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Abstract— In this contribution, the performance of an uplink
CDMA system with orthogonal spreading is analyzed. A useful
framework is provided in order to determine if synchronization
of the users gives a significant performance improvement. Using
asymptotic arguments, analytical expressions of the spectral
efficiency for the Matched Filter and Successive Interference
Cancellation Matched Filter are derived. The results, applied
in the general case of a multipath channel, provide a simple
expression of the cell capacity based only on a few meaningful
parameters.

I. I NTRODUCTION

Usual studies of uplink CDMA schemes suppose a multiple
access communication scheme where each user modulates his
signal with a pseudo-random i.i.d. [1], [2] sequence. One of
the reasons relies on the fact that, due to the multipath channel,
the convolution of the codes with the different channels of the
users can be represented as a new set of codes with properties
similar to a pseudo-random sequence due to the randomness of
the channel. As a consequence, even if codes are designed for
an orthogonal multiple access scheme, the multi-path channel
unfortunately destroys orthogonality. However, recently, Deb-
bah et al. [3], [4] showed that, as far as downlink is concerned,
a non-negligible gain can be achieved if one uses orthogonal
codes to serve the users, especially for highly loaded systems.
The intuitive idea is that by appropriate equalization, a user
can restore orthogonal access in the network by compensating
the effect of his own channel (which is also common to all
the users in the downlink). The gain is mainly a function
of the load (see [5]) and the type of equalizer. However,
in the uplink, such a result can not be applied as each user
code is distorted independently by a different channel. As a
consequence, the ability of any equalization scheme to restore
orthogonality is very limited and is mostly dependent on the
channel -orthogonality destroying- fading characteristics. The
goal of this contribution is to assess more precisely how multi-
path affects the performance of uplink-CDMA. In particular,
for a given statistical environment, the gain of orthogonal-
synchronizing the users will be theoretically quantified with
respect to the packet-overhead of signaling. The setting is
analyzed for the simple receiver structure of the Matched Filter
as well as the Successive Interference Cancellation Matched
Filter. In order to obtain interpretable expressions, the problem
is analyzed in the asymptotic regime: a high number of users
is considered where the spreading lengthN tends to infinity,

the number of usersK tends to infinity but the ratioK
N → α

is constant. In this contribution, the effect of path loss and
shadowing, albeit important, is neglected (it is however a
straightforward extension of this paper). The results are based
on random unitary matrix theory [6], [7]. This tool enables us
to express the SINR in a very simple form in the large system
limit. Moreover, the theoretical results are shown to be very
accurate predictions of the system’s behavior in the finite size
case (spreading lengthN of 256, see section V).

This paper is structured as follows. In section II, the CDMA
model is introduced together with some results on Random
Unitary Matrix Theory. In section III, the SINR (Signal to
Interference plus Noise ratio) expression with Matched Filter
is derived and discussions are provided in sections IV and V
together with simulations. Finally, in section VI, the extension
to other receivers is described.

II. M ODEL

We consider a single CDMA cell (inter-cell interference free
case). The spreading lengthN is fixed. The number of users
in the cell isK, with the assumption thatK < N , so that
the spreading codes can be chosen mutually orthogonal. The
general case of wide-band CDMA is considered where the
signal transmitted by userk has complex envelope

xk(t) =
∑

n

sknvk(t− nT )

vk(t) is an weighted sum of elementary modulation pulses
which satisfy the Nyquist criterion with respect to the chip
intervalTc (T = NTc)

vk(t) =
N∑

�=1

v�kψ(t− (�− 1)Tc)

The signal is transmitted over a frequency selective channel
with impulse responseck(τ). Under the assumption of slowly-
varying fading, the continuous time received signaly(t) at the
base station has the form:

y(t) =
∑

n

K∑
k=1

skn

∫
ck(τ)vk(t− nT − τ)dτ + n(t) (1)

wheren(t) is the complex white Gaussian noise. The signal
(after pulse matched filtering byψ∗(−t)) is sampled at the
chip rate to get a discrete-time signal that has the form:

y = C1v1s1 + C2v2s2 + · · · + CKvKsK + n (2)



where Ck are N × N Toeplitz matrices representing the
frequency selective fading for thek-th user.

