
Institut Eurécom
Department of Corporate Communications

2229, route des Crètes
B.P. 193

06904 Sophia-Antipolis
FRANCE

Research Report RR-05-139
Disambiguating Network Effects from Edge Effects in TCP

Connections
May 12, 2005

M. Siekkinen, G. Urvoy-Keller, E. W. Biersack, T. En-Najjary

Tel : (+33) 4 93 00 26 26
Fax : (+33) 4 93 00 26 27

Email :
�
siekkine,urvoy,erbi,ennajjar � @eurecom.fr

1Institut Eurécom’s research is partially supported by its industrial members: Bouygues
Téécom,Fondation d’entreprise Groupe Cegetel, Fondation Hasler, France Télécom, Hitachi, ST
Microelectronics, Swisscom, Texas Instruments, Thales

1

Abstract

While the applications using the Internet have changed over time, TCP is still
the transport protocol that is used by almost all the applications and carries over
90% of the total traffic. Throughput is a key performance metric for long TCP
connections. The achieved throughput results from the aggregate effects of the
network path, the TCP end points’ parameters, and the application on top of TCP.
Finding out which of these is limiting the throughput of a TCP connection is a
critical problem for end users that want to understand the origins of their prob-
lems, ISPs that need to troubleshoot their network, and application designers that
need to know where the bottleneck is. In this paper, we revisit this issue by first
demonstrating the weaknesses of the previously proposed flight-based approach.
We next discuss in detail the different possible limitations and highlight the need
to account for the application behavior during the analysis process. This paper’s
main contribution is a new approach based on the analysis of time series extracted
from packet traces that allow for quantitative assessment of the different causes
to the resulting throughput. We exemplify the interest of this approach on a large
BitTorrent dataset.

2

1 Introduction

Motivation: During recent years, the Internet traffic has experienced a massive
growth as the number of users skyrocketed. This applies also to per user traffic, as
capacities of access links have been increased by several order of magnitudes. With
this evolution, new Internet applications, such as peer-to-peer (P2P) applications,
have emerged and the relative importance of HTTP and FTP has decreased. On
the other hand, TCP still remains the dominating transport protocol that conveys
the vast majority of the traffic - typically more than 90% of the bytes. As a conse-
quence, the behavior and performance of TCP in the Internet has become a major
concern. The heterogeneity of today’s applications functioning on top of TCP and
the complexity of the environment they are used in, impose that a meaningful anal-
ysis can only be done during their operation in the Internet.

Throughput is commonly the most important performance measure of a long
TCP connection. The achieved throughput represents the aggregate effects of the
network path, the end points, and the application. Our research work focused on
finding out which of them are responsible for limiting the throughput of a given
TCP connection at a given time instant. Knowledge about these limitation causes
is very precious for Internet Service Providers (ISP) for quality of service evalua-
tion and troubleshooting. From the research point of view, traffic modeling is an
area that would benefit from this knowledge, with more accurate workload models
of TCP traffic. It is equally important for Internet applications designers to know
when the limiting factor is the network or the TCP end points instead of the appli-
cation.

Approach: We adopt an approach that requires as input bidirectional packet
header traces captured at a measurement point along the path and produces as out-
put quantitative information about the limitation causes of TCP’s throughput per
connection. We assign a score to each of those limitations and track the evolu-
tion of limitation scores with time. For this purpose, we base our approach on a
set of time series generated from the (TCP and IP) packet headers. We focus on
long transfers where we expect the slow start no longer to dominate the achieved
throughput.

As stated above, we distinguish three main classes of limitation causes: (i)
limitations due to the application, (ii) limitations due to the TCP end-hosts and (iii)
limitations due to the network. We apply a divide and conquer approach to infer
the limitation causes. First, the periods where the throughput is determined by the
application are isolated. The remaining data consists of so called bulk transfer
periods. We then apply a set of tests to derive the most likely cause (or causes) that
explains the performance of those bulk transfer periods. Whenever possible, the
algorithms used in the tests are validated using live measurements in the Internet
compared against the results given by Web100 [9], a kernel patch that allows to
access the actual internal variables of the active TCP connections of a host. We
also used NIST Net [4] to create specific conditions for a transfer.

3

Zhang et al. [17] performed pioneering research work into the origins of Inter-
net TCP throughput limitation causes by introducing the TCP Rate Limitation Tool
(T-RAT). They introduce a taxonomy of rate limitations (application, congestion,
bandwidth, sender/receiver window, opportunity and transport limitations) that we
build on and extend in the present work. T-RAT turned out to suffer from a number
of limitations. First, to identify rate limitation, T-RAT needs to identify so called
“flights” of packets. These flights often cannot be identified, as we will see in
section 3, which undermines the main premise of T-RAT. Second, T-RAT breaks
long connections into “flows” of at most ����� consecutive packets. In contrast, we
perform true connection level analysis.

Challenges: The problem is very challenging for several reasons. Operat-
ing at connection level complicates the analysis because with long connections,
we have a higher probability to observe several limitation causes over different pe-
riods of time. For instance, some Internet applications such as BitTorrent [7] or
HTTP1.1 operate by switching between active transfer periods and passive keep-
alive periods. Our first challenge is to detect those different periods and analyze
them separately.

The great number of parameters that influence the behavior of a TCP con-
nection is also a major issue: round-trip time (RTT), receiver advertised window,
link capacities, available bandwidth, delayed acknowledgment, and TCP version
to name a few.

