node density or other effects, the values might not reflect 
the actual average well and are therefore weighted less. Nodes 
close by are also weighted less for the same reasons that 
neighbors are excluded, that is, that the proximity of the nodes 
might be reflected in the disseminated information. The other 
weighting factor is time. The more recent a sample is, the 
higher it should be weighted since it more accurately reflects 
the current state of the network. With time as a weighting 
factor, we evaluated two weighting functions. One is a linear 
function giving the highest weight to the most recent sample 
and the other one gives exponentially more weight to more 
recent samples. 
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Fig. 2. Triangular weighting function 

 
As summary, our architecture consists of two views both 

responsible to hold, organize and provide data. In addition, 
they provide a set of algorithms to compute more significant 
data, which in turn can be accessed and utilized as shown in the 
following section. 

B. Reference application 
In this section we exemplarily apply our architecture to a 

load balancing and load reduction algorithm using AODV for 
routing. Balancing the load in ad-hoc networks is important 
since nodes with a high load burden deplete their batteries 
quickly, thereby increasing the probability of disconnecting or 
partitioning the network. Additionally, if the network is more 
balanced, the spatial reuse of the spectrum allows for a higher 
throughput and relieves the center of the network [18]. The 
second aspect of our algorithm, the load reduction, tries to 
attenuate the effects of the broadcast storm problem [13], which 
are a higher collision probability of packets and unnecessary 
resource consumption.  

To support the decisions our algorithm has to make, we 
distribute the local load using our data dissemination process. 
To calculate the local load we count the number of packets sent 
by a node on behalf of other nodes during a fixed time frame or 
slot t (see Fig. 3). We do not include our own packets to 
provide a degree of fairness. To eliminate fluctuations which 
might have occurred during a slot, we use n slots to calculate 
the actual load over a time period of n * t. To account for 



changes in the load during that period, we calculate the 
weighted moving average of all slots except the current slot 
with a weight being equal to the slot number as shown in Fig. 
3. 
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Fig. 3. Load calculation 

 
The algorithm itself is a two-phase algorithm and works as 

follows: 
Whenever an AODV route request reaches a node, it 

calculates the global view and compares its own local load 
against that view. If the node is not overloaded compared to the 
global view, it resumes “normal” operation in terms of AODV. 
When the node finds itself overloaded, it calculates the 
overload degree, that is the ratio of the own local load and the 
global view of the load. From the point of being overloaded 
(overload degree > 1) up to a predefined threshold, the delay 
bound (compare Fig. 4), the node will hold back the route 
request for a certain amount of time before forwarding it. This 
delay grows proportionally with the overload degree up to the 
delay bound, where the delay reaches its maximum. By 
delaying the route request, the probability increases that an 
alternative route (through other nodes) will be established 
circumventing the overloaded area, which is likely to be the 
core of the network [18]. This way the following data packets 
will not have to be forwarded by the overloaded node, which 
would have even further increased the load and at the same 
time increased the collision probability with other packets in 
the overloaded area. With the delay being proportional to the 
overload degree, a route will be established balanced between 
being short in terms of the hop count and carrying mild load. 
Once its delay bound is reached, a node holds back packets 
with a maximum delay d. Even if the load is beyond the delay 
bound, packets will not be delayed longer than d. 
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Fig. 4. Load balancing algorithm 

The second phase of our algorithm covers the load reduction 
functionality. When a node has an overload degree beyond the 
delay bound, it starts dropping route requests at a certain rate, 
otherwise delaying them for the maximum delay time d. The 
drop rate also grows proportionally with the overload degree 
up to a certain threshold, the drop bound. Beyond the drop 
bound, route requests will be dropped at a predefined 
maximum drop rate r or delayed by d. By dropping route 
requests, the heavily overloaded nodes make sure that the path 
towards the requested destination will not lead through highly 
overloaded nodes. Additionally, the broadcast storm problem 
in highly overloaded zones is reduced. The maximum drop rate 
should never reach 100% since an extremely overloaded node 
might be so for the simple reason that it is the only node 
connecting parts of a network. Since it does not accept every 
route request, the node keeps up a certain path quality for 
existing paths through it, by limiting the amount of paths 
through that node. 

