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ABSTRACT
Standard adaptive filtering algorithms, including the popular
LMS and RLS algorithms, possess only one parameter (step-
size, forgetting factor) to adjust the tracking speed in a non-
stationary environment. Furthermore, existing techniques for
the automatic adjustment of this parameter are not totally sat-
isfactory and are rarely used. In this paper we pursue the
concept of Bayesian Adaptive Filtering (BAF) that we intro-
duced earlier, based on modeling the optimal adptive filter
coefficients as a stationary vector process, in particular a di-
agonal AR(1) model. Optimal adaptive filtering with such a
state model becomes Kalman filtering. The AR(1) model pa-
rameters are determined with an adaptive version of the EM
algorithm, which leads to linear prediction on reconstructed
optimal filter correlations, and hence a meaningful approxi-
mation/estimation compromise. In this paper we will intro-
duce the convergence behavior of the adaptive part.

1. INTRODUCTION

In Bayesian Adaptive Filtering (BAF) [1], the evolution of
filter coefficients is modeled as a stationary process. A sim-
ple choice for search process is first-order autoregressive pro-
cess (AR(1)). This AR(1) model can be considered a state
model. Hence Bayesian Adaptive Filtering leads to Kalman
filtering. This Kalman filtering needs to be adaptive because
the model parameters are unkown. Even though adaptive
Kalman filtering is a difficult problem, a surprisingly large
number of solutions exist. The following approaches can be
identified:
1. Recursive Prediction-Error Method (RPEM)
2. Extended Kalman Filter (EKF)
3. Best Quadratic Unbiased Estimator (BQUE)
4. Expectation-Maximization (EM)
5. Second-Order Statistics (SOS)
6. Subspace-Based Estimation Method (SBEM)

A common approach is the well-known Recursive
Prediction-Error Method (RPEM), which provides an esti-
mator that minimizes a prediction error criterion function
VN � θ � , of the form

θ̂ � argmin
θ

VN � θ � (1)

where θ is the set of parameters to be estimated. However,
for many scenarios (1) has no closed-form solution, due to
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non convexity of VN � Θ � in Θ. A popular choice for solv-
ing the optimization problem are gradient-based search tech-
niques, and therefore implementation complexity becomes
similar to the ML approach. A standard state estimation
method used for polynomial systems is the Extended Kalman
Filter (EKF), which allows simultaneous estimation of states
and parameters through a Recursive prediction-correction
model [2]. As an approximate conditional mean filter, the
EKF is suboptimal. A popular and robust alternative to
these algorithms is provided by the subspace-based estima-
tion methods [3]. These algorithms extract the estimates of
system state-space matrices directly from data by first divid-
ing that data into past and future data and then projecting the
future data onto the space spanned by the past data. A bank of
Kalman filters is employed to compute the estimation of the
state sequence, which results in an approximation of Kalman
filter estimate of the state. A good alternative to the described
schemes is given by the EM algorithm, where the estimate of
the state sequence is found by a single Kalman smoothed es-
timation instead. In this case, the smoothed state estimates
are calculated under the assumption that the parameters of
the true system are the same as the current estimate. Other
approaches like Second-Order Statistics (SOS) methods and
Best Quadratic Unbiased Estimator (BQUE) can be found
in [4]. In our work we focus on EM parameter estimation
techniques.
Some general references on the tracking behavior of adaptive
filtering algorithms are [5], [6], [7], [8], [9], [10], [11], [12],
[10]. The KF’ing framework can be straightforwardly ex-
tended to incorporate time-varying optimal parameters. The
simplest way is probably through the following AR � 1 � model
state equation for optimal filter variation

yk � XH
k H0

k � 1 � vk (2)

where Xk is a M � 1 input compelx vector and M is the
length of the filter. The error or noise term vk is assumed
to be zero-mean uncorrelated normally distributed noise vec-
tor with common covariance matrix R. The BF series H0

k is
assumed to be of primary interest [1]; it is modelled as a first
order multivariate process of the form

H0
k � AH0

k � 1 � wk (3)

where E � WkW
H
k 	 � Q is a M � M transition matrix describing

the way the underlying series move through successive time
periods. The BF H0

k may be non-stationary since we do not
make special assumptions about the roots of the character-
istic equation A. The M � 1 noise terms Wk, are zero-mean
uncorrelated normal vectors with common covariance matrix
Q.



