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Abstract. Our research focuses on the usage of honeypots for gathering
detailed statistics on the Internet threats over a long period of time. In
this context, we are deploying honeypots (sensors) of different interaction
levels in various locations.
Generally speaking, honeypots are often classified by their level of inter-
action. For instance, it is admitted that a high interaction approach is
suited for recording hacker shell commands, while a low interaction ap-
proach provides limited information on the attackers’ activities. So far,
there exists no serious comparison to express the level of information on
which those approaches differ. Thanks to the environment that we are
deploying, we are able to provide a rigorous comparison between the two
approaches, both qualitatively and quantitatively. We build our work on
an interesting classification of the observed attacks, and we pay partic-
ular attention during the comparison to the bias introduced by packet
losses.
The proposed analysis leads to an interesting study of malicious activ-
ities hidden by the noise of less interesting ones. Finally, it shows the
complementarities of the two approaches: a high interaction honeypot
allows us to control the relevance of low interaction honeypot configu-
rations. Thus, both interaction levels are required to build an efficient
network of distributed honeypots.

1 Introduction

Many solutions exist for observing malicious traffic on the Internet. However,
they often consist in monitoring a very large number of IP addresses like a
whole class A network or a large range of unused IPs. Several names have been
used to describe this technique, such as network telescopes [1, 2], blackholes [3,
4], darknets [5] and Internet Motion Sensor (IMS) [6]. Some other solutions
consist in passive measurement of live networks by centralizing and analyzing
firewall logs or IDS alerts [7, 8]. A few websites report such trends like DShield,
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SANS/ISC or MyNetwatchman [7, 9, 10]. Coarse-grained interface counters and
more fine-grained flow analysis tools such as NetFlow [11] offer another readily
available source of information.

So far, nobody has investigated the possibility of using a large number of local
and similar sensors deployed all over the Internet. However, we strongly believe
that local observations can complement the more global ones listed above. A
direct analogy can be made here with weather forecast or volcanic eruption pre-
diction, where both global and local approaches are applied. As a consequence,
we are on the way to deploying many small honeypot environments in various
locations thanks to motivated partners, as part of the Leurre.com Project. The
main objective is to gather statistics and precise information on the attacks that
occur in the wild on a long-term perspective. We have initially used high in-
teraction honeypots. Then, because of the incoming and increasing number of
participants in addition to the hard constraints imposed by their implementa-
tion, we have considered the idea of deploying low interaction honeypots. At the
time of writing, some environments of different interaction levels are running.
We invite the interested reader to have a look at the existing publications for
more information on that point [12–14].

An important issue that must be addressed with such deployment is the bias
introduced by the choice of low interaction platforms. The environmental setup
we present here gives us the opportunity to make a rigorous comparison of two
different interaction approaches, both qualitatively and quantitatively. So far,
such a comparison did not exist. Honeypots have been classified in interaction
categories without concrete justification [15]. For instance, it is admitted that a
high interaction approach is suited for recording hacker shell commands, while
a low interaction approach provides limited information on the attackers’ activ-
ities. This paper intends to show that this classification is too restrictive. As far
as our research objectives are concerned, both approaches present value. The
contributions of this paper are the following:

– We show that both approaches provide very similar global statistics based
on the information we collect.

– A comparison of data collected by both types of environments leads to an
interesting study of malicious activities that are hidden by the noise of less
interesting ones.

– This analysis highlights the complementarities of the two approaches: a high
interaction honeypot offers a simple way to control the relevance of low in-
teraction honeypot configurations and can be used as an effective etalon
system. Thus, both interaction levels are required to build an efficient net-
work of distributed honeypots.

The rest of the paper is structured as follows: Section 2 describes and justifies
the setup of the distributed honeypot. This environment has been implemented
in two different ways corresponding to two distinct interaction levels. The analy-
sis is then built on these two approaches. Section 3 introduces a comparison
of global statistics obtained by means of these two distinct implementations. in



particular, we show the similarity of the information provided by the two envi-
ronments. In Section 4 we take a closer look at some activities that are apparently
different between platforms. This in-depth study of both platforms leads to the
discovery of strange attack scenarios that require particular attention. We fi-
nally explain to what extent high interaction honeypots can be used as reference
systems to optimize the configuration of low interaction ones. These two last
Sections provide rationales for the Leurre.com project that we are deploying.
Finally, Section 6 concludes this paper.

