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Abstract

This paper introduces the use of Hidden Markov
Models (HMM) as an alternative to techniques classi-
cally used for face detection. Our aim is to locate faces
in colour images of a video sequence in view to index-
ing. The use of HMM in pattern recognition is �rst
brie
y reviewed and the mapping of these models onto
our problem is presented. Pseudo two-dimensional
HMM are presented and shown to be e�cient and well-
suited tools for performing face detection in a context
where no constraints on face orientation are given. Is-
sues about e�cient face modelling are discussed and
illustrated with practical examples.

1 Introduction
Automated face detection is the �rst necessary step

for identifying persons present in an image. The aim is
to reliably extract areas surrounding faces in the orig-
inal image. Identi�cation techniques such as Eigen-
faces [10] typically assume that input images are nor-
malised both in terms of size and illumination. The
quality of face detection will therefore condition accu-
rate subsequent identi�cation.

A generic approach for localising faces in an image
is as follows. Sub-images are selected at di�erent loca-
tions and tested to represent a face or otherwise via a
�lter which associates with the centre of the sub-image
the probability for a face to be centred at that point.
The most commonly used �lter for such a task is a
Neural Network trained with face and non-face images
(see e.g., [8]). This approach represents an exhaustive
search and can be re�ned with a top-down approach
where pre-localisation takes place using subimages lo-

cated on a coarse grid and subsequent interesting lo-
cations are re-investigated using a �ner grid. Such
systems are generally sensitive to face occlusion and
in [4], an alternative is suggested that re-composes
faces from face parts (e.g., eyes and mouth) extracted
in a preprocessing stage.

Another �lter is given by the Eigenfaces approach.
The likelihood of the subimage to contain a face is
given by its distance from the \face state" previously
determined. In [10], the combination of Eigenfaces
and Neural Networks in the context of face detection
and identi�cation is also presented.

Most of applications consider grey-scale images as
input so that they base the detection of faces on their
shape only. This leads to the problem of false detec-
tions due to face-like parts of the background. The
characterisation of a face therefore needs to be de-
�ned in a way that avoids confusion. In turn, tech-
niques become more sensitive to face orientation. In
this paper, we present an alternative approach based
on Hidden Markov Models (HMM) where the aim is
to embed extra information given by e.g., colour and
gradients at the face location. In Section 2, we �rst
review the use of HMM in pattern recognition. Follow-
ing this line, we present developments of such models
adapted to the context of face detection in colour im-
ages (Section 3). The aim is to locate faces within
images of a video sequence for indexing. In this con-
text, no constraints are given on the background or
the scale and orientation of the face in the image. In
this paper, the aim is to test the ability of HMM to
perform such a task rather than presenting a formal



face detection system. The technique is �rst intro-
duced using one-dimensional models and extended to
pseudo-dimensional models to take advantage of the
speci�c structure of the images under investigation.
Based on our experiments, Section 4 discusses exten-
sions both in terms of the structure of the HMM used
and in terms of characterisation of a face within an
image through the design of feature vectors.

2 Previous work using HMM

Hidden Markov Models [5, 6] are stochastic mod-
els which provide a high level of 
exibility for mod-
elling the structure of an observation sequence. They
allow for recovering the (hidden) structure of a se-
quence of observations by pairing each observation
with a (hidden) state. State duration is left free so
that HMM represent a powerful technique for realis-
ing elastic matching when imposing constraints on the
topology of state transitions.

It is now acknowledged that the use of HMM is
fundamental in automated speech analysis and recog-
nition [3]. In this type of applications, the sig-
nal is mono-dimensional whereas pattern recognition
in images requires two-dimensional operators. Nev-
ertheless, mono-dimensional Hidden Markov Models
(1DHMM) have been successfully applied to keyword
spotting in binary document images [1]. The se-
quential aspect of written words is exploited (i.e.,
from left to right). Each column of a word image is
mapped onto a feature vector considered as a multi-
dimensional observation. The sequence of such ob-
servations is then matched against di�erent left-right
models, each representing a keyword to be recog-
nised. Recognition is based on the selection of the
model of keyword that �ts best the image in ques-
tion. An extension of this work is found in [2]. The
two-dimensional structure of the image is accounted
for using a pseudo two-dimensional model (Pseudo 2D
HMM or P2DHMM). This extension is shown to add
robustness of the detection system against variations
of size and slant of the fonts present in the document
image.

Similarly, the potential of HMM for performing face
recognition is demonstrated in [9]. The idea is again to
exploit the sequential (vertical) structure of a human
face. The image is divided in a sequence of overlapping
horizontal stripes and the sequence of these stripes
(e.g., eyes-nose-mouth) is labelled using a 1DHMM.
Results reported indicate that the use of HMM pro-
vides a suitable alternative to techniques classically
used for this type of applications.

