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ABSTRACT

Standard adaptive filtering algorithms, including the popular LMS
and RLS algorithms, possess only one parameter (step-size, for-
getting factor) to adjust the tracking speed in a non-stationary en-
vironment. Furthermore, existing techniques for the automatic ad-
justment of this parameter are not totally satisfactory and are rarely
used. In this paper we pursue the concept of Bayesian Adaptive
Filtering (BAF) that we introduced earlier, based on modeling the
optimal adptive filter coefficients as a stationary vector process,
in particular a diagonal AR(1) model. Optimal adaptive filtering
with such a state model becomes Kalman filtering. The AR(1)
model parameters are determined with an adaptive version of the
EM algorithm, which leads to linear prediction on reconstructed
optimal filter correlations, and hence a meaningful approxima-
tion/estimation compromise. The resulting algorithm, of complex-
ity �������� , is shown by simulations to have performance close to
that of the Kalman filter with true model parameters.

1. INTRODUCTION

In Bayesian Adaptive Filtering (BAF) [1], the evolution of filter
coefficients is modeled as a stationary process. A simple choice for
search process is first-order autoregressive process (AR(1)). This
AR(1) model can be considered a state model. Hence Bayesian
Adaptive Filtering leads to Kalman filtering. This Kalman filter-
ing needs to be adaptive because the model parameters are un-
kown. Even though adaptive Kalman filtering is a difficult prob-
lem, a surprisingly large number of solutions exist. The following
approaches can be identified:

1. Recursive Prediction-Error Method (RPEM)

2. Extended Kalman Filter (EKF)

3. Best Quadratic Unbiased Estimator (BQUE)

4. Expectation-Maximization (EM)

5. Second-Order Statistics (SOS)

6. Subspace-Based Estimation Method (SBEM)

A common approach is the well-known Recursive Prediction-
Error Method (RPEM), which provides an estimator that mini-
mizes a prediction error criterion function �������� , of the form�������� �"!$#&%' �(�)���� (1)*
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where � is the set of parameters to be estimated. However, for
many scenarios (1) has no closed-form solution, due to non con-
vexity of � � ,+�� in + . A popular choice for solving the optimiza-
tion problem are gradient-based search techniques, and therefore
implementation complexity becomes similar to the ML approach.
A standard state estimation method used for polynomial systems is
the Extended Kalman Filter (EKF), which allows simultaneous es-
timation of states and parameters through a Recursive prediction-
correction model [2]. As an approximate conditional mean filter,
the EKF is suboptimal. A popular and robust alternative to these
algorithms is provided by the subspace-based estimation meth-
ods [3]. These algorithms extract the estimates of system state-
space matrices directly from data by first dividing that data into
past and future data and then projecting the future data onto the
space spanned by the past data. A bank of Kalman filters is em-
ployed to compute the estimation of the state sequence, which re-
sults in an approximation of Kalman filter estimate of the state. A
good alternative to the described schemes is given by the EM algo-
rithm, where the estimate of the state sequence is found by a single
Kalman smoothed estimation instead. In this case, the smoothed
state estimates are calculated under the assumption that the param-
eters of the true system are the same as the current estimate. Other
approaches like Second-Order Statistics (SOS) methods and Best
Quadratic Unbiased Estimator (BQUE) can be found in [4]. In our
work we focus on EM parameter estimation techniques.
The KF’ing framework can be straightforwardly extended to in-
corporate time-varying optimal parameters. The simplest way is
probably through the following -/.0213� model state equation for
optimal filter variation4 5 � 687509;:5�<>=@?BA 5 (2)

where 6 5 is a �DC81 input compelx vector and � is the length of
the filter. The error or noise term A 5 is assumed to be zero-mean
uncorrelated normally distributed noise vector with common co-
variance matrix . . The BF series 9 :5 is assumed to be of primary
interest [1]; it is modelled as a first order multivariate process of
the form 9;:5 � - 9;:5�<E=E?BF 5 (3)

where G$H I 5 I 75KJ �DL is a � transition matrix describing the
way the underlying series move through successive time periods.
The BF 9 :5 may be non-stationary since we do not make special
assumptions about the roots of the characteristic equation - . The�MCN1 noise terms I 5 , are zero-mean uncorrelated normal vectors
with common covariance matrix L .
The motivation for the model defined by (2) and (3) originates



from a desire to account separately for uncertainties in the model
as defined by model error I 5 and uncertainties in measurements
made on the model as expressed by the measurement noise processA 5 . It might be helpful to envision (2) as kind of random effects
model for time varying, where the effect vector 9 :5 has a correla-
tion structure over time imposed by the multivariate autoregressive
model (3). In this context, it is a generalization of the ordinary au-
toregressive -/. model which accounts for observation noise as
well as model induced noise. One may regard the 6 75 as fixed de-
sign input vector which define the way we observe the components
of the BF 9 :5 . In this paper, we provide a convenient method for
dealing with the incomplete data problem introduced by missing
observations.
The primary aim of a smoothing procedure is to estimate the un-
observed time-varying 9 :5 . If one knows the values for the param-
eters L and - the conventional Kalman smoothing estimators can
be calculated as conditional expectations and will have MMSE .
Since the smoothed values in a Kalman filter estimator will depend
on the initial values assumed for the above parameters, it is of in-
terest to consider various ways in which they might be estimated.
In most cases this has been accomplished by Maximum likelihood
techniques involving the use of scoring or Newton-Raphson tech-
nique to solve the nonlinear equations wich result from differen-
tiating the log-likelihood function. In this paper, we introduce an
EM approach for iteratively update the parameter model. Experi-
mental results will be shown for the proposed algorithm, compar-
ing to KF filtering.

