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Gwenaël Doërr and Jean-Luc Dugelay
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Abstract. Block replacement attacks consist in exploiting the redun-
dancy of the host signal to replace each signal block with another one
or a combination of other ones. Such an attacking strategy has been
recognized to be a major threat against watermarking systems e.g. ad-
ditive spread-spectrum and quantization index modulation algorithms.
In this paper, a novel embedding strategy will be introduced to circum-
vent this attack. The basic idea is to make the watermark inherit the
self-similarities from the host signal. This can be achieved by imposing a
linear structure on the watermark in a feature space e.g. the Gabor space.
The relationship with existing multiplicative watermarking schemes will
also be exhibited. Finally, experimental results will be presented and
directions for future work will be discussed.

1 Introduction

Digital watermarking was initially introduced in the early 90’s as a comple-
mentary protection technology [1] since encryption alone is not enough. Indeed,
sooner or later, encrypted multimedia content is decrypted to be eventually pre-
sented to human beings. At this very moment, multimedia content is left unpro-
tected and can be perfectly duplicated, manipulated and redistributed at a large
scale. Thus, a second line of defense has to be added to address this issue. This
is the main purpose of digital watermarking which basically consists in hiding
some information into digital content in an imperceptible manner. Up to now,
research has mainly investigated how to improve the trade-off between three con-
flicting parameters: imperceptibility, robustness and capacity. Perceptual models
have been exploited to make watermarks less perceptible, benchmarks have been
released to evaluate robustness, channel models have been studied to obtain a
theoretical bound for the embedding capacity.

A lot of attention has focused on security applications such as Intellectual
Property (IP) protection and Digital Rights Managements (DRM) systems. Dig-
ital watermarking was even thought of as a possible solution to combat illegal
copying which was a forthcoming issue in the mid-90’s. However the few at-
tempts to launch watermarking-based copy-control mechanisms [2, 3] have re-
sulted in partial failures, which have significantly lowered the initial enthusiasm
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for this technology. These setbacks were mainly due to the claim that embedded
watermarks would survive in a highly hostile environment even if very few works
addressed this issue. Indeed, if the survival of the watermark against common
signal processing primitives - filtering, lossy compression, global desynchroniza-
tion - has been carefully surveyed, almost no work has considered that an at-
tacker may exploit some knowledge on the watermarking systems to defeat it.
Nevertheless, in applications such as copy control or fingerprinting, digital wa-
termarking is usually seen as a disturbing technology. If content owners are glad
to have means to protect their high valued multimedia items, customers on the
other hand do not really appreciate that some hidden signal prevent them from
freely copying digital material or that an invisible watermark identifies them as a
source of leakage. Therefore, this protecting technology is likely to be submitted
to strong hostile attacks when it is released to the public.

Security evaluation is now a growing concern in the watermarking commu-
nity since recent studies have highlighted that most watermarking systems can
be defeated by malicious attackers [4, 5]. In particular, collusion attacks have
often been mentioned as a possible mean to evaluate security [6, 7]. Collusion
consists in collecting several watermarked documents and combining them to
obtain unwatermarked content. There are two basic cases. When different con-
tents are watermarked with some kind of structure, colluders try to estimate
this structure and exploit this knowledge in a second step to remove the water-
mark [8]. Alternatively, when similar contents carry uncorrelated watermarks,
colluders can average them so that watermark samples sum to zero. Block Re-
placement Attacks (BRA) consist in replacing each signal block with another
one or a combination of other ones and can thus be seen as an extension of this
later strategy. BRA have been shown to defeat both additive Spread-Spectrum
(SS) and Quantization Index Modulation (QIM) [9] and will thus be rapidly
reviewed in Section 2. A novel embedding strategy is then designed in Section 3
to circumvent this attack by making the watermark inherit the self-similarities
of the host signal. This is done by forcing a linear structure on the watermark in
a feature space e.g. the Gabor space. At this point, an analogy between this new
approach and previous multiplicative embedding schemes [10, 11] can even be
exhibited. Next, the resilience of these signal coherent watermarks against BRA
is evaluated in Section 4 in comparison with standard additive SS watermarks.
Finally, conclusions are drawn in Section 5 and tracks for future work are given.