2 Environment Setup: two different levels of interaction

2.1 High Interaction Experimental Setup - H1

We have presented in previous publications [12,16] some experiments based on so
called ”high interaction honeypots”. This environment, called in the following
H1, is a virtual network built on top of VMware (see Figure 1) [17]. Three
machines are attached to a virtual Ethernet switch 3 supporting ARP spoofing.
The VMware commercial product enables us to configure them according to our
specific needs. mach0 is a Windows98 workstation, mach1 is a Windows NT
Server and mach2 is a Linux Redhat 7.3 server. The three virtual guests are
built on non-persistent disks [17]: changes are lost when virtual machines are
powered off or reset. We perform regular reboots to guarantee that the virtual
machines are not compromised, as the objective is to gather statistical data in
a long-term perspective. A fourth virtual machine is created to collect data in
the virtual network. It is also attached to the virtual switch and tcpdump is
used as a packet gatherer [18]. This machine and the VMware host station are
as much as possible invisible from the outside. Both mach0 and mach2 run an
ftp server; in addition, mach1 provides a web server. Logs are collected daily and
transferred to a centralized and secure place.

We have also made some comparisons with another deployed ”high inter-
action” honeypot called GenII [19]. However, the collected data were based on
snort-inline 4 alerts. First, alerts provide different information than raw data
(see Section 2.3 to find explanations on the information we can extract) and are
quite likely false positives. Second, snort-inline drops packets based on the way
it estimates risk. These two reasons have prevented us from making interest-
ing comparisons at this stage. Thus, we do not refer to this architecture in the
following.

2.2 Low Interaction Experimental Setup - H2

We have deployed a platform called H2 similar to H1 presented before, but with
emulated operating systems and services. We have developed it based on several
open source utilities. Indeed, it consists in a modified version of honeyd [20]. The

3 A switch in the VMware jargon actually behaves like a hub
4 snort-inline is an open source Intrusion Prevention System (IPS)



Fig. 1. H1 Environment scheme

platform only needs a single host station, which is carefully secured by means of
access controls and integrity checks. This host implements a proxy ARP. This
way, the host machine answers to requests sent to several IP addresses. Each
IP is bound to a certain profile (or personality in the honeyd jargon). Thus, H2

emulation capacity is limited to a configuration file and a few scripts. It emulates
the three same Operating Systems as H1 for mach0, mach1 and mach2. We have
scanned the open ports in H1 and opened the very same ones in the honeyd
configuration file for each of the three virtual machines. Some service scripts
that are available in [20] have been linked to open ports, like port 80 (web
server) or port 21 (ftp). As a consequence, H2 can be seen as offering a similar
yet simplified behavioral model of H1. In the same manner, we connect every
day to the host machine to retrieve traffic logs and check the integrity of chosen
files.

2.3 Information Extraction

As previously explained, dump files are periodically collected from H1 and H2

and are stored in a centralized database. There, they are analyzed by means of
other utilities and additional information is brought in, such as IP geograph-
ical location, domain name resolution, passive OS fingerprinting, TCP stream
analysis, etc. For the sake of conciseness, we do not want to detail the database
architecture and the way we obtain information in this paper; we invite the in-
terested reader to look at our previous publications, where we have described
the setup in detail [14, 21].



3 Global Statistics Analysis

3.1 Introduction

Honeypots can be seen as black boxes: they describe a system whose internal
structure is not known. All what matters is that the device transforms given
inputs into predictable outputs.

In our case, incoming malicious requests are the input and provided replies
are the output. Let I1 be the quantity of information from Honeypot H1 (the
high interaction honeypot). In the same way, let I2 be the quantity of infor-
mation provided by Honeypot H2 (the low interaction honeypot). Intuitively,
we expect I2 / I1. However, it is more difficult to estimate to which extent I2

brings less information. The following Sections intend to qualify and quantify
this information difference I1 − I2.

The initial setting is the following: environments H1 and H2 are both placed
in the same network. The virtual machines mach0, mach1 and mach2 have three
adjacent IPs in H1, say X.X.X.1, X.X.X.2, X.X.X.3. In a similar way, virtual ma-
chines mach0, mach1 and mach2 have in H2 contiguous addresses, resp. X.X.X.6,
X.X.X.7, X.X.X.8.