Contributions: The contribution of this paper is threefold: First, in section
2, we discuss the problem of inferring causes for TCP’s transmission rate limita-
tion by elaborating more on the limitation concepts themselves with respect to the
approach taken by T-RAT. Second, in section 3, we demonstrate through simula-
tions that an important characteristic of a TCP transfer, the so called flights, have in
many cases a very different form than the one assumed in T-RAT. Third and most
importantly, we provide a set of algorithms to infer causes that limit the throughput
of a given TCP transfer (sections 4 and 5), and apply it to an example set of real
Internet traffic (section 6).

2 Causes for Rate Limitation

In this section, we discuss the different rate limitation causes that we want to
infer. While the classification is inspired by T-RAT, we extend the scope of their
work, and exemplify the difficulties of identifying certain causes or assessing the
impact of others. We present the causes in a top down manner, starting from the
application level down to the network level.

4

2.1 Application

The application operating on top of TCP can be the cause for the achieved
throughput. In this case, TCP is not able to fully utilize the transport or network
layer resources because the application does not produce data fast enough. There
exist two scenarios where the application is the limitation cause.

In the first scenario, the application is producing small amounts of data at a
relatively constant rate for the TCP layer. This results in small bursts of packets,
in the extreme case a single packet of size less than the maximum segment size of
the connection. Typical examples are live streaming applications such as Skype [1]
that transfers data over TCP at a constant rate of ��� Kbit/s. Also, applications
that use permanent TCP connections and send keep-alive packets during inactive
periods, fall in this category (BitTorrent exhibits this behavior during choke periods
-see [7]).

In the second scenario the application is producing data in bursts separated
from each other by idle periods. An example of such behavior is web browsing
with persistent HTTP connections. The user clicks on a link to load a web page,
causing a transfer period, reads the page, causing an idle period, and clicks on
another link, causing another transfer period.

2.2 TCP End Point Limitations

The achieved throughput of TCP can be limited by the size of the buffers al-
located at the two end-points of a connection. The receiver buffer (between the
TCP layer and the application layer) constrains the maximum number of outstand-
ing bytes the other end is allowed at any given time instant. On the other hand,
the sender buffer (between the TCP layer and the MAC layer) constrains the maxi-
mum number of bytes in the retransmit queue. Consequently, the size of the sender
buffer also constrains the amount of unacknowledged data that can be outstand-
ing at any time. Following the convention of T-RAT, we call the first limitation
receiver window limitation and the second one sender window limitation. If the
transmission rate of a connection is limited by a window size (either sender or re-
ceiver window limitation), the sliding window of TCP will be consistently smaller
than the bandwidth delay product of the path. Figure 1 shows a time vs. sequence
diagram of an receiver window limited connection. The staircase-like lines indi-
cate the left (lower) and right (upper) limit of the sliding window and the vertical
arrows represent data segments that were sent. Since most of the time, the lines
for the data segments transmitted coincide with line tracking the upper limit of the
sliding window, the sender is receiver window limited.

Sender and receiver window limitations result in the same observable behavior.
As we will see in section 5, identifying a receiver window limitation is possible
using the advertised window information carried by TCP packets. On the other
side, identifying a sender window limitation is a much more complex task, that
we have not been able to address in this work. In [17], the authors were using the

5

30000

25000

20000

15000

10000

 13:51:27 26.5000

 sequence number

 time

Figure 1: A piece of a receiver window limited connection.

notion of flight size to infer a sender-window limitation. However, we will see in
section 3 that identification of flights is, most of the time, impossible. We expect
that for most transfers in the Internet, the sender buffer to be at least the size of the
receiver window. Indeed, in most Unix implementations of TCP, the minimum size
for the sender buffer is ��� Kbytes, which is equal to the maximum receiver window
size when the window scale option (RFC 1303) is not used. When the window
scale option is used, a correct implementation of a TCP stack should resize the
sender buffer when receiving the window scale factor of the other side. However, a
recent study [11] has observed that ����� of the hosts that support the window scale
option were using a window scale factor of � , meaning that the maximum receiver
window was at most ��� Kbytes.

There is an additional type of limitation at the transport layer that is referred
to as opportunity limitation in T-RAT. This limitation occurs for short connections
carrying so few bytes that the connection never leaves the slow start phase. Since
it is the slow start behavior of TCP that limits the rate of the TCP transfer we do
not classify these connections as application limited. As will become clear later,
we concentrate on analyzing long TCP connections in which case opportunity will
not be a relevant cause.

2.3 Network Limitation

The third category of limitation causes for the throughput seen by a TCP con-
nection are due to the network. We focus on the case where there is one or more
bottlenecks on the path that limit the throughput of the connection (see [6] for
a study on the location and lifetime of bottlenecks in the Internet). While other
network factors might impact a TCP connection such as link failures or routing
loops [15], we do not consider them in the present work as we can reasonably ex-
pect their frequency to be negligible as compared to the occurrence of bottlenecks.

For the following, we need a couple of definitions [5]: We call the narrow
link of the path the link with minimum capacity along that path. We define the
bottleneck link of a TCP connection as the link on the path where this connection

6

1390805000

1390800000

1390795000

1390790000

1390785000

1390780000

51.350051.345051.340051.335051.330051.3250

sequence number

time

Figure 2: A piece of a bandwidth limited connection where packets are regularly
spaced due to the bottleneck link.

receives the least amount of bandwidth. Note that while at a given time instant,
there is a single bottleneck for a given connection, the location of the bottleneck
as well as the amount of bandwidth received at the bottleneck can change over
time. Please note that the bottleneck link is not (necessarily) the same as the tight
link, which is the link with the minimum available bandwidth on the path, and
that the available bandwidth differs from the bulk transfer capacity of a path: The
classical example is the case of a link of capacity � used at � ��� � by a single TCP
connection. The available bandwidth is zero on the link while the bulk transfer
capacity should be � � .