2 Block Replacement Attacks

Multimedia digital data is highly redundant: successive video frames are highly
similar in a movie clip, most songs contain some repetitive patterns, etc. An
attacker can consequently exploit these similarities to successively replace each
part of the signal with a similar one taken from another location in the same
signal. In particular, such approaches have already been investigated to obtain
efficient compression tools [12]. The signal to be processed is first partitioned
into a set of blocks bT of size ST . Those blocks can either overlap or not. The
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Fig. 1. BRA implementation using a fractal coding strategy: each block is replaced
by the one in the search window which is the most similar modulo a geometrical and
photometric transformation.

asset of using overlapping blocks is that it prevents strong blocking artifacts on
the border of the blocks by averaging the overlapping areas. The attack processes
then each one of these blocks sequentially. For each block, a search window is
defined. It can be chosen in the vicinity of the target block bT or randomly
for security reasons. This search window is partitioned to obtain a codebook
Q of blocks bQi

of size SQ. Once again, these blocks can overlap or not. Next
a candidate block for replacement bR is computed using the blocks present in
the codebook. Of course, the larger the codebook Q is, the more choices there
are to compute a replacement block which is similar enough to the input block
bT so that they can be substituted without introducing strong visual artifacts.
On the other hand, the larger the codebook Q is, the higher the computational
complexity is and a trade-off has to be found. The Mean Square Error (MSE)
can be used to evaluate how similar are two blocks with the following formula:

MSE(bR,bT ) =
1

ST

ST∑
i=1

(
bR(i)− bT (i)

)2
, (1)

where the summation index i can be one-dimensional (sound) or multidimen-
sional (image, video). The lower the MSE is, the more similar are the two blocks.
Thus, the original block bT is substituted by the replacement block bR associ-
ated with the lowest MSE.

There are many ways of computing the replacement block bR. One of the
first proposed implementation was based on fractal coding [13] and is illustrated
in Figure 1. The codebook is first artificially enlarged by also considering ge-
ometrically transformed versions of the blocks within the search window. For
complexity reasons, a small number of transformations are considered e.g. down-
sampling by a factor 2 and 8 isometries (identity, 4 flips, 3 rotations). Next, the
candidate replacement blocks are computed with a simple affine photometric
compensation. In other terms, each block bQi

of the codebook is transformed in
sbQi

+ o1, where 1 is a block containing only ones, so that the MSE with the
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target block bT is minimized. This is a simple least squares problem and the
scale s and offset o can be determined as follows:

s =
(bT −mT 1) · (bQi −mQi1)

|bQi
−mQi

1|2
(2)

o = mT − s.mQi (3)

where mT (resp. mQi
) is the mean value of block bT (resp. bQi

), · is the linear
correlation defined as:

b · b′ =
1

ST

ST∑
i=1

b(i)b′(i) (4)

and |b| is the norm defined as
√

b · b. At this point, the transformed blocks
sbQi

+ o1 are sorted in ascending order according to their similarity with the
target block bT and the most similar one is retained for replacement. In the same
fashion, an alternative approach consists in building iteratively sets of similar
blocks and randomly shuffling their positions [14, 9] until all the blocks have been
replaced.

The baseline of the algorithm has then been improved to further enhance the
performances of the attack. The main drawback of the previous implementation
is that it is not possible to modify the strength of the attack. Furthermore, the
computation of the replacement block is not properly managed: either it is too
close from the target block bT and the watermark is reintroduced, or it is too
distant and strong visual artifacts appear. Optimally, one would like to ensure
that the distortion ∆ = MSE(bR,bT ) remains within two bounds τlow and τhigh.
To this end, several blocks bQi can be combined to compute the replacement
block instead of a single one as follows:

bR =
N∑

i=1

λibQi (5)

where the λi are mixing parameter chosen in such a way that ∆ is minimized.
This combination can take into account a fixed number of blocks [15] or also
adapt the number of considered blocks for combination according to the na-
ture of the block to be reconstructed [16]. Intuitively, approximating flat blocks
require to combine fewer blocks than for highly textured ones. However, the
computational load induced by computing optimal mixing parameters in Equa-
tion (5) for each candidate replacement block has motivated the design of an
alternative implementation which is described in Table 1 [16]. First, for each
block bT , the codebook Q is built and photometric compensation is performed.
Next, a Principal Component Analysis (PCA) is performed considering the dif-
ferent blocks bQi

in the codebook. This gives a centroid c defined as follows:

c =
1
|Q|

∑
bQi

∈Q

bQi (6)
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Table 1. BRA procedure using block projection on a PCA-defined subspace.