Users are assumed to employ orthogonal codes. Although
not restrictive and in order to derive tractable expressions of
the SINR, vectorsvk = [v1k, . . . , vNk]T are supposed to be
columns extracted from a random unitary matrixV. A random
unitary matrixV = [vik] is a matrix with complex entries such
as VVH = VHV = I. Note that the entries are therefore
dependent (in comparison with the i.i.d. case of [8]):

N∑
k=1

|vik|2 =
N∑

i=1

|vik|2 = 1, for all 1 ≤ i, k ≤ N

N∑
l=1

vilv
∗
lk = 0, for all i �= k

The following definition is given in [7]. Since the setU(N) of
N ×N random unitary matrices forms a compact topological
group with respect to the matrix multiplication and the usual
topology, there exists a unique nonzero left and right invariant
measure. It is known as the Haar measure. A random matrix
V is Haar unitary if it takes its values uniformly inU(N),
i.e., if for any subsetH of U(N), the probability thatV ∈ H
is equal to the normalized Haar measureµ of H :

P (V ∈ H) = µ(H)

Given that the left invariance characterizes the Haar measure,
to show that a unitary random matrixV is Haar distributed,
it is sufficient to show that for anyU ∈ U(N), UV has the
same distribution asV. The Gram-Schmidt orthonormalization
procedure can be used on the column vectors of aN × N
Gaussian matrix with independent entries to obtain a Haar
unitary matrix. If X is a Gaussian i.i.d. matrix, thenV =
X(XHX)−1/2 is Haar unitary:

• VVH = X(XHX)−1/2(XHX)−1/2XH = I,
• UV = UX(XHUHUX)−1/2 has the same distribution

asV.
Since the users are supposed to be synchronized and for

sake of simplicity, we will consider in all the following that
users add a cyclic prefix of length equal to the channel impulse
response length to their code sequence. This case is similar
to uplink MC-CDMA [9], [10] and as a consequence,{Ck}
becomes circulant (see [11]) and can be diagonalized in a
Fourier basisF. Model (2) simplifies therefore to:

y = FH1FHv1s1+FH2FHv2s2+ · · ·+FHKFHvKsK +n

where Hk is a diagonal matrix with diagonal elements
{hik}i=1...N . For each userk, the coefficientshik are the
discrete Fourier transform of the channel impulse response.
Since users employ Haar unitary codes and every unitary
tranformation of a Haar unitary vector is a Haar unitary vector
(so thatwi = FHvi has the same distribution asvi for any
i), one can multiplyy with FH without any change of the
statistics:

y = H1w1s1 + H2w2s2 + · · · + HKwKsK + n

=
(
H� W

)
s + n (3)

where� is the Hadamard (element-wise) product.H is the
frequency selective fading matrix, of sizeN ×K:

H =



h11 h12 . . . h1K

...
...

...
hN1 hN2 . . . hNK




We will suppose in the following that

∀ i, k, Ehk

[
|hik|2

]
= � (4)

W is anN ×K orthogonal spreading matrix:

W =
[
w1|w2| · · · |wK

]
wherewk =



w1k

...
wNk




Note that asymptotically (asN → ∞), for a given mul-
tipath channel of lengthL, model (3) is also valid for the
case of uplink DS-CDMA since all Toeplitz matrices can be
asymptotically diagonalized in a Fourier Basis (see [12], [13]).

III. M ATCHED FILTER

Without loss of generality, let us focus on the first user and
denote:

H =
[
h1|H�

]
, W =

[
w1|W�

]
, s =

[
s1
s�

]

whereh1 is the first column ofH, w1 is the first column ofW
corresponding to the code of the first user, ands1 is the signal
of the first user. Supposing perfect channel knowledge at the
receiver, the matched filter is given bygH = (h1 � w1)H .
The signal at the matched filter output is given by:

gHy = |h1 � w1|2 s1 + gH
(
H� � W�

)
s� + gHn

This leads to the following expression forSINR(x1)(∑N
i=1 |hi1|2 |wi1|2

)2

∑N
i=1 |hi1|2 |wi1|2 σ2 +

∑K
k=2

∣∣∣∑N
i=1 h

∗
i1hikw∗

i1wik

∣∣∣2 (5)

Proposition 1: For given channel coefficients, theSINR,
with orthogonal codes, converges almost surely to a determin-
istic value asN → ∞ and K

N → α, namely:

SINRorth(x1) =
ξ1

σ2 + α (�− η1)

where

η1 =
Ehk

[∣∣∣ 1
W

∫ W
2

−W
2
h1(f)h∗k(f)df

∣∣∣2]
1

W

∫ W
2

−W
2
|h1(f)|2 df

and

ξ1 =
1
W

∫ W
2

−W
2

|h1(f)|2 df
Proof: The proof is in the appendix.



Note that in the case of Gaussian random i.i.d. codes
(i.i.d. elements with zero mean and variance1N ), the SINR
has the following expression (see [8], [14]):

SINRrand(x1) =
ξ1

σ2 + α�

η1 characterizes the orthogonality gain of the channel and
ranges from 0 to�. The orthogonality gain is function of the
selectivity of the channel as well as the correlation between
the channels. For example, if the channels are all the same,
SINRorth = �

σ2 and the orthogonality gain is maximal.