If the bottleneck link explains the rate limitation observed for a connection, we
declare this connection as network limited.

Packet losses are natural indicators of a bottleneck and we will thus use the
packet loss rate as a measure of the impact of the network to a connection. How-
ever, note that the packet loss rate value by itself does not fully characterize the
impact of congestion on the throughput of a given connection. Especially, two
connections with different RTT values won’t see their throughput affected simi-
larly even if they experience a similar loss rate, as can be seen directly from the
TCP throughput formula [10]: �����
	���
��������� �� � , where ����� is the maximum
segment size of the connection, � is a constant and � is the loss event probability
(which is related to the loss rate, while not similar, as it indicates the frequency of
loss periods where one or more packets are lost).
For the above reasons, we will use two metrics to infer if a connection is network
limited: (i) the retransmission rate of the connection and (ii) the dispersion ratio
(see section 5.2) that can be used to detect if the bottleneck link is shared or not.
Figure 2 shows a time vs. sequence diagram of a connection whose throughput
is limited by a non-shared bottleneck link. The regular spacing between sent data
segments and similarly of the acknowledgments received (tracked by the right limit
of the sliding window) is easy to observe.

7

3 On the Flight Nature of TCP

A common view of the behavior of TCP is that it transfers packets in flights,
i.e. in groups of packets that are sent back to back within a group. This intuition
comes from the window based flow and congestion control mechanisms used in
TCP. Flights are a very important notion for T-RAT as it needs to relate the flights
to the different phases of TCP, namely slow-start, congestion avoidance, and loss
recovery. In [13], the authors search for flights in Internet traffic traces and arrive
to the conclusion that flights can be rarely identified, which means that a tool such
as T-RAT is unable to function properly. In the present work, we investigate the
notion of flights through simulations, and come to a similar conclusion: while it is
possible to observe groups of packets it is difficult to relate them to the well-known
phases of TCP.
We simulated TCP connections limited by a specific cause using ns-2 and varied
different parameters affecting the behavior of the connection (RTT, receiver adver-
tised window, TCP version, etc.). The objective is to study the similarity of the
signatures of connections limited by the same cause but having different parameter
values. By signature, we mean the distribution of packet inter-arrival times (IATs).
For example, in the case of a receiver window limited connection one would expect
to observe a bimodal distribution of the IATs, with the principal mode at � 	�� � ��
and the secondary mode at � 	 � ��� � ���

�	��
 �
��� �
� , where � is the packet size

(typically can be assumed to be equal to MSS), � the capacity of the narrow link,
and � is the receiver advertised window. The principal mode corresponds to the
time it takes to transmit a single packet on the narrow link on the path. As all the
packets of a single window should be sent back to back in a single flight, their
inter-arrival times correspond to this value. The position of the second mode corre-
sponds to the time interval between observing the last packet of the previous flight
and the first packet of the next flight. Moreover, the ratio of the heights of these
peaks should be close to a factor of � ��� because for each window worth of
packets one observes � � � times � 	�� and one time ��	 � . We show here a few
examples to demonstrate that this type of simple reasoning rarely holds.

We started with a simple simulation topology with one client (node 0) and
server (node 2) and one intermediate router (node 1). A two-minute long FTP
transfer was set up on top of a TCP connection established from node 2 to node 0.
Figures 3 and 4 show histograms of inter-arrival times of packets from simulated
connections where the connection is limited by the receiver advertised window
of 20 packets. In Figure 3, delayed acknowledgments were not used by the TCP
receiver and in Figure 4 delayed acknowledgments were used. As expected, in
Figure 3 we observe the two modes at � 	�� � ��� ����� and � 	 � ��� ��� ����� and the
ratio of their heights is approximately � � . However, if the TCP receiver is delaying
acknowledgments the situation becomes more complex. We can still observe the
principal mode � 	�� in Figure 4 but instead of only the secondary mode we observe
several additional modes. Due to the delayed acknowledgment timer at the receiver,

8

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

fr
ac

tio
n

of
 s

am
pl

es

inter−arrival time∆ t
1
 ∆ t

2

Figure 3: Without De-
layed ACKs

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

fr
ac

tio
n

of
 s

am
pl

es

inter−arrival time
∆ t

1

Figure 4: With Delayed
ACKs

−0.02 0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18
0

50

100

150

200

f(
x)

inter−arrival time

no cross−traffic

−0.02 0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18
0

20

40

60

80

100

120

f(
x)

inter−arrival time

medium cross−traffic (offered load 0.5)

Figure 5: Evolution of
the pdf of the inter-arrival
times of packets from a
receiver window limited
connection without and
with cross traffic.

the set of � packets sent back to back is divided into several smaller sets of packets
sent back-to-back. The number of these groups of packets depends on the ratio of
the � � � to the delayed acknowledgment timer value but also on the � value.
Thus, we can already conclude from this first experiment that relating flights to
one of the phases of TCP is a difficult task.

We next considered the more realistic scenario with cross-traffic using the web
client-server class of ns-2 at node 1. Tuning the parameters of the clients, we sim-
ulated different load values. Figure 5 shows an example evolution of the proba-
bility density function (pdf)1 of the inter-arrival times of packets when increasing
the offered load of the cross-traffic. In these simulations the delayed acknowledg-
ments mechanism is used as this is the most common case. The loss rate for the ftp
connection experiencing cross-traffic was zero for all cases of offered load.

The main observation from these plots is that even with small amounts of cross-
traffic the structure of the pdf (and consequently of the groups of packets) is much
more complex than in the first simple scenario. In general, cross-traffic adds to
the queuing delay, which softens the modes of the pdfs (i.e. creates much more
different group sizes). This means that the flight sizes become more complex to
identify, which makes it difficult to track the size of the congestion window. These
simulations further confirm that relying on the flight sizes to identify the phases of
TCP is often impossible, and that T-RAT 2 [17] should be unable to work properly
in many cases.