IV. EXPERIMENTAL RESULTS 

The first paragraph of this section deals solely with the 
experimental validation of the global view. Before it can be 
applied, it has to be proven to be correct and functional within 
certain bounds. The second part of this section analyzes the 
experimental results of our load balancing and load reduction 
algorithm. The analysis itself is based on simulations using ns-
2 together with AODV-UU [19]. For every data point in a 
graph, 20 simulation runs were averaged to compensate for 
marginal phenomena. Every run in turn was running for 600 
simulated seconds. 

For the experimental evaluation, we wanted to isolate the 
effects of various parameters such as network size, network 
density, mobility and more on the global view and our 
reference application. For this reason, we keep all parameters 
fixed except the one we want to evaluate. The standard 
simulation network is a static, 200 node network on a 
2000x2000 meter square plain. Each node has a transmission 
range of 250 meters. The nodes are placed randomly onto the 
plain, each running a traffic pattern agent that searches for a 
new destination every 10 seconds and sends one packet per 
second afterwards. For the reference application, the delay 
bound was chosen to be 1.8 and the drop bound 2.5 using a 
maximum delay of 100ms and a maximum drop rate of 67%. 

A. Global view  
For our experimental evaluation, we added thresholds for the 

calculation of the global view. Whenever the global view 
contains an insufficient number of samples, our cross-layer 
entity will not calculate a network-wide average on request 
forcing “normal” mode. The composition of the samples is also 
evaluated. If more than two-thirds of the samples are from 
direct physical neighbors, the cross-layer entity will not 
calculate a global view for that metric preventing cross-layer 
operation, either. 

When a node joins the network, we added an initialization 
procedure. The joining node would broadcast an initialization 
request to its neighbors. The neighbors reply with a message 



containing their global view, which in turn is used at the newly 
joined node to fill the first slot of the load calculation 
algorithm. 
We also exploit the fact that AODV is sending periodic hello 
messages. Instead of only using this kind of message to 
distribute our own local information, we also enrich hello 
messages alternatingly with information of our one hop 
neighbors. This way, we use the one-hop broadcast hello to 
disseminate recent and close by information more effectively. 

We identified several parameters for our experiments. Since 
the global view’s correctness is based on the amount and 
quality of the samples, the network structure has to be 
considered. For this purpose, we evaluated the parameters 
density (50 – 150 nodes/km²), network size (50 – 400 nodes), 
mobility (1.4m/s) and topology geometry (1:1 – 1:9), which in 
our experiments is the ratio of the topology’s width and height. 
Since we do not generate any messages, the global view is also 
dependant on the traffic pattern and on the load. Therefore, we 
tested our CrossTalk architecture under different load scenarios 
(0.5 – 2 pkts/s). The traffic pattern we apply distinguishes 
between local and distant communication. Within a certain 
radius (in hops), a node considers the communication local, 
whereas beyond that radius the traffic is considered distant 
traffic. In our simulations, we evaluate different ratios of local 
and distant traffic (25% - 100% within 3 hops). Finally, we 
analyzed the global view under churn conditions for the simple 
reason that the global view will become more accurate over 
time since it most probably aggregated more samples (each 
node fails every 60 – 250s). With churn, there are constantly 
nodes joining the network with an empty global view 
influencing the correctness of the local evaluation process. 

We show the quality of the global view using three different 
metrics which have been analyzed for all the scenarios 
described above. Due to space limitation and the similarity of 
the results we are not showing all results graphically here. The 
first metric to show the global view’s accuracy is the average 
value of all global views. This value is compared with the 
average value of all local views in the network. Ideally the two 
values should match. 
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Fig. 5. Global and local view comparison 

 
The average alone does not reflect the quality of the global 

view accurately enough. The second metric reflects the global 
view’s uniformity across nodes, which is the standard deviation 

of the global view at each node in the network. This value is 
compared against the standard deviation of the local view at 
each node in the network. Ideally, the global views’ standard 
deviation is zero, independently from the local views’ standard 
deviation. 