IV. D ISCUSSION

We consider the particular case of a multipath channel. The
model of the channel is given by

ck(τ) =
L−1∑
p=0

cpkδ(τ − τpk)

where we assume that the channel is invariant during the time
considered. In order to compare channels at the same signal to
noise ratio, we constrain the fading coefficients to be complex
Gaussian i.i.d. random variables with zero mean and variance
�
L . Usually, coefficientscpk are supposed to be independent
with decreasing variance as the delay increases. In all cases,∑L−1

p=0 E

[
|cpk|2

]
= �. For each userk, the coefficientshik

are the Discrete Fourier Transform of the fading process. The
Fourier transform ofc(τ) is

hk(f) =
L−1∑
p=0

cpke
−j2πfτpk |Φ(f)|2

where we assume that the filterΦ(f) is such that, given the
bandwidthW ,

Φ(f) =

{
1 if − W

2 ≤ f ≤ W
2

0 otherwise

Sampling at the various frequenciesf1 = −W
2 , f2 = −W

2 +
1
NW , . . . , fN = −W

2 + N−1
N W , we obtain the coefficients

hik, 1 ≤ i ≤ N , as

hik = hk(fi) =
L−1∑
p=0

cpke
−j2π i

N WτpkejπWτpk

It is immediate to check thathik satisfies (4).
For ease of understanding of the impact of the number of

paths on the orthogonality gain, the delays are supposed to be
uniformly distributed according to the bandwidth

τpk =
p

W
(6)

As a consequence, we have:

ξ1 =
L−1∑
p=0

|cp1|2

and

Ehk



∣∣∣∣∣ 1
W

∫ W
2

−W
2

h1(f)h∗k(f)df

∣∣∣∣∣
2



= Eck,τk



∣∣∣∣∣
L−1∑
p=0

L−1∑
q=0

cp1c
∗
qk

1
W

∫ W
2

−W
2

e−j2πf(τp1−τqk)df

∣∣∣∣∣
2



= Eck,τk



∣∣∣∣∣
L−1∑
p=0

L−1∑
q=0

cp1c
∗
qk

sinπW (τp1 − τqk)
πW (τp1 − τqk)

∣∣∣∣∣
2



Using simplifying hypothesis (6), this is equal to

Eck



∣∣∣∣∣
L−1∑
p=0

cp1c
∗
pk

∣∣∣∣∣
2

 = Eck

[
L−1∑
p=0

L−1∑
q=0

cp1c
∗
q1c

∗
pkcqk

]

=
�

L

L−1∑
p=0

|cp1|2

This gives us the following expressions for theSINR:

SINRorth(x1) =

∑L−1
p=0 |cp1|2

σ2 + α�
(
1 − 1

L

)
SINRrand(x1) =

∑L−1
p=0 |cp1|2
σ2 + α�

We observe that the orthogonal gain depends only on the four
parametersσ2, α, � andL:

SINRorth(x1)
SINRrand(x1)

=
σ2 + α�

σ2 + α�
(
1 − 1

L

)
Remarkably, at high SNR (σ2 → 0), the SINR gain is given

by:
SINRorth(x1)
SINRrand(x1)

=
L

L− 1

Hence, in the case of a two-path channel, one can increase
by 3 dB the SINR by synchronizing the users whereas for a
5-path channel, the synchronization gain is less than 1 dB.

V. SIMULATIONS

Simulations (not plotted here due to limited space) show
that the theoretical formula for the expression of the SINR
gain is very close to curves obtained by generating at random
a single fading matrix and a single spreading code matrix for
a realistic spreading length ofN = 256.

In figure 1, the mean spectral efficiency of the system with
Matched filter has been plotted. For the case of orthogonal
spreading, the mean spectral efficiency is given by:

γ = αEcp1


log2


1 +

∑L−1
p=0 |cp1|2

α

(
1

γ
Eb
N0

+ �
(
1 − 1

L

))





= α

∫ +∞

0

log2


1 +

x

α

(
1

γ
Eb
N0

+ �
(
1 − 1

L

))

 p(x)dx
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Fig. 1. Spectral efficiency of the multipath channel, SNR = 10dB

wherex represents the random variable
∑L−1

p=0 |cp1|2, andp(x)
is its distribution, given by a Chi-Squared distribution with2L
degrees of freedom

p(x) =
xL−1e−Lx/�

(L− 1)! (�/L)L

In order to assess the gap with more complex receivers, the
performance of the Successive Interference Cancellation (SIC)
Matched Filter [15] has been plotted in figure 1 in addition to
the simple Matched Filter (MF). The principle of SIC receivers
is quite simple: assuming ergodic channels, users are ordered
and are decoded successively. At each step, supposing that
the user has been encoded at the appropriate decoding rate,
the signal is decoded and its contribution to the interference is
then perfectly substracted. This removes some of the inter-user
interference and therefore increases theSINR of the following
decoded users. TheSINR of the k-th decoded user is then:

SINRorth(xk) =

∑L−1
p=0 |cpk|2

σ2 + K−k+1
N �

(
1 − 1

L

)
since the contributions of thek − 1 first decoded users have
already been substracted. In the limit whenN → ∞ and K

N →
α, γ is then given by the implicit equation:

γ =
∫ α

0

∫ +∞

0

log2


1 +

x

y

(
1

γ
Eb
N0

+ �
(
1 − 1

L

))

 p(x)dxdy

Figure 1 showsγ for various values ofL with orthogonal
codes, with or without successive interference cancellation
(SIC), as well as comparative plots ofγ obtained with random
i.i.d. spreading codes. The following results are obtained:

• i.i.d. spreading always provides a lower spectral effi-
ciency than orthogonal spreading, with respect to the
same filter.
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Fig. 2. Simulations on the multipath channel, L=1, SNR = 10dB

• In the case of orthogonal spreading, the spectral efficiency
is higher for low values ofL for any receiver (to ensure
orthogonality between users). This is in contrast with the
case of i.i.d. spreading whereL must be high to decrease
the randomness of the fading.

• As L increases, the gap between orthogonal and
i.i.d. spreading reduces for any kind of receiver. This
result has already been shown previously through the
orthogonality gain expression.

• For L > 2, the gain of using a SIC scheme with respect
to the Matched filter is equivalent for i.i.d. and orthogonal
spreading.

VI. EXTENSION TO OTHER RECEIVERS

For the MMSE and optimum filters, the study involves more
sophisticated tools for the orthogonal case and is still under
investigation. In the case of i.i.d. codes, the results rely on a
theorem due to Girko (see [16], [17]).

In order to evaluate the potential gains, simulations are
shown for both orthogonal and i.i.d. random codes, with
3 different filters: Matched Filter (MF), MMSE Filter and
Optimum Filter, on channels with respectively L=1 path (figure
2) and L=5 paths (figure 3). The curves prompt the same
comments as figure 1: though there is always a gain in spectral
efficiency with orthogonal codes, this gain decreases asL
increases for any receiver. However, note that in the particular
case of the optimum receiver, multi-path (for high loads and
increassingL) i.i.d codes achieve the single user Gaussian
bound as well as fading i.i.d codes. Moreover, i.i.d codes can
outperform the performance of orthogonal codes (if the system
is working at high loads with long channels, see figure 3).

VII. C ONCLUSION

Using asymptotic arguments, an explicit expression of the
SINR of an uplink CDMA cell using orthogonal spreading
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Fig. 3. Simulations on the multipath channel, L=5, SNR = 10dB

codes and Matched Filter has been derived considering a
realistic frequency selective fading model. The orthogonality
gain has been shown to depend mainly on the number of paths
and the load of the system through very simple insightful
expressions. As a consequence, the need to synchronize the
users is mainly a function of the environment at hand and one
could think of adaptive synchronization protocols for future
multiple access CDMA schemes to increase the rate.

VIII. A PPENDIX

Proof: We prove that the two sums in expression (5)
of the SINR for the Matched Filter converge in expectation
(almost sure convergence can also be shown but is not detailed
for sake of space limitation) to obtain Proposition 1. Namely,

N∑
i=1

|hi1|2 |wi1|2 ∼
N→∞

ξ1 (7)

K∑
k=2

∣∣∣∣∣
N∑

i=1

h∗i1hikw
∗
i1wik

∣∣∣∣∣
2

∼
N→∞

α ξ1 (�− η1) (8)

Note that (7) is immediate:

Ew

[
N∑

i=1

|hi1|2 |wi1|2
]

=
1
N

N∑
i=1

|hi1|2 −−−−→
N→∞

ξ1

The expressionEw

[∣∣∣∑N
i=1 h

∗
i1hikw

∗
i1wik

∣∣∣2] is equal to:

N∑
i=1

N∑
l=1

h∗i1hikhl1h
∗
lkEw [w∗

i1wikwl1w
∗
lk]

=
1

N(N + 1)

N∑
i=1

|hi1|2 |hik|2 (9)

− 1
N(N2 − 1)

N∑
i=1

∑
l �=i

h∗i1hl1hikh
∗
lk (10)

using the fact that

E

[
|wi1|2 |wik|2

]
=

1
N(N + 1)

, k > 1

E [w∗
i1wikwl1w

∗
lk] = − 1

N(N2 − 1)
, k > 1, i �= l

WhenN becomes large, (9) and (10) tend respectively to

1
N + 1

1
W

∫ W
2

−W
2

|h1(f)|2 |hk(f)|2 df

and

1
N + 1

1
W

∫ W
2

−W
2

h∗1(u)hk(u)du
1
W

∫ W
2

−W
2

h1(v)h∗k(v)dv

It is then rather straightforward to obtain (8).
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