For each block bT of the signal

1 Build the block codebook Q
2 Perform photometric compensation

3 Performs the PCA of the blocks in Q to obtain a set of orthogonal eigenblocks ei

associated with their eigenvalues εi

Set N = 1 and flag = 0

4 While (flag = 0) AND (N ≤ ST )
(a) Build the optimal replacement block bR using the eigenblocks ri associated

with the first N eigenvalues
(b) Compute ∆ = MSE(bR,bT )
(c) If τlow ≤ ∆ ≤ τhigh, set flag = 1
(d) Else increment N

5 Replace bT by bR

and a set of eigenblocks ei associated with their eigenvalues εi. These eigen-
blocks are then sorted by descending eigenvalues i.e. the direction e1 contains
more information than any other one in the basis. Then, a candidate block for
replacement bR is computed using the N first eigenblocks so that the distortion
∆ is minimized. In other terms, the block bT − c is projected onto the subspace
spanned by the N first eigenblocks and bR can be written:

bR = c +
N∑

i=1

(bT − c) · ei

|ei|2
ei (7)

Of course, the distortion ∆ gracefully decreases as the number N of combined
eigenblocks increases. Thus, an adaptive framework is introduced to identify
which value N should have so that the distortion ∆ falls within the range
[τlow, τhigh]. It should be noted that the underlying assumption is that most
of the watermark energy will be concentrated in the last eigenblocks since the
watermark can be seen as details. As a result, if a valid candidate block can
be built without using the last eigenblocks, the watermark signal will not be
reintroduced.

3 Signal Coherent Watermarks

As reminded in the previous section, for each signal block, BRA look for a linear
combination of neighboring blocks resulting in a block which is similar enough
to the current block so that a substitution does not introduce strong visual ar-
tifacts. Since watermarking systems do not perform today anything specific to
ensure that the embedded watermark is coherent with the self-similarities of the
host signal, most of them are defeated by such attacks. Intuitively, to ensure that
the watermark will survive BRA, the embedding process should guarantee that
similar signal blocks carry similar watermarks or alternatively that pixels with
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similar neighborhood carry watermark samples with close values. In this perspec-
tive, assuming that it is possible to characterize the neighborhood in each point
with a feature vector, signal coherent watermarking can be achieved if water-
mark samples are considered as the output of a linear form in this feature space
as it is theoretically demonstrated in Subsection 3.1. A practical implementa-
tion of this approach using Gabor features is then described in Subsection 3.2.
Finally, a relationship with existing multiplicative watermarking scheme in the
frequency space is exhibited in Subsection 3.3.

3.1 Linear Watermarking with Neighborhood Characteristics

Let us assume for the moment that it is possible to associate to each pixel
position p = (x, y) with 1 ≤ x ≤ X and 1 ≤ y ≤ Y in the image i a feature
vector f(i,p) which characterizes in some sense the neighborhood of the image
around this specific position. Thus, this function can be defined as follows:

f : I × P → F
(i,p) 7→ f(i,p) (8)

where I is the image space, P = [1 . . . X]× [1 . . . Y ] the position space and F the
feature space. From a very low-level perspective, generating a digital watermark
can be regarded as associating a watermark value w(i,p) to each pixel position
in the image. However, if the embedded watermark is required to be immune
against BRA, the following property should also be verified:

f(i,p0) ≈
∑

k

λkf(i,pk)⇒ w(i,p0) ≈
∑

k

λkw(i,pk) (9)

In other terms, if at a given position p0, the local neighborhood is similar to a
linear combination of neighborhoods at other locations pk, then the watermark
sample w(p0) embedded at position p0 should be close to the linear combination
(with the same mixing coefficients λk) of the watermark samples w(pk) at these
locations. A simple way to obtain this property is to make the watermarking
process be the composition of a feature extraction operation and a linear form
ϕ.