The third metric we termed correctness. We calculate the 
average local view artificially and then compare the local view 
of each individual node against it. If this comparison and the 
comparison of local and global view at each node yield the 
same result (overloaded vs. not overloaded), the node evaluates 
its status correctly, otherwise it fails to do so. The correctness 
is the percentage of nodes in the network that evaluate their 
status correctly. 

Fig. 5 shows the impact on the global view over a 600 
seconds simulation run with mobility. The chosen mobility 
model was the random waypoint model with a minimum and 
maximum speed of 1.4m/s, which is fast walking speed, and 20 
seconds pause time between two node movements. We are 
aware that random mobility is not a realistic model. However, 
it is a worst case mobility model for our reference application 
analyzed later on. For reasons of clarity, we omitted the legend 
since the curves shown in the graph are extremely close. The 
figure shows all analyzed global view algorithms together with 
the actual average of all local views within the network. The 
closer the graphs are together, the more accurate the global 
view is. As can be seen, the graphs are very close showing the 
precision of all global view algorithms. In all other tested 
scenarios the global view performs similarly and therefore the 
graphs are omitted, as mentioned before. 
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Fig. 6. Global and local view’ standard deviation 

 
Fig. 6 depicts the dependency of the standard deviation of 

the global view algorithms. As can be clearly seen, the 
algorithms are robust against load differences. The results 
shown are similar in all the tested scenarios tested. If we zoom 
into the graph, we would see that the best performing algorithm 
is the simple mean value followed by the time weighted 
averages. In relative dimensions the simple mean algorithm 
outperforms the distance weighted averages by a factor of 3. 
Absolute, these differences are marginal though.  

The correctness of the global view is pivotal. As stated 
before, we do not aim at having a 100% accurate view of the 
network but a correctness well above 90% is our goal. Fig. 7 
displays the correctness in differently sized networks and under 
churn over a 600s simulation run. We omitted the variants that 



leave out samples from neighbors since they were similarly 
performing to their corresponding counterparts. Here again the 
simple mean value outperforms the other algorithms. The main 
advantage though can be seen in small networks. With 
increasing network size, the distance based algorithms gain. 
The graph from the churn scenario shows that in the beginning 
of the simulations, when all the nodes are initializing their 
global view, the time based algorithms perform best since they 
more accurately reflect the sudden load increase in the network 
(up to 8 % more accurate). 
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Fig. 7. Global views’ correctness 
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Fig. 8. Global and local view under load change 

 
Finally we evaluated how reactive the global view 

algorithms are to extreme changes of the observed metric. The 
beginning of a simulation can be seen as an extreme increase in 
traffic (all nodes starting at zero) and from the simulations we 

could analyze the reactivity to that (see Fig. 6). We then 
evaluated the reactivity to extreme drops in traffic. We let 
applications run at each node for the first 100 seconds of a 
simulation run and then reduced the packet rate by a factor of 5 
and the lookup rate for new destinations by 2. The results are 
displayed in Fig. 8, clearly showing the ability to react to 
extreme metric changes. 

B. Load balancing 
Our load balancing algorithm was also tested in all the 

scenarios described in the previous section. An important thing 
we wanted to make sure was that our cross-layer approach does 
not perform worse than the “traditional” approach. 
Performance was measured according to the following metrics. 
The average number of messages sent per node during a 
simulation run reflects whether there is an actual load reduction 
effect or not. The on average most overloaded node reflects the 
reduction of the bottlenecks within the network. The coefficient 
of variance, which is the ratio of the standard deviation to the 
mean multiplied by 100, shows the actual load balancing effect 
amongst nodes when applied to the average number of packets 
send per node. Additionally, we measured the average delay 
per hop, which is influenced by both effects (load reduction 
and load balancing) since both reduce the likelihood of 
collisions. Since we drop packets, there is the potential 
problem that our packet delivery ratio (PDR) declines. 
Therefore, we also monitored the PDR. To calculate the global 
view we followed the KISS (Keep It Simple, Stupid) principle 
and applied the simple mean value algorithm. 
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Fig. 9. Average number of packets sent per node 
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Fig. 10. Average per hop delay 



Fig. 9 shows the load reduction effect. As can be seen, as the 
load increases the load reduction effect grows. In this particular 
case we only have an average saving of up to 5%. The 
maximum saved amount was 15% for the topology geometry 
scenarios discussed later on. This shows that, although not the 
primary goal, our reference application is able to reduce the 
load. 