The motivation for the model defined by (2) and (3) origi-
nates from a desire to account separately for uncertainties in
the model as defined by model error Wk and uncertainties in
measurements made on the model as expressed by the mea-
surement noise process vk. It might be helpful to envision
(2) as kind of random effects model for time varying, where
the effect vector H0

k has a correlation structure over time im-
posed by the multivariate autoregressive model (3). In this
context, it is a generalization of the ordinary autoregressive
AR model which accounts for observation noise as well as
model induced noise. One may regard the X H

k as fixed de-
sign input vector which define the way we observe the com-
ponents of the BF H0

k . In this paper, we provide a convenient
method for dealing with the incomplete data problem intro-
duced by missing observations.
The primary aim of a smoothing procedure is to estimate the
unobserved time-varying H0

k . If one knows the values for
the parameters Q and A the conventional Kalman smoothing
estimators can be calculated as conditional expectations and
will have MMSE .
Since the smoothed values in a Kalman filter estimator will
depend on the initial values assumed for the above parame-
ters, it is of interest to consider various ways in which they
might be estimated. In most cases this has been accom-
plished by Maximum likelihood techniques involving the
use of scoring or Newton-Raphson technique to solve the
nonlinear equations wich result from differentiating the log-
likelihood function. In this paper, we introduce an EM ap-
proach for iteratively update the parameter model. Exper-
imental results will be shown for the proposed algorithm,
comparing to KF filtering.

2. PARAMETER ESTIMATION VIA THE EM
ALGORITHM

In this section we develop the EM algorithm for estimating
the parameters of (3)-(4) [1]. Perhaps the most important
step in applying the EM algorithm to a particular problem is
that of choosing the missing data. The missing data should
be chosen so that the task of maximizing U � θ 
 θ k � for any
value of θ � � A 
 Q � is easy and so that it is possible to per-
form the expectation step.
Fortunately, in this case, the choice of missing data is not too
difficult. Let us imagine for a moment that, in addition to
the system inputs and outputs, Xk and Yk respectively, the
state H0

k was avaible then ML estimation of A reduces to
applying to (3). The covariance elements, Q, of Wk could
then be calculated from the residuals. Moreover, the condi-
tional expectation of state sequence may be calculated using
a (slightly augmented) Kalman Smoother. All of this sug-
gests that the state sequence is a desirable conditionate for
the missing data. We therefore designate Y as the incomplete
data so that the complete data set is Z � � H0

k 
 Yk � .
In order to develop a procedure for estimating the parame-
ters in the state-space model defined by (5) and (6), we note
first that the joint log-likelihood of the complet data Z can be
written in the form
First, by repeated application of Bayes Rule

fZ � z 
 θ ��� f � H0 � Y � y ��
 fY � y;θ � (4)

where fZ � z 
 θ � is the probability vdensity associated with Z
and fZ �Y � y � z 
 θ ��
 fY � y;θ � is the conditional probability den-
sity of Z given Y � y. Taking the logarithm on both sides of

(4),

log fY � y 
 θ ��� log fZ � z 
 θ ��� log f � H0 � Y � y � (5)

Note that the logarithm function is monotonic in its semi-
positive argument and any probability density function
(p.d.f.) is semi-positive, it follows that the maximising ar-
gument of any p.d.f. will be the same as for the logarithm of
that function.
Of course equation (5) requires knowledge of the complete
data set and therfore cannot be calculated. Suppose that, in-
stead of calculating equations (5), we caclulate an approx-
imation of (5) derived as an expectation over the space of
H0

N , and conditioned upon the actual observations, as well as
some estimate of the vector θ say θ̂ then we obtain

E
θ̂

�
log fY � y 
 θ ����� E

θ̂

�
log fZ � z 
 θ ����� E

θ̂

�
log f � H0 � Y � y ��� (6)

or alternatively,

L � θ ��� U � θ 
 θ̂k ��� V � θ 
 θ̂k �
where the following definitions have been used.

L � θ ��� log fY � y 
 θ �
U � θ 
 θ̂k ��� E

θ̂

�
log fZ � z 
 θ ���

V � θ 
 θ̂k ��� E
θ̂

�
log f � H0 � Y � y ���

We can interpret the function U � θ 
 θ̂k � as the projection of
the likelihood function that we want to solve onto the space
spanned by Z and in directions informed by θ̂ . In other
words, it is our estimate of the log-likelihood function as-
sociated with the complet data.

