
Turbo-like Codes for the Block-Fading Channel
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We consider a single-input single-output block-fading channel
with NB fading blocks [1]. The received signal can be compactly
expressed in the matrix form

Y =
√

ρHX + Z (1)
where Y ∈ C

NB×L, X ∈ C
NB×L, H = diag(h1, . . . , hNB

) ∈
C

NB×NB and Z ∈ C
NB×L. The b-th block fading coefficient is

denoted by hb and the noise zb is i.i.d. proper complex Gaussian,
with components ∼ NC(0, 1). We assume normalized fading, such
that E[|hb|2] = 1. Therefore, the average signal-to-noise ratio (SNR)
is ρ and the instantaneous SNR on block b is given by |hb|2ρ. The
collection of all possible transmitted codewords X forms a coded
modulation scheme over X . We study schemes M(C, µ,X ) obtained
by concatenating a binary linear code C of length NBLM and rate r
bit/symbol with a memoryless one-to-one symbol mapper µ : F

M
2 →

X , with M = log2 |X |. The resulting coding rate (in bit/complex
dimension) is given by R = rM .

We define the SNR reliability function d?
B as the maximum

achievable SNR exponent of error probability for codes in a given
family of interest [3]. Namely, we define

d?
B

∆
= sup

C∈F

lim
ρ→∞

− log Pe(ρ, C)

log ρ
(2)

where Pe(ρ,C) is the error probability of a given coding scheme C,
and the supremum is taken over all coding schemes in the family
F . For discrete signal sets and for bit-interleaved coded modulation
(BICM) [2] we have the following results:
Theorem 1 Consider the block-fading channel (1) with i.i.d.
Rayleigh fading and input signal set X of cardinality 2M . The SNR
reliability function of the channel is upperbounded by the Singleton
bound

d?
B(R) ≤ δB(R)

∆
= 1 +

—

NB

„

1 − R

M

«�

(3)

The random coding SNR exponent of the coded modulation en-
semble M(C, µ,X ) defined previously, with block length L(ρ)

satisfying limρ→∞
L(ρ)
log ρ

= β and rate R, is lowerbounded by

βNBM log(2)
`

1 − R
M

´

when 0 ≤ β < 1
M log(2)

and by

δB(R) − 1 + min
˘

1, βM log(2)
ˆ

NB

`

1 − R
M

´

− δB(R) + 1
˜¯

when 1
M log(2)

≤ β < ∞. Furthermore, the SNR random coding
exponent of the associated BICM channel satisfies the same lower
bounds.
Corollary 1 The SNR reliability function of the block-fading chan-
nel with input X and of the associated BICM channel is given by
d?

B(R) = δB(R) for all R ∈ (0, M ], except for the NB discontinu-
ity points of δB(R), i.e., for the values of R for which NB(1−R/M)
is an integer.
Fig. 1 shows δB(R) (Singleton bound) and the random coding lower
bounds for βM log(2) = 1/2 and βM log(2) = 2, in the case NB =
8 and M = 4. It can be observed that as β increases, the random
coding lower bound coincides over a larger and larger support with
the Singleton upper bound. However, in the discontinuity points it
will never coincide.
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Fig. 1: SNR reliability function and random coding exponents.

We say that a code ensemble M(C, µ,X ) is good if for L → ∞
its error probability converges to the outage probability, while if it
shows a fixed SNR gap (independent of L) we say that M(C, µ,X )
is weakly good. In [4] we provide a sufficient condition for weak
goodness based on asymptotic multivariate weight enumerators.

We consider the coded modulation family M(C, µ,X ) of block-
wise concatenated codes (BCC) (see Fig. 2). The binary linear outer
code CO ∈ F

LO

2 of rate rO is partitioned into NB blocks of length
LO/NB . The blocks are separately interleaved and fed to NB binary
inner encoders CI ∈ F

LI

2 of rate rI . Finally, the output of each com-
ponent inner code is mapped onto a sequence of signal components
in X by the modulator mapping µ. The proposed BCCs significantly
outperform conventional serial and parallel turbo codes in the block-
fading channel. Differently from the AWGN and fully-interleaved
fading cases, iterative decoding performs very close to ML on the
block-fading channel, even for relatively short block lengths. More-
over, at constant decoding complexity per information bit, BCCs are
shown to be weakly good, while standard block codes obtained by
trellis-termination of convolutional codes have a gap from outage that
increases with the block length: this is a different and more subtle
manifestation of the so-called “interleaving gain” of turbo-like codes.
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Fig. 2: Code structure for BCCs.
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