H1 has been running since February 2003. Environment H2 started running
on July 2004. A technical problem prevented us from collecting the whole month
of November 2004. Thus, we will focus on data collected on both environments
from August 2004 to October 2004, that is 10 continuous weeks.

We propose in the following Section to study the differences between the two
platforms in that period, thanks to the information stored in the database (see
Section 2.3).

3.2 Attack Categories

Both environments H1 and H2 are targets of attacks. Each environment contains
three virtual machines running different services and different OSs. They are not
equally targeted. This leads us to define three major categories of attacks:

– The ones which target only one machine. They are called attacks of Type I.
– The ones which target two out of three virtual machines. They are called

attacks of Type II.
– The ones which target all three virtual machines. They are called attacks of

Type III.

Table 1 represents the distribution (in percentage) of these 3 categories on
each environment H1 and H2. Values are very similar. This attack classification
is used in the following to start comparing environments.

3.3 Type III Attack Analysis

We propose in this Section to look at Type III attacks. They stem for around
35% of the total attacks. Figure 2 represents the number of associated sources



Attack Type H1 Environment H2 Environment

Total 7150 7364

Type I 4204 (59%) 4544 (62%)

Type II 288 (4%) 278 (4%)

Type III 2658 (37%) 2542 (34%)

Table 1. Different Attack Types observed on H1 and H2

Fig. 2. Attacks of Type III on the two French platforms H1 and H2

observed on environments H1 (dark curve) and H2 (light curve) every 2 days.
Curves have the same general shape. We do not expect any difference for the
reason that attacks targeting the three virtual honeypots are likely to be broad-
sweeping scans [13]. Thus, those scans should be observed independently on the
platform. In other words, there should be the same number of scans on both
platforms. This is not exactly the case in Figure 2 where curves present small
dissimilarities.

A closer look at the attacks confirms that almost all IP sources associated
with Type III attacks have been observed on both environments. For those which
are not included in one curve, it appears that they are classified as attacks of type
III in one environment, and in attacks of Type II in the other one. In a few cases,
they are even classified as attacks of type I. An analysis of the corresponding
packet traffic reveals that they often consist of a single TCP packet sent to
one target. It might happen that packets are lost due to congestions in the
Internet and we can imagine that such packets are not retransmitted by the
attacker. To validate this assumption, we check that there is no bias in the loss
observation, that is, we observe an equal number of packet losses on platform H1

and on platform H2. In addition, the number of supposed scan packet losses is
distributed among all virtual machines without apparent preferences. As a first
approximation, the value we observe can also be linked to the estimated TCP



packet loss value in the path between the attacking machine and the honeypot
environment at a given date. If for a period of time ∆(t) the estimated packet
loss between the attacking source and the honeypots environment is p loss, then
the probability Pr of getting an incomplete scan on the six virtual machines
becomes:

Pr = 1− (1− p loss)6 (1)

In this experiment, we identify 92 such losses over a total of 2851 distinct type
III attacks during the two-month observation (observed on both environments
or only one). According to the previous equation, this is equivalent to an average
packet loss of 0.6%, which remains coherent with actual traffic monitoring [22].
This is even quite low if we compare with the global average 2-5% observed on
the Internet Traffic Report web site [23]. However, we also note on their site
high differences between continents. European traffic seems less susceptible, in
average, to packet losses than other continents such as Asia.

A first assertion based on our experiment is:

Assertion 1 It is not necessary to deploy honeypots using hundreds of public
IP addresses in order to identify scan activities against large block IPs. Three
addresses contained in that block are sufficient. Large-scale scans will be attacks
on the three honeypot machines. We may observe only two attempts in case of
packet losses, as it appears that not all scanning engines do implement packet
retransmission processes.

To complete the analysis, we also observe another interesting property com-
mon to H1 and H2 based on the fact that virtual machines have been assigned
contiguous IP addresses. The main scanning technique consists in issuing re-
quests to IP address by incrementing their IP value by 1. To quantify the im-
portance of this scanning method, we represent in 3.3 the six possible orders of
scanning that have been observed. We give for each of them their frequency (in
percentage), that is, the number of IP sources which have targeted the three
virtual machines over the total number of IP sources associated to Type III
attacks.