1We compute the pdf estimates using a kernel density estimation technique [14] with Gaussian
kernel function.

2No publicly available version of T-RAT has been released so far.

9

SYN

ACK(+Data)

SYN+ACK

d4

d1

d2 d6

d5d3

B CA

ReceiverSender

Figure 6: Determining the measurement position from the three-way handshake of
TCP

4 A Time Series-Based Approach

Our approach to infer the causes that limit the throughput of a given connection
is to generate a number of time series out of the tcpdump packet trace of the
connection. We then use those time series to generate scores that characterize the
impact of the different causes. As the location of the measurement point on the
path impacts the way the time series are generated, we devote the next subsection
to this issue. We then briefly present all the time series that we use in our tests,
along with some tests that we made to validate some heuristics used when building
these time series.

4.1 Measurement Point Location

Most of the time series that we use, are very easy to compute if the packet trace
was captured at the sender side. However, we do not want to limit ourselves to
this specific case as, for instance, we may use publicly available traces collected by
third parties and for which we do not have exact information about the measure-
ment configuration.
The first problem then is to infer the location of the measurement point. Let us con-
sider the case depicted in figure 6, where the measurement point A is close to the
sender and points B and C are not. We can determine the measurement point with
respect to the connection initiator by measuring and comparing the delay between
observing the SYN and SYN+ACK packets, and the delay between SYN+ACK and
ACK packets, referred to as �
� and � � , respectively, for the measurement point A.
We conclude that A is close to the connection initiator if �

�
� ��� � � ��� .

More generally, we need to compute the RTT samples for each connection. In
the case that our measurement point is close to the sender, we compute the RTT
for each acknowledged data packet as the time interval between the timestamps
of the first observed acknowledgment and the one of the last transmission of the
corresponding data packet3. In the case that our measurement point is not close to

3Here we must take into account that packets may be sent multiple times, in the case of losses,

10

the sender and TCP timestamps are available, we implement the method described
in [16].

4.2 Time Series

In this section, we list all the time series that we use in our tests to find the root
causes for the throughput seen by a TCP connection.

Fraction of Pushed Packets: A pushed TCP packet is sent with a PUSH
flag. From RFC-793: “The sending user indicates in each SEND call whether the
data in that call (and any preceding calls) should be immediately pushed through to
the receiving user by the setting of the PUSH flag.”. Pushed packet thus indicates
that the application on top of TCP has for the moment no more data to send. We
compute for each direction of a TCP connection the time series of the fraction of
pushed packets observed over all consecutive time intervals of fixed duration. Note
that we only consider packets carrying data and discard pure acknowledgments to
compute those fractions. If no packets have been seen during a given time window
the value is set to � � .

Inter-arrival Times of Acknowledgments: We compute the inter-arrival
times of acknowledgments separately for each direction of a connection. The
ACKs included in the computation are either acknowledging one or two times MSS
new bytes or duplicate acknowledgments. Furthermore, we cancel the effect of de-
layed ACKs by dividing by two the inter-arrival time of ACKs that acknowledge
two MSS worth of bytes.

Retransmission Rate: We compute for each direction of a TCP connection,
the time series of retransmission rate as the fraction of retransmitted bytes per all
(data) bytes transmitted in consecutive time intervals of � second. A packet is
considered to be a retransmission if (i) the packet carries an end-sequence value
lower than or equal to any previously observed one; and (ii) the packet has an IPID
value [2] [3] higher than any previously observed values.

Note that we cannot rely on observing retransmitted packets twice and count-
ing them since the packets may be lost before the measurement point especially if
the measurement point is far from the sender. With the help of the second condi-
tion where we check the IPID we remove false positive retransmissions caused by
reordering of packets by the network that can occur if the measurement point is far
from the sender.

Receiver Advertised Window: We compute the time series for receiver ad-
vertised window, which consists of time-weighted averaged values over a given
time interval: Each time a packet is received from the other end, the receiver win-
dow indication that it carries will be considered as the actual receiver window value

and similarly acknowledged multiples times, in the case of lost or piggy bagged acknowledgments.

11

until either the end of the time window occurs or the reception of a new packet. The
previous technique is valid if the measurement point is located at the sender side.
If the measurement point is away from the sender, we virtually shift in time the
observed timestamp values by the time delay between the sender and the observa-
tion point. For example, in Figure 6, we would shift in time the timestamp values
of packets arriving from the receiver at measurement point C by � �

�
� , which is the

estimated time at which this packet should arrive at the sender. Note that � � will
be estimated using the technique borrowed from [16] as indicated in section 4.1

Outstanding Bytes: Another value of interest is the amount of data bytes sent
and not yet acknowledged at a given time instant. Since the computation is done by
inspecting both directions of the traffic, we need to take into account the location
of the measurement point.

If the measurement point is close to the sender, we produce the time series
by calculating the difference between the highest data packet sequence number
and the highest acknowledgment sequence number seen for each packet and then
averaging these values over a time window in the same way that we do for the
receiver advertised window values.

If the measurement point is away from the sender, we do the computation by
shifting in time the timestamp values of arriving packets. For example, in Figure
6, we would shift the timestamp values of data packets arriving from the sender at
C by � � �

� and of acknowledgments arriving from the receiver at C by � �
�
� .