3 HMM for face detection
Based on the applications described above, we now

show how HMM can be used in the context of face
detection in colour images.

3.1 1DHMM

In a �rst approach, modelling is done at the line
level. In an image containing a face, two types of lines
are distinguished. Namely, lines composed of back-
ground pixels only and lines composed of a sequence
of background and face pixels (see Figure 1(A)). These
lines are labelled Background Line and Face Line, re-
spectively. Two 1DHMM, �1 and �2 are therefore
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Figure 1: (A) A typical face image and (B) its model
using 1DHMM.

used for modelling these lines (Figure 1(B)). To each
state sij of model �i is associated an output probability

distribution bij(o) which represents the probability of
producing observation oxy (i.e., values at pixel (x; y))
while being in state sij . In our context, observations
consist in feature vectors including chosen character-
istics at a given pixel (e.g., chrominance Cr-Cb val-
ues). Since observations are multi-dimensional, out-
put probability distributions are assumed to be con-
tinuous and are approximated by Gaussian mixtures
of the form:

bij(oxy) =
MX

m=1

cijmN (oxy; �
i
jm;�

i
jm); (1)

where M is the number of mixtures, cijm is the mix-

ture coe�cient for the mth mixture at state sij and

N (oxy; �ijm;�
i
jm) is a Gaussian density with mean

vector �ijm and covariance matrix �ijm.
Both models are trained using training lines ex-

tracted from images segmented by hand. For each
model �i, training consists in iteratively adjusting
HMM parameters (state transition and output prob-
abilities) using Baum-Welsh re-estimation procedure,
in order to maximise P [Lyj�i], the goodness-of-�t of
model �i to the given line Ly = foxygx=1���X .

Figure 2(A) shows the distribution of face colours
in the (Cr,Cb) plane extracted from our training set.



The white areas show values that have a non-zero
probability. This example shows that chrominance
components are good cues for face pixel location since
the white region is well-localised. Figure 2(B) details
this part of the histogram and Figure 2(C) shows its
approximation by Gaussian mixtures obtained with
M = 3.
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Figure 2: Face chrominance distribution and its mod-
elling (M = 3).

Recognition is achieved by selecting for each line
Ly of the test image I = fLygy=1���Y , which of models
�1 or �2 �ts best Ly. More formally, we use Viterbi
procedure for calculating P [Lyj�i], i = 1; 2 and se-
lect the model which corresponds to the maximum of
these values. Once the best model is selected, the
line is segmented using the structure recovered by the
HMM (i.e., the sequence of hidden states sij leading
to the highest value of P [Lyj�i]). In our example,
the result is therefore a binary image containing pix-
els labelled with Face state and pixels labelled with
Background state. Figure 3 shows the segmentation
of a test image obtained using the model presented in
Figure 1 and the luminance-chrominance components
(YCrCb) as feature vectors. Background pixels of the
segmented image have been whitened for illustrating
the segmentation.

This example illustrates the e�ciency of the seg-
mentation while using a very simple model. It also
shows that the segmentation lacks coherence in the
vertical orientation. Extra regions (red coloured part
of the robe) are segmented that do not �t with the
model presented in Figure 1. Morphological process-
ing of the binary image may overcome this problem.
However, a more formal approach is used in this work
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Figure 3: (A) Original image. (B) Segmentation using
the 1DHMM presented in Figure 1.

and is based on the following principle. The fact
that no relationship is given between a line and subse-
quent lines implies that the 2D structure of the image
is ignored in the model. The next section presents
a pseudo two-dimensional technique that introduces
such a dependency between lines.

3.2 P2DHMM

Hidden Markov Models retrieve optimal transitions
between discrete states using a given topology for con-
nectivity relationships between states. It is known
that a fully connected two-dimensional structure for
the HMM would lead to exponential complexity when
retrieving the best (2D-) state sequence for produc-
ing a given two-dimensional sequence of observations.
In [7], it is also assessed that not only such struc-
ture would lead to an unmanageable complexity but
the retrieval of the best 2D state sequences is not
ensured. We therefore use a pseudo two-dimensional
model (P2DHMM) � where dependency in the second
dimension is made at the line level. More formally,
1DHMM �i are again used for modelling each line
and considered as super-states Si of a vertical (upper-
level) 1DHMM. The aim of this (vertical) HMM is to
impose constraints on the optimal sequence of (hori-
zontal) line models which maximise P [Ij�]. In other
words, the image is now considered as a whole when
retrieving the sequence of hidden states from which
its (2D-)structure will be recovered. The P2DHMM
corresponding to the face image model presented in
Figure 1 is show in Figure 4.