Type III Attack Order Percentage

Order 1: Mach0, Mach1, Mach2 79%

Order 2: Mach0, Mach2, Mach1 5%

Order 3: Mach1, mach0, Mach2 4%

Order 4: Mach1, Mach2, Mach0 5%

Order 5: Mach2, Mach0, Mach1 3%

Order 6: Mach2, Mach1, Mach0 4%
Table 2. Scanning order for Type III attacks

The figures remain quite constant when computing it on a monthly basis.
Attacks targeting machines by increasing IP numbers correspond to 79% of the



total. The other values are more or less equal. It is important to point out that
all attacks which have targeted the three machines of one platform in a different
order than Order 1 have, instead, respected this Order 1 when sending packets
to the three machines of the other platform.

This highlights the fact that all scans are done according to Order 1 but some
packets may arrive in a different order on the platform, creating the illusion of
other scanning orders. This remark is also validated by studying the source
ports used by the attacking machine, and more specially, their sequence over the
scans on the honeypot virtual machines. It consists in 80% of the cases in an
arithmetic sequence with a common difference of 1. These simple observations of
two different but correlated sequences (targeted virtual machines and attacking
source ports) leads to three major remarks:

– We observe scan activities that sweep through IP addresses sequentially in
decreasing order in very few cases.

– Almost all scans that target three consecutive IPs are programmed to hit
them sequentially in increasing IP order. It might happen, however, that the
order is slightly disrupted because of some packet retransmissions. A study
of the different source ports used by the attacking machine confirms this (the
non-privileged ports are used sequentially).

– Scanning machines do not wait for a scan to be finished in order to target
the next IP. Scanning threads are not blocking. In other words, we observe
that temporal periods of scanning activities against two virtual machines
from a same source can overlap.

Finally, we intend to have a closer look at some scanner implementation
options in order to build relationships with the observed traces. For instance,
the advscan Sourceforge Project allows parametering some variables such as the
number of concurrent threads, the delay or the scanning duration [24].

3.4 Type II Attack Analysis

Attacks of Type II represent a very small fraction of all observed attacks on H1

and H2. As we explain in the previous Section, some scanning activities that
target a large block of IPs can miss some addresses insofar as the tools do not
retransmit lost packets. It has been observed that 88% of the attacks of type II
are residues of scanning attacks on both environments H1 and H2, and thus, are
incomplete Type III attacks. The remaining 12% are more interesting:

– For 9% of Type II attacks: The IPs have been observed against two virtual
machines on one environment, namely mach0 and mach2. The attacking IPs
have also been observed on the other environment. A closer look at the
source ports used by the attacking machines leads to the conclusion that
these attacks scan one out of two successive IPs. Indeed, all these IPs which
have targeted mach0 (X.X.X.1) and mach2 (X.X.X.3) on H1 have targeted
mach1 (X.X.X.7) only on H2. Inversely, all these IPs which have targeted



mach0 (X.X.X.6) and mach2 (X.X.X.8) on H2 have only targeted mach1
(X.X.X.3) on H1. This can be seen as a limitation of our local honeypot
platforms. Indeed, we will not be able to distinguish attacks with larger
scan hops. We are not aware of any tool using this strategy. However, a
complementary analysis can be performed by means of large telescopes and
darknets.

– For 3% of Type II attacks: They concern attacks on the sole two Windows
machines mach0 and mach1 on both environments H1 and H2. They are for
instance attack attempts on port 5554 (Sasser Worm FTP Server [25]) or
port 9898 (Dabber Worm backdoor [26]). It is clearly not the usual propa-
gation techniques of these worms. We face attacks that have acquired some
knowledge of the existence of Windows machines on both environments, and
that have made some random-like attempts on them. Indeed, we do not ob-
serve attempts on both ports but only one on each machine. The attacking
IPs are also not observed on both environments, unlike the others.

This leads to a second assertion:

Assertion 2 Attacks targeting two out of three machines can be specific to the
two victim machines, but are with high probability residues of scanning activities.