The above algorithms (at the sender and at the receiver side) are heuristics that
we tested with real transfers on the Internet. We analyzed scp transfers from a
Web100 enabled machine to another machine and ran tcpdump at the sending or
receiving machine. Web100 provides the exact values for the sending TCP’s re-
transmission queue size, which corresponds to our definition of outstanding bytes.
We did scp transfers and compared the values obtained from Web100 and our
algorithms: from Institut Eurecom to University of Oslo in Norway and from Eu-
recom to University of Navarre in Spain. As the transfer to Spain proved to be on
a lossy path (with approx. 6% of retransmitted bytes) and the one to Oslo not, we
were able to capture two different environments. Due to space limitation, we only
present here the main conclusion of this study: the maximum observed difference
between the estimated and actual value was always below one � � � value, a good
enough precision for the tests based on these time series (see section 5.2.1).

5 Identifying and Analyzing Bulk Transfer Periods

In this section, we present how we use the time series introduced in section 4 to
separate bulk transfer periods from application limited periods. We also introduce
the different tests for TCP end hosts and network limitations.

12

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

fraction of pushed packets from all packets
fr

ac
tio

n
fr

om
 to

ta
l s

am
pl

es

Figure 7: Histogram of the time series values of the fractions of pushed packets for
all connections of a 10GB BitTorrent packet trace.

5.1 Identifying Bulk Transfer Periods

The first operation we perform on a connection is to separate periods limited by
the application from other periods. We identify the active phases of a connection
where TCP consistently has data to transfer and call them bulk transfer periods.
We identify bulk transfer periods using the time series of fractions of pushed pack-
ets using time window of � � � seconds. A smaller value for the duration of a time
window would risk to interpret the idle time due to the sender waiting for new
acknowledgments after having sent a congestion window full of packets, as an in-
dication of application limitation. The algorithm used to separate bulk transfer
periods from application limited periods varies between two states: active and in-
active. We define the starting state to be inactive. The algorithm switches to the
active state (start of a new bulk transfer period) if the fraction of pushed flag is con-
sistently below a value � for � 	 � consecutive time periods. The algorithm switches
back to inactive state (end of the current bulk transfer period, and start of a new
application limited period) if the fraction of push flags has been observed consis-
tently above � for � 	 � consecutive time periods, or if no traffic was sent during
those � 	 � consecutive time periods.

The algorithm is able to recognize both types of application limited periods
discussed in Section 2 since we consider both the idle time and the ratio of pushed
packets. However, the thresholds � , � 	 � , and � 	 � need to be tuned according to the
type of input traffic and the focus of the analysis. In section 6, we present results for
a � � Gbytes BitTorrent trace and we chose � as follows: We computed a histogram,
(Figure 7), from the values of the time series of the fractions of pushed packets
during one-second time intervals for all the connections of the trace. Based on this
histogram we set � to � � � but clearly choosing any value from � � � ��� � � ����� would
practically give the same result. We set � 	�� � � seconds and � 	 � � � � seconds,
which implies that we discard any transfer periods shorter than five seconds.

13

5.2 Bulk Transfer Period Analysis

After separating bulk transfer periods from application limited periods, we ap-
ply the tests for TCP end-point and and the networking limitations on the iden-
tified bulk transfer period. These limitation tests are not exclusive. Each of the
tests yields a score between � and � that quantifies the level of the limitation. Note
that it is a major improvement over T-RAT [17] that was only providing qualitative
results, i.e. a binary answer for each test.

5.2.1 Receiver Window Limitation

We use two time series to test for receiver window limitation: the outstanding
bytes and receiver advertised window time series. The difference of the values of
these two time series indicates how close the TCP sender’s congestion window is
to the limit set by the receiver window. Specifically, for each pair of values in the
two time series, we compute their difference and generate a binary variable with
value one if this difference is less than ��� � ��� and zero otherwise (in section 6
we discuss the impact of the � value). The receiver limitation score is the average
value of the resulting binary time series for the analyzed bulk transfer period.

5.2.2 Network Limitation

We use two metrics to infer whether the network limits the throughput of a
connection: (i) the retransmission score and (ii) the dispersion score.

Retransmission score: The retransmission score for a bulk transfer period is
computed as the retransmission rate for this period. Note that since TCP may per-
form unnecessary retransmissions, retransmission rate does not exactly correspond
to loss rate. However, we can expect these quantities to be close to one another in
general and especially if the version of TCP used SACK.

Dispersion score: The objective of the dispersion score is to assess the impact
of the bottleneck on the throughput of a connection. We are going to introduce this
factor starting from the simple case of a non-shared bottleneck in the network, next
moving to the case where there is a shared bottleneck which is the narrow link of
the path up to the general case where the bottleneck link is not the narrow link of
the path. The dispersion score is computed from the times series of the inter-arrival
times of acknowledgments and the average throughput 	 �
��	 of the bulk transfer
period under consideration.

Let us first consider the case where the network limitation consists of a non
shared bottleneck on the path. The bottleneck is evidently the narrow link of the
path. Let � be the capacity of the narrow link. The histogram of the inter-arrival
times of acknowledgments (computed as explained in Section 4.2) should exhibit a
mode located at
����� that contains most of the mass. Since the bulk transfer period

14

Table 1: Validation results from inferring the capacity of the narrow link.

src set � � estimate
�������	�
�

� retr rate RTT
UN 2.0 Mbit/s 2.0 Mbit/s 0.89 0.175 56 ms
UiO 2.0 Mbit/s 2.0 Mbit/s 0.43 0.027 71 ms
HUT 2.0 Mbit/s 2.0 Mbit/s 0.69 0.037 71 ms

UN 5.0 Mbit/s 5.1 Mbit/s 0.92 0.089 56 ms
UiO 5.0 Mbit/s 5.1 Mbit/s 0.35 0.008 72 ms
HUT 5.0 Mbit/s 5.1 Mbit/s 0.78 0.013 71 ms

UN 2.0 Mbit/s 2.0 Mbit/s 0.21 0.055 57 ms

UiO 2.0 Mbit/s 2.0 Mbit/s 0.10 0.014 70 ms

HUT 2.0 Mbit/s 2.0 Mbit/s 0.03 0.005 71 ms

is network limited and the narrow link is not shared, the ratio of 	 ����	 to � should be
approximately equal to 1, i.e.