2. PARAMETER ESTIMATION VIA THE EM
ALGORITHM

In this section we develop the EM algorithm for estimating the pa-
rameters of (3)-(4) [6]. Perhaps the most important step in apply-
ing the EM algorithm to a particular problem is that of choosing
the missing data. The missing data should be chosen so that the
task of maximizing ON��QPR� 5 � for any value of ���S�-TPUL)� is easy
and so that it is possible to perform the expectation step.
Fortunately, in this case, the choice of missing data is not too dif-
ficult. Let us imagine for a moment that, in addition to the sys-
tem inputs and outputs, 6 5 and V 5 respectively, the state 9 :5 was
avaible then ML estimation of - reduces to applying to (3). The
covariance elements, L , of I 5 could then be calculated from the
residuals. Moreover, the conditional expectation of state sequence
may be calculated using a (slightly augmented) Kalman Smoother.
All of this suggests that the state sequence is a desirable condition-
ate for the missing data. We therefore designate V as the incom-
plete data so that the complete data set is WX�Y 9 :5 PUV 5 � .
In order to develop a procedure for estimating the parameters in
the state-space model defined by (5) and (6), we note first that the
joint log-likelihood of the complet data W can be written in the
form
First, by repeated application of Bayes RuleZ\[ �]^PU���_� Z [E` a_b�c �]^Pd���fe Z a  4(g �h� (4)

where
Z�[ �]^Pd�h� is the probability vdensity associated with W andZ [E` aib�c �]^P2���fe Z a  4(g ��� is the conditional probability density of W

given VY� 4
. Taking the logarithm on both sides of (4),jlk\m Z a  4 PU���_� jlkhm Z\[ �]^PU���@n jlkhm Z [E` aiboc �]^Pd�h� (5)

Define, for conveniencep ��h�q� jlkhm Z a  4 Pd���

With this definition we can writjlkhm p � nsr jlkhm Z '  9;:5 PUVot�Pd�vu Votw�?�x jlkhm"yQz3{ L ?
? t|5 b = { �� 9;:5 n}- 9;:5�<E= �2L <E=  9;:5 n�- 9;:5�<>= �U7
? t|5 b = { ��

4 5 n~687509;:5�<E= �2. <E= 
4 5 n~6;7509;:5�<>= �U7(6)

where
j&k\m p

is to be maximized with respect to parameters - andL . Since the log-likelihood given above depends on the unob-
served data 9 :5 , we consider applying the EM algorithm condi-
tionally with respect to the observed V . That is, the estimated
parameters at the �� ? 1 �vn {U�

iterate as the values - and L which
maximize

ON��QP �� 5 �_��G��'U�^� jlkhm Z '  9;:5 PUVot�Pd�vu Votw�d� (7)

where Gw�' � denotes the conditional expectaion relative to a density
containing the � {2� iterate values.
In order to calculate the conditional expectation defined in (7), it
is convenient to define the conditional mean�9 :5 ��Gw�'d�Q� 9 :5 u Vot���� 5 ��G$H��9;:5 �9;: 75 u Vot���� 5�<E= ��G$HQ�9 :5�<E= �9 : 75�<E= u V t �

(8)

we suppose the following definitions

� 1�� t|5 b = �Gw�' �Q� 9;:5�<E=  9;:5�<E= �U7Nu V t � ? �� 5�<>= �
� r�� t|5 b = G��' �Q� 9;:5  9;:5 �U7)u V t � ? �� 5

� 13r�� t|5 b = G��' �Q� 9;:5  9;:5 <E= �U7)u Vot�� ? �� 5�� 5�<>= (9)

The Kalman filter terms
�9 :5 ,

�� 5 and
�� 5�� 5�<>= are computed un-

der the parameter values -)� 5�� and L�� 5�� using the recursions in
(7).Furthermore, it is easy to see that the choices�� � 1x  � r 5 n � 13r 5 � 1 <>=5 � 13rh75 � (10)�� � � 1 r 5 � 1 <E=5

(11)

maximize the last two lines in the likelihood function (6).

3. ADAPTIVE KALMAN ALGORITHM

In our study, the tasks of smoothing in a missing data context are
interpreted as basically the problem of estimating the BAF 9 :5 in
the state-space model (2)-(3). The conditional means provide a
minimum MSE solution based on the observed data. The param-
eters L and - are estimated by ML using the EM algorithm. We
simplify the estimation problem by considering - and L diagonal



matrices. The filter parameters are iteratively computed throughx iterations. The estimation of the optimal filter variation is car-
ried out by KF’ing and one step smoothing and we introduce an
EM approach for iteratively update the parameter model.
The algorithm is resulting in Fig. 2.

4. SIMULATION

The behavior of Adaptive Kalman and Kalman filters are com-
pared on the basis of simulation results, as shown in Fig. 1. The
proposed algorithms are implemented with the parameters ���� e � , �K� � e �h�
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Fig. 1. Comparison between the proposed Adaptive Kalman algo-
rithm and Kalman filter

5. CONCLUSION

As Fig. 1 shows, the proposed Adaptive Kalman algorithm con-
verges to the ML estimator. The convergence speed of the pro-
posed algorithm in a random time-varying environment is approx-
imately as fast as the one shown by conventional deterministic
Kalman filtering (known parameters). In the proposed scheme, pa-
rameter estimation is carried out through the EM algorithm, hence
assuring convergence to the ML estimator when a favorable initial-
ization is provided.On the other hand, to take - and L a digonal
matrix, the complexity of Kalman filter is limited to ���� � � order
and the Adaptive Kalman filtering have the some order of com-
plexity.
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Fig. 2.Adaptive Kalman Algorithm