3.5 Type I Attack Analysis

Categories of type I are far more difficult to compare between environments H1

and H2. They account for around 60% of all attacks on each machine. Figure
3 represent some global characteristics of these attacks on both environments.
To be more precise, Figure 3(a) presents the geographical location of the attack
sources corresponding to Type I attacks. On the horizontal axis are presented
the top 10 countries. The vertical axis gives the number of associated attacking
sources for each environment. Figure 3(b) gives the estimated attacking OS,
based on passive OS fingerprinting techniques [27]. The vertical axis gives also
the number of associated attacking sources for each environment.

As a general remark, there is no important differences between environments
H1 and H2. For instance, both are targeted by 4 main countries with the same
order of magnitude (France FR, China CN, Germany DE, United States of Amer-
ica US)5. The other country participations are more variable over months but
remain coherent between both environments. The passive fingerprinting analysis
confirms this similarity between attacks on the two environments too. The IP
sources which attack the platforms are essentially running on Windows. To com-
plete this comparison, Figure 4 lists the 10 most targeted ports on each platform
H1 and H2. The vertical axis shows the number of associated attacking sources
for each environment. The order is identical and the number of attacks on those
10 ports are very similar on both environments.

5 The geographical location has been obtained by means of the Maxmind commercial
utility [28]



(a) Attacking Countries (b) Passive Fingerprinting

Fig. 3. Global statistics Comparison between H1 and H2

Fig. 4. Top 10 Targeted Ports for Type I attacks on each platform H1 and H2

In summary, Type I attacks represent lots of common characteristics between
platforms H1 and H2. On the other hand, the amount of information collected
on both environments is totally different. The high interaction platform H1 has
received 480684 packets sent to its virtual machines. This is 40 times as many as
what H2 has received. This is quite normal, since many attacks target talkative
services like Microsoft ones (see Figure 4) which are not emulated on the low
interaction honeypots. The following Section intends to present a refined analysis
of the differences which are mainly due Type I attacks.

4 Refined Analysis

4.1 Different Type I categories

As illustrated by the previous Section, Type I attacks present very similar global
statistics between the two environments H1 and H2 (see Figures 3 and 4). Thus,
if we intend to limit the analysis to these figures, we can clearly use a low



interaction honeypot instead of a high interaction one. The complexity of the
last configuration is not justified, according to the comparison we made. On the
other hand, the number of collected packets is totally different. At this stage, we
cannot guarantee that type I attacks observed on H1 are exactly the same as the
ones observed on H2. Since the previous statistics tend to indicate this property,
we propose in this Section to refine the Type I attack analysis, in order to check
that they indeed present very similar characteristics between both platforms.
Thanks to our setup, we are able to distinguish two distinct phenomena that
are correct explanations for some observed type I attacks. We group all the
remaining non classified attacks in a third category. These three categories of
type I attacks are discussed in the following Sections.

4.2 Sequential Scans residue

This is the first category of Type I attacks. They are to be compared with
the same large scanning activities than we presented in Section 3.3. This case
can be rare but we can also imagine that two losses can happen on the same
environment. It is simply identified by looking at common IP addresses on both
environments which have targeted one machine on one environment and three
virtual machines on the other one, during a short period of time. We find the
same number of corresponding sources on H1 and on H2, 1 out of 1000 Type
III attacks in average. To validate that it correctly corresponds to packet losses,
we consider that if for a period ∆(t) the estimated packet loss between the
attacking source and the honeypots environment is p loss, then the probability
Pr to observe two losses out of three scans becomes approximatively:

Pr = 3 ∗ p loss2 ∗ (1− p loss) (2)

This remains coherent with the low number of cases we observe. This category
has been observed thanks to the complementarities between H1 and H2. Indeed,
a single environment cannot allow identification of such attacks.

4.3 Random Propagation Activities

This is the second category of Type I attacks we can imagine. Many tools choose
random IPs during their propagation process. They can be worms or bots (Sasser,
W32/Agobot, Bobax, etc [25, 29]). As they choose their victims randomly (or
at least randomly in a certain IP class, for instance a class B if they favor local
propagation), it is quite normal to observe a given IP source only once if it
belongs to such an attack process.

To identify these Type I attacks, we have decided to build a technique upon
the work already published: we have presented in [13] a clustering algorithm
that allows identifying root causes of frequent processes observed in one en-
vironment. Due to space limitations, we refer the interested reader to [13] for
a detailed description of the clustering technique. In brief, we basically gather



all attacks presenting some common features (duration of the attacks, num-
ber of packets sent, targeted ports. . . ) based on generalization techniques and
association-rules mining. The resulting clusters are further refined using ”phrase
distance” between attack payloads. In summary, we gather within a cluster all
attacking sources that are likely to have used the same attack tool to target a
given machine.