� ��
 �
��� � . We define the dispersion score as � �

� ��
 �
� .

Consider now the more complex case where the bottleneck link is still the nar-
row link of the bulk transfer period but it is now shared 4. The histogram of the
inter-arrival times of acknowledgment should still exhibit a mode located at
����� .
However, since now the bottleneck is shared, this mode will contain a smaller frac-
tion of the total mass of the histogram. Also, the ratio

� ��
 �
� represents the share that

the connection obtains at the narrow link during this bulk transfer period.
Consider now the more general case where the bottleneck is not the narrow

link. The mode at
�� �� in the histogram of the inter-arrival times of acknowledg-
ments should still persist, though less pronounced, and it is thus still possible to
identify the capacity of the narrow link. (We refer the reader to [8] for a related
work that takes advantage of the distribution of the inter-arrivals of packets to iden-
tify link capacities.) In this case,

� ��
 �
� does not represent any more the share that

the connection obtains at the bottleneck. However, the dispersion score can still be
seen as an indicator of the distortion (or dispersion) introduced by the network.

We validate the method to infer the narrow link capacity by setting up an arti-
ficial narrow link with NIST Net at Institut Eurecom, the receiving end of the path,
and transferring a large file with scp to Eurecom from University in Oslo (UiO),
University of Navarre (UN), and Helsinki University of Technology (HUT). We
performed two experiments with three parallel transfers for two different narrow
link capacities (2 Mbit/s, 5 Mbit/s) in order to observe the effect of cross traffic,
and three experiments with a single transfer each to observe the impact for disper-
sion score. The results in table 1 show that the accuracy of the estimated � value in
these tests is good regardless of the loss rate on the path. We also observe that the
low dispersion scores correctly reveal that there is no sharing at the bottleneck.

4In practice, detecting this case is not an easy task and would require the use of tools like Path-
neck [6] that detects bottlenecks in combination with a tool that measures the capacity of a path [5].
This study is out of the scope of the present work

15

6 Experimental Results

6.1 Dataset

We applied our algorithms to a 10 Gbytes tcpdump packet trace of BitTorrent
traffic captured at the University of Navarre. The machine at Navarre was involved
in a single torrent and the traffic was recorded once the machine had obtained a
full copy of the file and thus only acting as a server (seed in the BitTorrent termi-
nology). Hence, all the traffic was captured at the sender side. The trace contains
nearly � � � ����� connections with a total amount of � � � million packets.

10
0

10
2

10
4

10
6

0

0.2

0.4

0.6

0.8

1

duration (s)

F
(x

)

bulk transfer periods
appl. limited periods

Figure 8: Cdfs
of durations of the
periods

10
0

10
5

10
10

0

0.2

0.4

0.6

0.8

1

F
(x

)

size (bytes)

bulk transfer periods
appl. limited periods

Figure 9: Cdfs of
the size of the pe-
riods in bytes

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

receiver window limitation score

F
(x

) 2*MSS threshold
1*MSS threshold
3*MSS threshold

Figure 10: Cdf of
receiver window
limitation score

0 0.2 0.4 0.6 0.8 1
10

3

10
4

10
5

10
6

receiver window limitation score

av
er

ag
e

re
ce

iv
er

 a
dv

er
tiz

ed
 w

in
do

w

Figure 11: Re-
ceiver window
limitation score
vs. mean ad-
vertised window
size

6.2 Separating the Wheat From the Chaff

Out of the � � � ����� initial connections, we first filtered out the � � ��� connections
with at least � � packets. We then applied our algorithm to isolate the bulk transfer
periods and the applications limited periods. We discarded the connections that
consisted of a single application limited period (our algorithm discards transfer
periods of less than � seconds, refer to Section 5.1). We ended up with � ��� con-
nections (to � � � hosts) consisting of ������� bulk transfers and � � � ����� application
limited periods.

Figures 8 and 9 show the cumulative probability density functions (cdf) of the
durations and sizes in bytes of both types of periods. We observe that even though
BitTorrent is sending only small protocol messages (e.g. to request a block or
a piece, or to keep connection alive) during the periods when it is non active or
only downloading data, i.e. the application limited periods, the duration of those
periods is so large as compared to the bulk transfer periods (figure 8) that eventually
the total amount of bytes of some of the application limited periods can be non
negligible as compared to the amount carried by some of the bulk transfer periods
(figure 9). Indeed, a closer look revealed that the ones transferring up to 2.5 Mbytes
are several hour-long connections sending small packets with push flags with a
constant very low rate (� ������� 	�� �).

16

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

score

F
(x

)

retransmission score
dispersion score

(a) Cdfs of
network
limitation
scores

0 0.05 0.1 0.15 0.2 0.25 0.3
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
x 10

5

retransmission score

av
er

ag
e

th
ro

ug
hp

ut
 (

by
te

s/
s)

(b) Retransmission
score vs.
throughput

10
−2

10
0

10
2

10
4

0

0.2

0.4

0.6

0.8

1

narrow link capacity (Mbit/s)

F
(x

)

(c) Cdf of in-
ferred narrow
link capaci-
ties. The box
highlights
the 2Mbit/s
transfers.