Hence, one can write w = ϕ◦ f where ϕ : F → R is a linear form which takes
F -dimensional feature vectors in input. Next, to completely define this linear
form, it is sufficient to set the values ξf = ϕ(bf ) for a given orthonormalized basis
B = {bf} of the feature space F . Without loss of generality, one can consider
the canonical basis O = {of} where of is a F -dimensional vector filled with 0’s
except the fth coordinate which is equal to 1. The whole secret of the algorithm
is contained in the values ξf and they can consequently be pseudo-randomly
generated using a secret key K. Now, if the values taken by the linear form
on the unit sphere U of this subspace are considered, the following probability
density function is obtained:

fϕ|U (w) =
1

Ξ
√

π

Γ
(

F
2

)
Γ
(

F−1
2

) [1− (w

Ξ

)2
]F−3

2

(10)
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where Ξ2 =
∑F

f=1 ξ2
f and Γ(.) is the Gamma function. When the dimension F of

the feature space F grows large, this probability density function tends towards
a Gaussian distribution with zero mean and standard deviation Ξ/

√
F . Thus if

the ξf ’s are chosen to have zero mean and unit variance, this ensures that the
values of the linear form restricted to the unit sphere U are normally distributed
with also zero mean and unit variance. Then, keeping in mind that ϕ is linear
and that the following equation is valid,

w(i,p) = ϕ

(
‖f(i,p)‖ f(i,p)

‖f(i,p)‖

)
= ‖f(i,p)‖ϕ

(
u(i,p)

)
withu(i,p) ∈ U (11)

it is straightforward to realize that the obtained watermark is equivalent to a
Gaussian watermark with zero mean and unit variance multiplied by some local
scaling factors. The more textured is the considered neighborhood, the more
complicated it is to characterize it and the greater the norm ‖f(i,p)‖ is likely to
be. Looking back at Equation 11, it results that the watermark is amplified in
textured area whereas it is attenuated in smooth ones. This can be regarded as
some kind of perceptual shaping [17].

3.2 A Practical Implementation Using Gabor Features

In order to impose a linear relationship between watermark samples with re-
spect to some characteristics of the neighborhood, it is first necessary to define
the features which will be used to differentiate between neighborhoods i.e. it is
needed to define the feature extraction function f mentioned in Equation (8). In
this perspective, Gabor features are among the most popular ones and have been
now used for a long time for a broad range of applications including image anal-
ysis and compression [18], texture segmentation [19], face authentication [20]
and facial analysis [21]. Images are classically viewed either as a collection of
pixels (spatial domain) or as a sum of sinusoids of infinite extent (frequency
domain). But these representations are just two opposite extremes in a contin-
uum of possible joint space/frequency representations. Indeed, frequency can be
viewed as a local phenomenon that may vary with position throughout the im-
age. Moreover, Gabor wavelets have also received an increasing interest in image
processing since they are particularly close to 2-D receptive fields profiles of the
mammalian cortical simple cells [22].

A Gabor Elementary Function (GEF) hρ,θ is defined by a radius ρ and an ori-
entation θ and the response of an input image i to such a GEF can be computed
as follows:

gρ,θ = i ∗ hρ,θ (12)

where ∗ denotes convolution and gρ,θ is the resulting filtered image. The GEF
is a complex 2D sinusoid whose orientation and frequency are given by (θ, ρ)
restricted by a Gaussian envelope. For computational complexity reasons, Gabor
filtering is usually performed in the Fourier domain since it then comes down to
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a simple multiplication with the following filter:

Hρ,θ(u, v) = exp

[
−1

2

((
u′ − ρ

σρ

)2

+
(

v′

σθ

)2
)]

with
(

u′

v′

)
= Rθ

(
u
v

)
=
(

cos θ sin θ
− sin θ cos θ

)(
u
v

)
(13)

where σρ and σθ characterize the bandwidth of the GEF. In other terms, Hρ,θ

is a 2D Gaussian that is shifted ρ frequency units along the frequency u-axis
and rotated by an angle θ. Thus, it acts as a bandpass filter with a center
frequency controlled by ρ and θ and a bandwidth regulated by σρ and σθ. To
obtain real valued features gρ,θ in the spatial domain, GEFs are paired as follows
Hρ,θ ← Hρ,θ + Hρ,θ+π.