As a consequence, tools propagating through random IPs have similar char-
acteristics, even if they are not observed twice on the environments, so they
should belong to the very same cluster. These Type I sources are more precisely
characterized by clusters where all IP sources have targeted only one virtual
machine, and where the attacks within a single cluster are equally distributed
among virtual machines. If the distribution of the attacks per virtual machine is
homogeneous (which means we do not observe a significant number of attacks on
a few virtual machines only), we consider that the attack belongs to this category
which we call Random Propagation Strategy Category. We have systematically
verified this property for all clusters, with the algorithm presented in Table 3.

If we consider the 240 clusters associated with attacks on H1, only 54 cor-
respond to type I attacks. In addition, 43 out of these 54 clusters have random
propagation strategies. The remaining 0.5% of the observed clusters that are as-
sociated with type I attacks are discussed in the next category. Finally, we want
to point out that attacks on that category can be identified as easily on platform
H1 as on H2.

4.4 Targeted Attacks and Opened Issues

This is the third category of Type I attacks. It gathers all Type I attacks which
cannot be classified in the two previous categories. They are not numerous, as
explained above. They are represented by 0.5% of the clusters and imply a few
dozen attacking sources. This category regroups various attacks of interest, due
to their originality. These attacks have always targeted the same virtual machine
in only one environment. The reasons why some attacks focus on one machine
only are really worth being investigated to determine if a specific service is
targeted or if this is due to another phenomenon. In the following, we give two
illustrative examples:

– Example 1: Attacks on port 25666 target virtual machine mach0 on H1. This
attack has been observed 387 times from 378 different IP addresses between
August 2004 and February 2005. Each attack source sends on average three
packets to mach0. A closer look reveals that all packets have 80 or 8080
(http) as TCP source port and RST-ACK flags set. They are replies to DoS
attacks against web servers, also known as backscatters ( [2]). In summary,
we have observed for 6 months DoS attacks against different web servers,
and these attacks always spoofed mach0 IP address with source port 25666.
Such regular processes have been observed in other platforms we developed.
Up to now, we have observed 15 of these processes on H1 and H2.



Surprisingly enough, these attacks occur very regularly, day after day. It
seems also surprising that DoS tools choose to use static spoofed addresses:
either spoofed (IP,port) are somehow hardcoded in a tool used by different
people (which would be more than bizarre), or these DoS attacks, observed
during 6 months, are part of a unique process launched against several tar-
gets over a very long period of time. This means that the spoofed address
list has been generated once, and has then been used for multiple attacks.
The regularity of such a process also indicates that a common cause is the
underlying reason for all these attacks. Finally, these periodic backscatters
come to ports that are likely close on both environments (usually very high
non-privileged ports in the range [1025, 65535]). Thus, we would get the same
amount of information, whatever the targeted environment is.

– Example 2: Targeted port 5000 Attack on mach1 on H2. Two very different
worms are mainly responsible for port 5000 scans. The first, Bobax, uses
port 5000 to identify Windows XP systems. Windows XP uses port 5000
(TCP) for ’Universal Plug and Play (UPnP)’, which is open by default.
The second worm, Kibuv, uses an old vulnerability in Windows XP’s UPnP
implementation to break into these systems. This vulnerability was one of the
first discovered in Windows XP and patches have long been made available.
However, we observe a cluster that is associated to that port. It gathers
73 distinct IP sources that have targeted only one virtual machine on port
sequence 5000. Surprisingly enough, the 73 attacks have targeted the very
same virtual machine within two months. This does not match the Bobax
and Kibuv worm propagation scheme, as it has been found that they rather
scan machines randomly. In addition, it is important to note that the port
is closed on that machine. Packets contain no payload. They are limited to
half a dozen TCP SYN packets. This attack cannot be considered as random
insofar as it always implies the same virtual target.
At the time of writing, we have no concrete explanation of such a phenom-
enon. It has also been noticed by other administrators in Incidents mailing
lists [30]. The Michigan Internet Motion Sensors group notifies in [31] that
the observed activities do ”not support the theory of Kibuv entirely”. This
might be due to revived threats such as Sockets de Troie (Blazer 5) or 1998
Trojan ICKiller or Yahoo Chat or non-referenced tools based on the UPnP
exploit [32,33]. A closer look at the received packets is required at this stage
to determine the attack. However, as the port 5000 is close in both plat-
forms H1 and H2, we would get the same amount of information, whatever
the targeted environment is.