0 0.05 0.1 0.15 0.2 0.25 0.3

0.2

0.4

0.6

0.8

1

retransmission score

di
sp

er
si

on
 s

co
re

(d) Retransmission
score vs. dis-
persion
score

Figure 12: Network limitation characteristics

For the bulk transfer periods the coefficient of correlation between the through-
put and the size is � � ��� and between the throughput and the duration is � � ��� . Such
strong correlations are the consequence of the BitTorrent protocol that favors fast
transfers between peers. Hence, the faster the transfer, the more likely it is to last
for long, and thus to be large.

6.3 Receiver Window Limitation

Figure 10 shows a cdf of the receiver window limitation score for different val-
ues of � (see section 5.2.1). Clearly, the choice of � is not critical as the shape of
the curve remains practically the same for ���

� � � ��� � � . We use in the following
analysis ��� � . We observe that approximately ����� of the transfers are never
limited by the receiver window and � ��� are limited half of their life time. Only a
small fraction of the transfers are limited more than � � � of the time by the receiver
window. In Figure 11 the receiver window limited score is plotted against the
mean value of the receiver advertised window size. The three most common adver-
tised window values are distinguishable from Figure 11 as horizontal stripes: 8, 16,
and 64 Kbytes, an observation that agrees with [11]. The coefficient of correlation
between the limitation score and average advertised window size is � � � ��� which
indicates that it is more probable to be receiver window limited when the average
advertised window value is smaller. However, we note that there is a significant
amount of transfers with a high limitation score and an average advertised window
of ��� Kbytes, the largest usable value without window scaling. This observation
suggests that perhaps, in some cases, a higher throughput could be obtained by us-
ing the window scaling option, though it is not certain and depends on the amount
of available bandwidth on the path. Indeed, using a larger window value might
equally lead to congestion and lower throughput [12].

17

We found that all of the � � � client hosts used window scaling or supported its
usage in our dataset. Nevertheless, approximately 93% of the hosts did not scale
their own advertised window, while 6% set the scaling shift value to 2 and 1% to
7. This agrees with the results in [11] where they discovered that ����� of the hosts
that support window scaling set the value to zero. On the other hand, only ����� ���
of the hosts in their dataset support window scaling, as compared to � ��� � in our
case.

6.4 Network Limitation

We observed surprisingly elevated levels of network limitations in our dataset
as can be seen from Figure 12(a). In 20% of the transfer periods, at least 10% of
the bytes were retransmitted. We plotted the retransmission score against achieved
throughput in Figure 12(b) and, as expected, we observe that the higher the re-
transmission score the lower the throughput as stated by the TCP throughput for-
mula [10]. The coefficient of correlation between the retransmission score and the
throughput is � � � � � .

The cdf of the estimated capacities of narrow links is presented in Figure 12(c).
The most dominant capacity is around 2 Mbit/s with � ��� of the values (highlighted
with a box). The values around 1 Gbit/s are erroneously inferred since the capacity
of the access link of our measurement host was less than 1Gbit/s and may be due
to ack compression. Out of the 1791 narrow links for which we were able to infer
a capacity we identified only 10 potential non-shared bottlenecks, i.e. cases where
the dispersion score was smaller than 0.2. As the retransmission rate was high
throughout the dataset and the inferred narrow link capacities fairly modest (more
than 70% below 2.5 Mbit/s), a possible explanation for high dispersion scores (see
Figure 12(a)) could be a very congested high capacity link close to our measure-
ment host. Figure 12(d), where the retransmission score (normalized to � � � � �) is
plotted against the dispersion score for transfer periods with a receiver window lim-
itation score lower than 0.5, reveals that there is clearly a connection between these
two scores. More precise interpretations of this phenomenon would require more
information about the cross-traffic, available bandwidth, and bottleneck locations
on the path and is left as future work.

We looked more closely at some of the bulk transfer periods with zero retrans-
mission score and a high dispersion score and found from 30 to 60 seconds-long
bulk transfers doing congestion avoidance and experiencing very long RTTs that
prevented them from growing their sliding window enough to reach the upper limit
before the end of the transfer. The connection containing the example bulk transfer
period in Figure 13 had an initial RTT of ��� ��� while during the transfer period
the RTT grew even up to � � � � . This suggests that somewhere along the path large
queuing delays were introduced causing a case of network limitation that could not
be detected by only observing retransmissions.

18

28600000

28400000

28200000

28000000

 00:09:10 00:09:00 00:08:50

 sequence number

 time

�

Figure 13: A complete bulk transfer period with a high dispersion score and no
retransmissions.

6.5 Exclusiveness of the Limitation Causes

0 0.05 0.1 0.15 0.2 0.25
0

0.2

0.4

0.6

0.8

1

retransmission score

re
ce

iv
er

 w
in

do
w

 li
m

ita
tio

n
sc

or
e

(a) Retransmission score vs. re-
ceiver window limitation score

350000

340000

330000

320000

310000

300000
 16:51:35 16:51:30 16:51:25 16:51:20

 sequence number

 time

 R

 R

 R

 R
 R

 R

(b) Close up of a receiver window
and network limited transfer pe-
riod.

Figure 14: Network and receiver window limitation

We want to shed more light on the dynamics of bulk transfer periods that expe-
rience both network and receiver window limitation. Figure 14(a) reveals that even
though the trend is, as expected, that a high score in one test excludes a high score
in the other test, there are still quite a few transfer periods with significant scores
for both limitations. We had a closer look at the three transfer periods highlighted
with a box in Figure 14(a). Two of them exhibited occasional retransmissions in-
terspersed throughout periods where the senders were receiver window limited as
visible in Figure 14(b). Retransmissions are marked with vertical arrows with an
R on top. Non-retransmitted data segments often hit the upper limit of the sliding
window. In contrast, the last transfer periods was receiver window limited until just
before the end of the transfer where it retransmitted a large number of packets.