A single GEF pair associates to each pixel p of the image a single feature value
gρ,θ(i,p). As a result, the idea is now to design a filter bank of such GEF pairs
to obtain for each pixel a multi-dimensional feature vector g(i,p) = {gρ,θ(i,p)}
with 1 ≤ i ≤ M and 1 ≤ j ≤ N . Based on previous work [20], the different
parameters of the GEF pairs are computed as follows:

ρi,j = ρmin + b
(s + 1)si−1 − 2

s− 1
(14)

σρi,j
= tbsi−1 (15)

θi,j =
(j − 1)π

N
(16)

σθi,j
= t

πρi,j

2N
(17)

b =
ρmax − ρmin

2

(
s− 1

sM − 1

)
(18)

The whole filter bank is specified by the 6 parameters M , N , ρmin, ρmax, s and t.
The first two parameters determine respectively the number of orientations and
frequencies in the filter bank. The next two ones specify the bandwidth within
which the GEFs are bound. The parameter s controls how much the radial
bandwidth increases when the radius increases. For instance, when it is set to
2, frequency bands are distributed in octave steps with a frequency bandwidth
which doubles at each step. Finally, the parameter t sets the value at which
neighboring filters intersect. As an example, with t = 1, they cross at equal
value 1/e along their principal axis. Figure 2 depicts how GEFs are scattered
throughout a specified frequency ring in the Fourier domain.

In each pixel position p, the resulting MN -dimensional vector g(i,p) can
be regarded as the local power spectrum of the image and thus be used to
characterize the neighborhood. It should be noted that if the Gabor filter bank
is properly designed, it is possible to impose higher constraints. For instance,
if the fractal approach depicted in Figure 1 is enforced, neighborhoods which
are the same modulo a small set of geometrical operations, e.g. 8 isometries and
downsampling by a factor 2, are required to carry the same watermark samples
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Fig. 2. Graphical representation in the Fourier domain of the GEFs levelset for value
1/e with M = 8, N = 4, s = 2 and t = 1.

to achieve robustness [13]. Such constraints need to be taken into account to
define the kernel of the linear form ϕ i.e. the non null vectors v for which
ϕ(v) = 0. However, more constraints induce a lower dimensional subspace for
watermarking which can rapidly become critical.

3.3 Analogy with Multiplicative Watermarking Schemes

Since the values ξf of the linear form ϕ are defined on the canonical basis O
when Gabor features are considered, the watermark sample obtained at position
p is simply given by:

w(i,p) =
F∑

f=1

ξfgf (i,p) (19)

where gf (i,p) is the fth coordinate of the F -dimensional Gabor feature vector
g(i,p). In other terms, the watermark is a linear combination of different Gabor
responses gf . However, when M and N grow, more and more Gabor responses
need to be computed which can be quickly computationally prohibitive. Hope-
fully, when the Fourier domain is considered, the watermark can be computed
as follows:

W(i,q) =
∑
p∈P

 F∑
f=1

ξf gf (i,p)

ωp,q

=
F∑

f=1

ξf

∑
p∈P

gf (i,p) ωp,q

 =
F∑

f=1

ξf Gf (i,q)
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=
F∑

f=1

ξf Hf (q) I(q) = H(K,q) I(q) (20)

with H(K,q) =
F∑

f=1

ξf Hf (q)

where ωp,q = exp [−j2π ((x− 1)(u− 1)/X + (y − 1)(v − 1)/Y )], capital letters
indicate FFT-transformed variables and q = (u, v) denotes a frequency position
with 1 ≤ u ≤ U and 1 ≤ v ≤ V . In other terms, the watermark can be generated
in one row in the Fourier domain by computing H and such an approach is likely
to significantly reduce the computational cost.

Looking closely at Equation (20), it is straightforward to realize that the
watermark generation process comes down to a simple multiplication between
the image spectrum I and some pseudo-random signal H(K). In other terms,
it really looks similar to basic well-known multiplicative embedding schemes in
the frequency domain [10, 11]. When the bandwidth of a GEF is close to 0,
the 2D Gaussian in the Fourier domain tends toward a Dirac impulse centered
at coordinates (ρ, θ) i.e. it tends toward an infinite sinusoid in the spatial do-
main. Therefore, multiplicative embedding in the FFT domain1 is equivalent
to imposing a linear relationship on the watermark samples according to the
neighborhood which is characterized by its response to infinite sinusoids. Under
this new light, FFT multiplicative watermarks can be seen as a special case of
the Gabor watermarks introduced in Subsection 3.2 and are thus coherent with
the host signal. Next, keeping in mind that DCT coefficients are simply FFT
coefficients of some periodic image [23], it is immediate to assert that DCT mul-
tiplicative watermarks [10] are also signal coherent watermarks. At this point,
it is interesting to note that multiplicative watermarking in the frequency do-
main was initially motivated by contrast masking properties: larger coefficients
can convey a larger watermark without compromising invisibility [24]. This can
be related with the natural perceptual shaping of signal coherent watermarks
exhibited in Equation (11).