Type I attacks are very interesting. We have identified backscatters related
activities and tools with widespread random propagation. A few numbers of at-
tacks remain unclassified. They seem to be specific to the platform itself, so some
precautions must be required to understand them. At the time of writing, they
are hidden in the noisy permanent activities and thus, they do not really trigger
lots of attention. Simple honeypots emulating a few IPs allow their identifica-
tion. This is a preliminary but necessary step to start their in-depth analysis.



For each Cluster Cj of type I:

Preliminaries :

Compute the number Nj of attacks associated to Cj on the Environment
Compute the number Nj,0 of attacks associated to Cj on the virtual machine mach0
Compute the number Nj,1 of attacks associated to Cj on the virtual machine mach1
Compute the number Nj,2 of attacks associated to Cj on the virtual machine mach2
We check that Nj,0 + Nj,1 + Nj,2 = Nj

Threshold = 0.1Nj

Test on Cluster Cj:

Mean = µ =
Nj

3

variance = σ2 =
P

0≤k≤2(Nj,k−µ)2

3

IF σ < Threshold
THEN

res = 1
Cluster Cj associated to random propagation tools

ELSE
res = 0
Cluster Cj associated to targeted attacks
A closer look at packet contents is required.

Table 3. Simple algorithm associated to Type I tools having random propagation
strategies

Then, more interaction on that port would bring valuable information on that
attack. As the attack is very specific and we have no preliminary knowledge on
it, writing a simple script to H2 is not the correct choice. A controlled environ-
ment like H1 must be built to observe the attack details when launched against
real interactive systems. In a second step, a script can be developed for H2.

We show here that high interaction honeypots are very complementary to
low interaction honeypots as they can indicate which services are not currently
interactive enough on low interaction honeypots. We intend in the last Section
to make this analysis more automatic so that we can determine which services
must be developed (by means of scripts) on the low interaction honeypot to get
a similar amount of information.

4.5 Interaction Differences and Improvements

The platforms are globally targeted in the same way, as has been detailed in the
previous Sections. However, it is also clear that we collect more data on a high
interaction honeypot, as real services exchange more packets witht the attackers.
In average, 40 times more packets are collected with H1 than with H2. Based on
these observations, this Section intends to show where the information is lacking,
and how this can be handled.

As specified in Section 2, platforms H1 and H2 have similar configurations.
All open ports on machines in H1 are also opened in H2, and vice-versa. On the
H2 side, it can be sufficient to open a port in order to get attack information.
It can also be necessary to develop simple emulation scripts in order to enhance



the environment interaction. Thus, the idea is the following: The more attacks
interact with a port, the more important it is that honeyd runs an interactive
script behind. In other words, if the amount of information we obtain on attacks
through a given port on H1 is a lot higher than the one captured on H2 against
the same port, one of the two following actions must be undertaken:

– A script must be implemented to emulate the associated service if any.
– The script interaction should be brought to a higher level if the script already

exists.

Obviously enough, each attack may require different interaction levels. For
instance, scans do not require high interaction and an open port on both envi-
ronments will give the same amount of information.

Furthermore, the error would be to consider here only packets from/to a given
port to compare the amount of information between the two environments. For
instance, if a source sends a request on port A and then waits for the answer
to communicate with port B, the missing information if port A is closed on
the other environment is a lot more important than just considering the simple
request/answer on port A. We miss all the communication with port B as well.

As a consequence, we use the clusters presented in [13] and introduced in
Section 4 to avoid these problems and to determine what services should be
enriched on H2. Each cluster groups together all IP Sources sharing strong char-
acteristics in their attack processes. These attacking sources have exchanged the
same amount of information on one environment. The interaction we get on a
virtual machine must be weighted by the frequency of the attacks on the in-
volved ports, as we explain above. The interaction is quantified by considering
the number of exchanged packets. This can be refined by taking payload length
into account, but we limit this analysis on this simple assumption. This leads to
the algorithm presented in Table 4:

The algorithm has been launched on each platform for a 2-month period. We
get the following results:

– For ports where simple scripts are already attached to H2, it appears they
behave correctly compared to the real services running in H1.