Fig. 10 presents the improvements of the per hop delay, 
which is the time from a packet being received at one hop till it 
is received at the next hop. In almost all tested scenarios the 
delay performance of our cross-layer approach was better than 
with the “traditional”, layered approach, the only exception 
being highly dense networks (however, there was still a 
significant load balancing effect). The maximum delay 
improvement measured was 65%. 
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Fig. 11. Maximum packets sent per node 

 
Bottlenecks in the network are most likely the first ones to 

fail due to the depletion of their batteries. They also are a cause 
for regions with high collision rates and delay. Fig. 11 depicts 
the reduction of the load at the worst bottleneck nodes in the 
network. It shows the independence of the network density on 
this effect. In this particular scenario the reduction at the most 
overloaded node goes up to 25%. This load relief effect at 
highly overloaded nodes was observed in all tested scenarios. 
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Fig. 12. Coefficient of variance 

 
The last performance metric for the evaluation of our load 

balancing reference application is the coefficient of variance of 
the average packets sent per node during a simulation run. We 
can’t use the simpler standard deviation here, since with our 

algorithm we send fewer packets per node, which makes a 
direct comparison of the standard deviations impossible. In Fig. 
12 the coefficient of variance is show dependent of the local 
traffic ratio, which in this case is the amount of traffic to 
destinations within 3 hops. In the tested scenarios the 
coefficient is up to 20% smaller using our cross-layer approach 
and can be observed in all scenarios. 
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Fig. 13. Packet delivery ratio 

 
In our tested mobility scenario our cross-layer architecture 

was only slightly outperforming the “traditional” approach. 
This is due to the fact that with random mobility load balancing 
comes as a side effect since nodes traverse differently loaded 
areas constantly. Still, our algorithm achieves a coefficient of 
variance of 7.92 compared to 8.61 with the layered architecture 
and an average maximum load of 8941.5 compared to 9564.55. 

In only one scenario the PDR dropped slightly below the 
reference PDR of the layered protocol stack. The PDR of the 
cross-layer approach was 64 compared to 68.4 in the topology 
with an aspect-ratio of 1:9 (see Fig. 13). This phenomenon can 
be explained by the fact that in topologies with such an aspect-
ratio, or an even higher one, there are only few paths through 
the network. Those are extremely overloaded compared to 
nodes at the edges of the network, for example. Nodes on these 
paths most likely operate beyond the drop bound. 

V. CONCLUSION & FUTURE WORK 

The deployment of TCP in wireless ad-hoc environments 
made it very clear that simply adopting technologies from 
infrastructure-based networks into highly dynamic network 
environments can be very inefficient. Cross-layer designs are a 
promising new paradigm to provide an architectural framework 
for more efficient network stacks, especially for wireless 
networks. 

We presented CrossTalk, a generic architecture for cross-
layer optimizations. The novel feature of our system is the 
ability to reliably establish a network-wide, global view of the 
network of one or multiple metrics. Having such a global view 
of the network a node can use that information for local 
decision processes. We thoroughly analyzed the global view 
approach to make sure it is suitable for the complex system 
dynamics of ad-hoc networks. 



We also exemplary applied our architecture to a load 
balancing algorithm. With this algorithm we were able to 
reduce the per hop packet delay up to 65%. We also could 
relief the bottleneck nodes from up to 25% of their packet load. 
Additionally, we could reduce the coefficient of variance of the 
packets send per node by up to 20%. 

In the future we plan several improvements to our 
architecture. For example we want to dynamically find out 
when we should and when we shouldn’t piggyback information 
to further reduce the overhead of the data dissemination 
process. For the same purpose we want to restrain information 
exchange to clusters.  

We also want to improve the presented load balancing 
algorithm. We plan to dynamically set the thresholds e.g. from 
evaluating the standard deviation of collected samples or react 
to changing path loads. In addition we will test more 
aggressive strategies to further improve the algorithm. Finally, 
we want to evaluate the system again with more realistic 
mobility models such as an attraction point mobility model. 
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