4 Experiments

The major claim in this paper is that a watermark whose samples have inherited
the same linear relationships as the neighborhoods of the host signal should not
be affected by BRA. An embedding scheme using Gabor features has been de-
signed in Subsection 3.2 so that the generated watermark exhibits this property.
Moreover, it has been shown in Subsection 3.3 that previous embedding schemes
based on multiplicative embedding in the frequency space is also likely to resist

1 In this paper, multiplicative embedding in the FFT domain means that the complex
FFT coefficients are multiplied by pseudo-random values. It is slightly different from
the algorithm described in [11] where only the magnitude of the FFT coefficients were
watermarked.



How to Combat Block Replacement Attacks? 11

BRA. It is now necessary to check whether or not these identified watermarks are
degraded by such attacks in comparison with more current watermarks e.g. ad-
ditive SS watermarks in the spatial domain. To this end, large-scale experiments
have been conducted. The experimental protocol is detailed in Subsection 4.1
and the results are presented in Subsection 4.2.

4.1 Protocol

A watermark with zero mean and unit variance w(K, i) is embedded in the input
image i to obtain a watermarked image iw according to the following embedding
rule:

iw = i + αw(K, i) (21)

where K is a secret key used to generate the watermark and α an embedding
strength equal to 3 so that the embedding process results in a distortion about
38.5 dB in terms of Peak Signal to Noise Ratio (PSNR). Four different watermark
generation processes will be surveyed during the experiments:

SS: The embedded watermark is completely independent of the host content i.e.
w(K, i) = r(K) where r(K) is a pseuso-random pattern which is generated
using the secret key K and which is normally distributed with zero mean
and unit variance.

Gabor: The generation process considers Gabor features to make the water-
mark inherit the self-similarities of the host signal. As discussed in Sub-
section 3.3, the watermark is generated in the Fourier domain using Equa-
tion (20) i.e. W(K, i) = H(K) I. Inverse FFT is then performed to come
back to the spatial domain and the resulting watermark is scaled to have
unit variance. In the reported experiments, the Gabor filter bank has been
configured as follows: M = 32, N = 16, ρmin = 0.01, ρmax = 0.45, s = 2 and
t = 1.5. Former investigations have demonstrated that the number MN of
considered GEF pairs does not have a drastic impact on the performances
of the algorithm with respect to the resilience against BRA [25].

FFT: The watermark is generated in the Fourier domain as follows W(K, i) =
ṙ(K) I where ṙ(K) is a pseudo-random pattern which is symmetric with
respect to the center of the Fourier domain and which has value 0 at the
DC coefficient position. This property has to be verified so that the result-
ing watermark is real-valued with zero mean after inverse transform. Once
again, inverse FFT is performed to come back to the spatial domain and the
resulting watermark is scaled to have unit variance. This algorithm can be
regarded as an extension of the previous one when the GEFs are reduced to
Dirac impulses in the frequency domain.

DCT: The watermark is generated in the frequency domain using the following
formula Ŵ(K, i) = r(K) Î where “capital hat” denotes the DCT transform
and r(K) is a normally distributed pseudo-random pattern which has value
0 at the DC coefficient position. Inverse DCT is then performed to come
back to the spatial domain and the resulting watermark is scaled to have
unit variance.
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Next, the watermarked image iw is attacked using the version of BRA de-
scribed in Table 1. In the experiments, 8×8 blocks have been considered with an
overlap of 4 pixels and the search window size has been set to 64× 64. Further-
more, the two thresholds τlow and τhigh have been set equal to the same value
τtarget. As a result, the replacement block is obtained by considering more or
less eigenblocks so that the distortion with the original signal block is as close as
possible to the target value τtarget. This threshold can be used as an attacking
strength which can be modified during experiments.