– For Netbios ports (135, 139 and 445 specially), the ratio I(H2)
I(H1)

is equal to
1.5%. No script emulates these services in H2. This is clearly not acceptable,
insofar as H2 is missing a large quantity of information in comparison to H1.
We are in the process of writing scripts to emulate these services.

– For other ports like 111, 515,. . . , the operation of opening these ports pro-
vides as much information as the real services in H1 at this time. There is
no need to emulate these services.

The algorithm gives an important hint of which ports are not correctly config-
ured on the low interaction environment. It also provides a priority list of these
services the emulation of which should be improved as fast as possible. The
result confirms that most of the missing information comes from the Microsoft



Preliminaries :

FOR the two Environments H1 and H2:
FOR each Virtual Machine Mj and each associated port pj,k:

Gather the list of Clusters Cl,k corresponding to attacks on Virtual Machine Mj against at least port pj,k

Be N the total number of IP Sources having targeted Virtual machine Mj

Be η the threshold to compare interactions between environments. η = 0.7
FOR each Cluster Cl,k

Compute the number nl of Sources belonging to Cluster Cl,k

Compute Pl, the total number of exchanged packets between Sources belonging to Cluster Cl,k

Compute the frequency of Cluster Cl,k as

fl = nl
N

Interaction Estimation:

The interaction estimation is for H1

I(H1) =
P

l≥1 Pl.fl

The interaction estimation is for H2

I(H2) =
P

m≥1 Pm.fm

Analysis:

IF I(H2)
I(H1)

≤ η

The current implementation on port pj,k for Virtual Machine Mj in H2 is not correct
The Interaction on this port is not satisfactory. The associated script should be enhanced.

Table 4. Comparing Interactions between H1 and H2

services. To conclude, this algorithm highlights the important complementari-
ties that can be obtained by using both a high interaction and a low interaction
honeypot.

5 Leurre.com Project

We have presented in previous publications some experiments based on a high
interaction honeypot [13, 34]. These experiments have shown 1) that most of
the attacks are caused by a small number of attack tools and that some very
stable processes occur in the wild, and 2) that some processes have not been
noticed by more global observations from darknets and telescopes. Thus it is
worth deploying local sensors to complement the existing approaches.

The major objective consists in getting statistical information from the at-
tacks. Therefore, low interaction honeypots represent a suitable solution. Indeed,
we only want to observe the first attack steps in order to get a better understand-
ing of current malicious activities. This paper provides another strong motiva-
tion, as it shows that low interaction honeypots brings as much information as
high interaction ones when it comes down to global statistics on the attacks. In
addition, some regular comparisons between the two types of environments (the
high interaction environment being the etalon system) lead to an optimization
of the low interaction configuration.



Leurre.com project aims at disseminating such platforms everywhere thanks
to motivated partners, on a voluntary basis. Partners are invited to join this
project and install a platform on their own. We take care of the installation
by furnishing the platform image and configuration files. Thus, the installation
process is automatic. In exchange, we give the partners access to the database
and its enriched information 6. We are also developing a dedicated web to make
research faster and more efficient. The project has started triggering interest
from many organizations, whether academic, industrial or governmental. We
hope the number of partners will keep on increasing in the near future.

6 Conclusion

This paper presents a very important contribution to the Leurre.com project.
Indeed, it shows on one hand that high interaction honeypots are somehow super-
fluous in the context of large-scale deployment of sensors, since global statistics
remain very similar. On the other hand, it shows that they are vital for con-
trolling the configuration relevance of low interaction honeypots. This leads to
the conclusion that complementarities between high and low interaction honey-
pots can increase the accuracy of information collected by simple environments
deployed in different places. Besides, this comparison has led to an interesting
analysis of collected data. First, it allows identifying very specific attacks and
weird phenomena, as has been shown through some examples. Second, it high-
lights the need to take into account packet losses in the analysis of malicious
data. Otherwise, this can lead to misled conclusions.

Last but not least, we hope this paper will be an incitement for other partners
to join the open project Leurre.com that we are deploying.
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