With this definition we can writ

L � log fθ � H0
k 
 YM 
 θ � YM �� M logdetQ � M logdetR� M

∑
k � 1

tr � H0
k � AH0

k � 1 � Q � 1 � H0
k � AH0

k � 1 � H

� M

∑
k � 1

tr � yk � XH
k H0

k � 1 � R � 1 � yk � XH
k H0

k � 1 � H (7)

where logL is to be maximized with respect to parameters A
and Q . Since the log-likelihood given above depends on the
unobserved data H0

k , we consider applying the EM algorithm
conditionally with respect to the observed Y . That is, the
estimated parameters at the � k � 1 ��� th iterate as the values
A and Q which maximize

U � θ 
 θ̂k ��� Eθ̂k

�
log fθ � H0

k 
 YM 
 θ � YM ��� (8)

where Eθ̂k
denotes the conditional expectaion relative to a

density containing the k th iterate values.
In order to calculate the conditional expectation defined in
(7), it is convenient to define the conditional mean

Ĥ0
k � E

θ̂k

�
H0

k
� YM �

P̂k � E � H̃0
k H̃0H

k
� YM 	

P̂k � 1 � E � H̃0
k � 1H̃0H

k � 1
� YM 	

(9)



we suppose the following definitions

B1 � M

∑
k � 1

� Eθ̂k

�
H0

k � 1 � H0
k � 1 � H � YM � � P̂k � 1 �

B2 � M

∑
k � 1

� Eθ̂k

�
H0

k � H0
k � H � YM � � P̂k �

B12 � M

∑
k � 1

� Eθ̂k

�
H0

k � H0
k � 1 � H � YM � � P̂k � k � 1 � (10)

The Kalman filter terms Ĥ0
k , P̂k and P̂k � k � 1 are computed un-

der the parameter values A � k � and Q � k � using the recursions
in (7).Furthermore, it is easy to see that the choices�� � 1

M � B2k � B12kB1 � 1
k B12H

k � (11)�� � B12kB1 � 1
k

(12)

maximize the last two lines in the likelihood function (7).

3. ADAPTIVE KALMAN ALGORITHM

In our study, the tasks of smoothing in a missing data context
are interpreted as basically the problem of estimating the
BAF H0

k in the state-space model (2)-(3). The conditional
means provide a minimum MSE solution based on the
observed data. The parameters Q and A are estimated by ML
using the EM algorithm. We simplify the estimation prob-
lem by considering A and Q diagonal matrices. The filter
parameters are iteratively computed through M iterations.
The estimation of the optimal filter variation is carried out
by KF’ing and one step smoothing and we introduce an EM
approach for iteratively update the parameter model.

4. CONVERGENCE PROPERTIES OF THE EM
BASED ALGORITHM

For any estimation algorithm, convergence properties are of
major importance [13], [14], [15]. Withim this paper are a
collection of some of the more useful results pertaining to
the EM algorithm. The properties of the EM algorithm it
will frequently be convenient to think of it as merely a way of
generating mappings from one parameter vector to another.
To see how multiple instances of the EM algorithm can be
generated, notice that once the observed data set and the ini-
tial parameter vector is specified the EM algorithm is entirely
autonomous, generating a whole sequence of parameter vec-
tors and requiring no further user interaction. On the other
hand, if a different set of data is observed and used in the EM
calculations, then the resulting sequence of estimates will be
different to the first, even if the initialisation is unchanged.
We shall describe these obsrvation-dependent mappings as
being instances of an EM algorithm. In order to clarify the
notion of the EM algorithm as an iterative mapping we pro-
vide the following definition.

Defenition- An iterative algorithm with mapping M � 
 � :Θ !"
Θ is an EM algorithm if

U � M � θ ��
 θk �$# U � θ 
 θ̂k �

. for every pair � θ 
 θ̂k �&% Θ.

Let consider that an EM algorithm does converge to a sngle
optimal element θ o % Θ.
Suppose that θ̂k is an instance of an EM algorithm such that

1. θ̂ converge to θ o

2. ∂
∂ θ U � θ 
 θ̂k ��� 0

3. ∂ 2

∂ θ∂ θ T U � θ 
 θ̂k � is negative definite with eigenvalues
bounded away from zero.