On the detector side, the only concern is to know whether or not the embed-
ded watermark has survived. Therefore, non-blind detection can be considered
and the residual correlation is computed as follows:

d(i, ı̃w) = (̃ıw − i) ·w(K, ı̃w) (22)

where ı̃w is the attacked image and · denotes the linear correlation operation. To
anticipate future blind detection, the detector generates the watermark using the
attacked image instead of the original image. This has no impact for SS since it
is content independent, but this may have one with signal coherent watermarks.
The residual correlation should be equal to α if the watermark has survived while
it should drop down to 0 when the watermark signal has been completely washed
out. As a result, the presence of the watermark can be asserted by comparing
the residual correlation d(i, ı̃w) with a detection score τdetect which can be set
to α/2 for equal false positive and false negative probabilities.

4.2 Experimental Results

A database of 500 images of size 512× 512 has been considered for experiments.
It contains snapshots, synthetic images, drawings and cartoons. All the images
are first watermarked using one of the watermarking system under study i.e. SS,
Gabor, FFT or DCT. This results in 4 collections of 500 watermarked images
each. Then, each watermarked image is submitted to BRA with varying attack-
ing strength τtarget to obtain a distortion vs. residual correlation curve. Finally,
all the curves associated with a given watermarking method are averaged to de-
pict the statistical behavior of this scheme against BRA. Those results have been
gathered in Figure 3. It should be reminded that the goal of the attacker is to
decrease the residual correlation while maintaining the image quality. First of all,
experimental results clearly show that signal coherent watermarking has a strong
impact on the efficiency of BRA. As a matter of fact, the residual correlation
never goes below 2.5 with signal coherent watermarks (Gabor, FFT or DCT)
while it already drops below the detection threshold τdetect = 1.5 for a distortion
of 40 dB when SS watermarks are considered. Moreover, even if experiments at
a larger scale should be carried out for a pertinent comparison, some kind of
ranking appears amongst the signal coherent watermarking schemes. The obser-
vation that FFT behaves better than Gabor may be explained by the fact that
the first algorithm is an extension of the second one. Therefore, the FFT curve
would give some bound for the achievable performances with the Gabor scheme
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Fig. 3. Comparison of the impact of BRA with the 4 watermarking schemes under
study: whereas non coherent watermarks (SS) are washed out when the attacking
strength increases, coherent watermarks (Gabor/FFT/DCT) survive.

for different configurations. Finally, the superiority of DCT over FFT might be
due to the properties of the DCT which ensure that the watermark will not be
embedded in fake image frequencies revealed by the Fourier transform [24].

5 Conclusion

Security evaluation is now a growing concern in the watermarking community.
Consumers are likely to attack the embedded watermark which they see as a
disturbing signal and researchers have to anticipate these possible hostile be-
haviors. In this perspective, BRA are recognized to be among the most critical
operations against watermarking systems today. Typically, these attacks exploit
the fact that similar blocks do not carry similar watermarks to confuse the
watermark detector. In this paper, a novel watermarking strategy has been in-
vestigated to remove this weak link. It basically aims at making the embedded
watermark inherit the self-similarities of the host signal. Features are extracted in
each pixel position to characterize the neighborhood and are exploited to export
linear relationships between neighborhoods to watermark samples. A practical
implementation using Gabor features has been presented and previous multi-
plicative embedding schemes in the frequency domain [10, 11] have been shown
to also produce signal-coherent watermarks even if, to the best knowledge of the
authors, such a property has never been foreseen in previous works.
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From a more general points of view, signal coherent watermarking can be
seen as some kind of informed watermarking [1, 26]. Digital watermarking can
be seen as moving a point in a high dimensional media space to a nearby loca-
tion i.e. introducing a small displacement in a random direction. The introduced
framework only stipulates that the host signal self-similarities have to be con-
sidered to resist BRA and that in this case some of the possible directions are
now prohibited. Future work will explore how former works [11, 27] can be used
to design a blind detector for signal coherent watermarks. Furthermore, security
investigations will be conducted to determine whether or not an attacker can
gain some knowledge about the imposed watermarking structure. Indeed, using
a redundant watermarking structure has been demonstrated to lead to security
pitfalls in the past [7, 8].
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