19

7 Conclusions

In this paper, we have revisited the issue of the root cause analysis of TCP
connections introduced in [17]. We have first demonstrated the weakness of the
flight-based approach adopted in [17]. We have also provided a thorough discus-
sion on the different limitation causes, i.e. the application, the TCP end point
parameters and the network, emphasizing the need to account for the impact of the
application on the observed traffic. We then came up with a new analysis method
based on various time series extracted from the packet headers of a packet trace.
Our technique is robust and allows to precisely assess the impact of each limitation
as a score representing the limitation level between � and � is provided for each of
the causes (as opposed to T-RAT [17] that was only providing a binary answer, yes
or no, to each test). A first application of the tool on a large BitTorrent dataset has
demonstrated the interest of the technique.

Future work will include applying our tool to publicly available traces that con-
sist of a mix of applications. A challenge is the rich mixture of applications. We
want to observe other applications because we believe that the ”bulk transfer appli-
cations” (P2P file transfers and replications, FTP, scp, etc.) do not form a homoge-
neous class of applications but can generate many different traffic patterns due to
a number of factors, e.g. application-level mechanisms, compression, and encryp-
tion, which all have an impact on how data is delivered to TCP and subsequently
transferred. We would also like to analyze the evolution of the limitation causes of
bulk transfer periods within a connection, and eventually, study in more depth the
temporal dynamics of the causes and their interaction within a bulk transfer period.

Acknowledgments

The authors would like to thank Mikel Izal from University of Navarre for
providing the BitTorrent dataset for our experiments.

References

[1] S. Baset and H. Schulzrinne, “An Analysis of the Skype P2P Internet
Telephony Protocol”, CUCS-039-04, Department of Computer Science,
Columbia University, 2004.

[2] J. Bellardo and S. Savage, “Measuring packet reordering”, In IMW ’02:
Proceedings of the 2nd ACM SIGCOMM Workshop on Internet measurment,
pp. 97–105, New York, NY, USA, 2002, ACM Press.

[3] S. M. Bellovin, “A technique for counting natted hosts”, In IMW ’02: Pro-
ceedings of the 2nd ACM SIGCOMM Workshop on Internet measurment, pp.
267–272, New York, NY, USA, 2002, ACM Press.

20

[4] M. Carson and D. Santay, “NIST Net: a Linux-based network emulation
tool”, SIGCOMM Comput. Commun. Rev., 33(3):111–126, 2003.

[5] K. Claffy, R. S. Prasad, M. Murray, and C. Dovrolis, “Bandwidth Estimation:
Metrics, Measurement Techniques, and Tools”, IEEE Network, 17(6):27–35,
November 2003.

[6] N. Hu, L. E. Li, Z. M. Mao, P. Steenkiste, and J. Wang, “Locating internet
bottlenecks: algorithms, measurements, and implications”, In Proceedings of
ACM SIGCOMM 2004 Conference, pp. 41–54, New York, NY, USA, 2004,
ACM Press.

[7] M. Izal, G. Urvoy-Keller, E. Biersack, P. Felber, A. Al Hamra, and L. Garcés-
Erice, “Dissecting BitTorrent: Five Months in a Torrent’s Lifetime”, In
Passive and Active Measurements 2004, April 2004.

[8] S. Katti, D. Katabi, C. Blake, E. Kohler, and J. Strauss, “MultiQ: Automated
Detection of Multiple Bottleneck Capacities Along a Path”, In Proceedings
of Internet Measurement Conference (IMC ’04), pp. 245–250, October 2004.

[9] M. Mathis, J. Heffner, and R. Reddy, “Web100: extended TCP instrumenta-
tion for research, education and diagnosis”, SIGCOMM Comput. Commun.
Rev., 33(3):69–79, 2003.

[10] M. Mathis, J. Semke, J. Mahdavi, and T. Ott, “The Macroscopic Behavior of
the TCP Congestion Avoidance Algorithm”, SIGCOMM Comput. Commun.
Rev., 27(3):67–82, July 1997.

[11] A. Medina, M. Allman, and S. Floyd, “Measuring the Evolution of Transport
Protocols in the Internet”, SIGCOMM Comput. Commun. Rev., April 2005.

[12] R. S. Prasad, M. Jain, and C. Dovrolis, “Socket Buffer Auto-Sizing for High-
Performance Data Transfers”, Journal of Grid Computing, 1(4):361–376,
December 2003.

[13] S. Shakkottai, R. Srikant, N. Brownlee, A. Broido, and kc claffy, “The RTT
Distribution of TCP Flows in the Internet and its Impact on TCPbased Flow
Control”, , Cooperative Association for Internet Data Analysis (CAIDA),
University of Illinois, 2004.

[14] B. Silverman, Density Estimation for Statistics and Data Analysis, CRC
Press, 1986, ISBN 0412246201.

[15] R. Teixeira and J. Rexford, “A measurement framework for pin-pointing rout-
ing changes”, In NetT ’04: Proceedings of the ACM SIGCOMM workshop
on Network troubleshooting, pp. 313–318, New York, NY, USA, 2004, ACM
Press.

21

[16] B. Veal, K. Li, and D. Lowenthal, “New Methods for Passive Estimation
of TCP Round-Trip Times”, In Proceedings of Passive and Active Measure-
ments(PAM), 2005.

[17] Y. Zhang, L. Breslau, V. Paxson, and S. Shenker, “On the Characteristics and
Origins of Internet Flow Rates”, In Proceedings of ACM SIGCOMM 2002
Conference, Pittsburgh, PA, USA, August 2002.

22