Then
∂

∂θ
L � θ �'� 0 


∂ 2

∂θ∂θ T U � θ 
 θ̂k � is negative definite

and

∂
∂θ

M � θ ���(� ∂ 2

∂θ∂θ T U � θ 
 θ o � 	 � 1 ∂ 2

∂θ∂θ T V � θ 
 θ o � (13)

In order to see the utility of this items, note that if we
linearise the EM algorithm about the point to wich it is con-
verging, by finding its first-order Taylor expansion then we
obtain

θ̂k ) 1 � M � θ̂k �* θ o � ∂
∂θ

M � θ � �
θ � θ o � θ̂k � θ o �

then

θ̃k ) 1
* � ∂

∂θ
M � θ � �

θ � θ o � N � 1θ̃o (14)

Equation (14) formulate the EM algorithm as an au-
tonomouslinear time-invariant. Under such conditions it
is well known that θk will converge to an optimal value at
an exponential rate determined by the largest eigenvalue of
∂

∂ θ M � θ � .
We shall discuss in greater depth the rate of conver-
gence of the EM algorithm in the light of equation (14).
Note that eqaution (13) may be re-expressed as

∂
∂θ

M � θ ��� � ∂ 2

∂θ∂θ T U � θ 
 θ o � 	 � 1 ∂ 2

∂θ∂θ T V � θ 
 θ o �� � ∂ 2

∂θ∂θ T U � θ 
 θ o � 	 � 1

�+� ∂ 2

∂θ∂θ T U � θ 
 θ o ��� ∂ 2

∂θ∂θ T L � θ � 	� I �,� ∂ 2

∂θ∂θ T U � θ 
 θ o � 	 � 1 ∂ 2

∂θ∂θ T L � θ � 	� I � Γ � 1
augΓobs (15)

by using equation (7)

Γaug � ∂ 2

∂θ∂θ T Eθ̂

�
log fZ � z 
 θ ��� �

θ � θ o (16)

is the expected information matrix of the complete data set
and

Γobs � ∂ 2

∂θ∂θ T E
θ̂

�
log fY � Y 
 θ ��� �

θ � θ o (17)



is the observed information matrix.
Note that the rate of convergence of the EM algorithm as
shown by equation (14)is dictated by the largest eigenvalue
of ∂

∂ θ M � θ � . If this eigenvalue has a magnitude close to unity
then the algorithm will be slow to converge. Conversely,
fast convergence correspond to this eigenvalue being close
to zero. under this scenario it follows from eqation (15) that
it is desirable to choose the missing data, filter coefficient se-
quence, so that the smallest eigenvalue of Γ � 1

augΓobs is as large
as possible. Clearly, Γobs is independent of the missing data
so therfore the key to ensuring fast convergence is to find fil-
ter coefficient sequence so that Γaug is small.
Let consider the system defined by (2)-(3), to simpilify we
make a Component-Wise system.
The system (2)-(3) becomes f or n � 1 
-
.
 M, where M is the
length of the filter

ho
k � n � anho

k � 1 � n � wk � n (18)

yk � ho
k � 1 � nxk � n � M

∑
j /� n

ho
k � 1 � nxk � n � vk (19)

we can write

yk � N

∑
j /� n

ĥo
k � 1 � nxk � n � ho

k � 1 � nxk � n � M

∑
j /� n

h̃o
k � 1 � nxk � n � vk

In each iteration yk and vk are updated as follows

y 0k � yk � M

∑
j /� n

ĥo
k � 1 � nxk � n

and

v 0k � M

∑
j /� n

h̃o
k � 1 � nxk � n � vk

where wk and v 0k are sequences of scalar-valued i.i.d. random
variables distribued as E � wkwT

k 	 � q and E � v 0kv 0 Tk 	 � r.
for convenience, the parameters of this system shall be col-
lected into the optimal vector θ o �(� ao qo 	 T
In order to avoid problems with the information matrices be-
coming unbounded as we allow the number of data to tend to
infinity, we shall, entirely equivalently, employ the average
value of this information matrix per sample is defined as

¯Γaug � lim
N 1 ∞

1
N

Γaug� lim
N 1 ∞

� 1
N

� ∂ 2

∂θ∂θ T U � θ 
 θ o � 	 �
θ � θ o� 2

1
1 � � ao � 2 0

0 qo

r � 1 � � ao � 2 �43 (20)

5. CONCLUSION

The global rate of convergence of the EM algorithm is de-
temined by the eigenvalue of Γaug small eigenvalues imply
fast convergence. Since the eigenvalues of a diagonal matrix
are its diagonal elements it’s quite clear, from equation (20),
how the rate convergence of the algorithm is affected by the
system paramters, as the number of data tends to infinity.
The first diagonal element of the matrix in equation (20) will
be small if ao 565 1, that is, if the underlying system has fast
dynamics.
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