This model is again trained using images from a
training set segmented by hand. Re-estimation of pa-
rameters is done using two nested Baum-Welsh proce-
dures. For each line Ly of an image I, P [LyjSi], the
probability of generating the Ly using the 1DHMM �i
(i.e., while being in super-state Si) is calculated. By
this mean, the output probability distribution corre-
sponding to (super-)state Si is formed so that training
of the (vertical) line-level 1DHMM can be performed



Superstate 2

Superstate 1

State 3State 2State 1
2 22

State 1
1

State 1
3 Superstate 3

Figure 4: Pseudo two-dimensional HMM � corre-
sponding to the face image model shown in Figure 1.

using another Baum-Welsh procedure.
Similarly, recognition is done using two nested

Viterbi procedures. Likelihood of model �i to gener-
ate each line Ly (i.e., the probability of being in super-
state Si at line Ly) is calculated and the most likely
super-state sequence determined. Each line is then
segmented similarly to the 1D case using the 1DHMM
corresponding to the super-state in this sequence. The
result is shown in Figure 5 where the test image is seg-
mented using the model depicted in Figure 4.

Figure 5: Segmentation of the test image (Fig-
ure 3(A)) using the P2DHMM presented in Figure 4.

By imposing a vertical structure to the line model
used, coherence in the two-dimensional structure is
better assumed by the model.

4 Models and discussion
In this section, we present and discuss important

features that are to be included in HMM in order to
perform accurate face detection.

In our context, the aim of Hidden Markov Models
is to associate a label with each pixel for performing
image segmentation. In the speci�c case of face detec-
tion and in the simplest case, one wishes to obtain a bi-
nary image indicating the location of face pixels in the

original image. It is therefore necessary that output
probabilities are coupled between di�erent line mod-
els. Following the model proposed in Figure 4, states
s1
1
, s1

2
, s3

2
and s1

3
all represent Background pixels. A

single output probability will therefore be used by all
these states in order to have optimal characterisation
during training. Similarly, at the line level, 1DHMM
used for modelling super-states Background Line are
to be equivalent. During training, both models will
therefore be updated with the same parameters. In
practice, this is done using the concept of object, so
that one item is de�ned and its occurrences are sym-
bolled by pointers.

At each state of a HMM, a feature vector is emitted
with a certain probability given by the output prob-
ability distribution. This distribution is modelled by
Gaussian mixtures as given by Equation (1). Di�er-
ent strategies can be adopted for handling the type
of components of the feature vectors. In the case
where the feature vector contain independent groups
of components (e.g., chrominance Cr-Cb and gradi-
ent norm), the covariance matrix �ijm can be forced
to be block-diagonal during parameter re-estimation.
Another way of handling this case is to consider each
group of components as an independent stream of ob-
servation and to combine these streams as a weighted
sum. The output probability distribution then be-
comes

bij(oxy) =
SX

s=1

wijs

MsX

m=1

cijsmN (oxy; �
i
jsm;�

i
jsm): (2)

Weights wijs therefore represent the amount of infor-

mation contained in stream s at state sij . Estimation
of these parameters can be embedded in the Baum-
Welsh procedure so that these weights automatically
adapt to the context. By this mean, one may include
in each state any characteristic he feels it is relevant
and the HMM will automatically select those which
are actually relevant. For example, gradient infor-
mation at a pixel may be useful for detecting state
change. Although it is related to luminance, it can be
considered as an independent component of the fea-
ture vector. It is however di�cult to assess what is
the importance of this component within each state.
Training with multi-stream output probability distri-
bution as given by Equation (2) which helps in resolv-
ing this problem.

This can be used in a model like that shown in Fig-
ure 6, where the Border state will impose conditions
on the gradient at state change. Note that transitions
from the state Border onto itself are not permitted
in super-states S3. Similarly, transitions from super-
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Figure 6: P2DHMM including border characterisa-
tion.

states S2 and S4 onto themselves are not allowed. This
ensures that the width of the border will be of one
pixel exactly. Using this simple principle, one may
explicitly specify state duration (i.e., minimal, exact
or maximal width of a segmentation region) by dupli-
cating states or by de�ning transition that allow for
skipping some states in the sequence. This 
exibility
in terms of designing the structure allows for the use
of P2DHMM in speci�c applications without compli-
cating the theoretical aspect. For example, Figure 7
shows an instance of false segmentation. This is due
to the face that more than one skin-coloured area are
present and it is possible to connect them vertically
using a false Face state path. More formally, at lines
where the second area is present, the probability for
the line to be generated by the model Face Line (i.e.,
super-state 2 in Figure 4) is high. Since no return to
this super-state is permitted once it has been left (left-
right model), super-state Face Line is kept for lines
between the two areas and one pixel only is used for
representing the Face state. Forcing the Face state du-
ration to be longer by duplicating this state resolves
this problem as shown in Figure 7(B) where the model
Face Line includes 20 times the Face state.

Another important aspect of the use of HMM in
face detection is that they result in a precise segmen-
tation of the original image. If a face area is to be
extracted for subsequent face identi�cation, one will
be able to remove (or lower) the e�ect of the back-
ground from the subimage. Thus making the identi�-
cation more precise. By contrast, techniques based on
Neural Networks do not provide such a capability and

(B)(A)

Figure 7: Forcing state duration to 20 pixels.

typically remove the e�ect of the background using
a �xed mask where corner are chopped o� (see e.g.,
[8]). Figure 8 shows di�erent examples of faces seg-
mented using P2DHMM. Only Face pixels have been
left intact and the minimal surrounding box have been
extracted. Pictures have been normalised to the same
height for display and their quality is related to their
size within the original image.

Figure 8: Segmented faces extracted using P2DHMM.

Note that even when eye-glasses are present, the
face is still well-segmented. Since our models are not
based on geometrical considerations, face orientation
does not in
uence face detection. However, a limita-
tion of this principle is illustrated by Figure 9. In this
example, skin-colour pixels are present at almost ev-
ery line of the image. Since the dependency between
lines is introduced at the line level rather than the
pixel level, this allows for horizontally disconnected
regions to be segmented. This is the case in this ex-
ample where super-state Face line is used for almost
all the lines.

The next step will therefore be to introduce depen-
dency at the pixel level for re�ning face characterisa-
tion using geometrical criteria. We are currently work-
ing at de�ning a way to add this dependency within
the feature vector so that computation load remain
reasonable.

5 Conclusion
In this paper, we investigated the problem of face

detection in colour images. The aim in to include such
application in an automated video-indexing process.



Figure 9: A case of unsucessful segmentation.

In this context and unlike in most face detection ap-
plications, no prior knowledge about the face orien-
tation and scale is available. After reviewing brie
y
the use of HMM for pattern recognition in 1D and
2D signals, we detailed the application of P2DHMM
in our context. It was shown that such model o�er a
high level of 
exibility in term of face orientation and
background quality. We also presented a technique
which allow for the introduction of several character-
istics and automatically selects the best ones for the
context in question. It was shown that HMM have the
capability of segmenting this input image at the pixel
level. Subsequent face identi�cation may then take
advantage of this capability by lowering the e�ect of
what is known to be background pixels.

We concluded the paper by presenting some limita-
tions that we are currently working at overcoming.

Acknowledgements

Eurecom's research is partially supported by its in-
dustrial partners: Ascom, Cegetel, France Telecom,
Hitachi, IBM France, Motorola, Swisscom, Texas In-
struments, and Thomson CSF.

References

[1] S.-S. Kuo and O. E. Agazzi. Automatic keyword
recognition using Hidden Markov Models. Jour-
nal of Visual Communication and Image Repre-
sentation, 5(3):265{272, 1994.

[2] S.-S. Kuo and O. E. Agazzi. Keyword spotting in
poorly printed documents using Pseudo 2-D Hid-
den Markov models. IEEE Transactions on Pat-
tern Analysis and Machine Intelligence, PAMI-
16(8):842{848, 1994.

[3] K.-F. Lee. Automatic speech recognition. Kluwer
Academic Publishers, Dordrecht, The Nether-
lands, 1989.

[4] S. Oka, M. Kitabata, Y. Ajioka, and Y. Take-
fuji. Grouping complex face parts by nonlinear

oscillations. In Proceedings of the European Sym-
posium on Arti�cial Neural Networks, pages 395{
400, Bruges, Belgium, April 22-24 1998.

[5] L. R. Rabiner. A tutorial on Hidden Markov
Models and selected applications in speech recog-
nition. Proceedings of the IEEE, 77(2):257{285,
1989.

[6] L. R. Rabiner and B.-H. Juang. Fundamentals
of Speech Recognition. Prentice Hall, Englewood
Cli�s, NJ, 1993.

[7] G. Rigoll, S. M�uller and C. Neukirchen. Spotting
of handwritten symbols in complex environments
using Pseudo-2D Hidden Markov Models. In Pro-
ceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, Santa Barbara,
CA, USA, 1998.

[8] H. A. Rowley, S. Baluja and T. Kanade. Neural-
Network-based face detection. IEEE Transac-
tions on Pattern Analysis and Machine Intelli-
gence, PAMI-20(1):23{38, 1998.

[9] F. S. Samaria and A. C. Harter. Parameterisation
of a stochastic model for human face identi�ca-
tion. In Proceeding of the Second IEEE Work-
shop on Applications of Computer Vision, Sara-
sota, Florida, December 1994.

[10] M. Turk and A. Pentland. Eigenfaces for recogni-
tion. Journal of Cognitive Neuroscience, 3(1):71{
86, 1991.


