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ABSTRACT
In this paper we describe a new Bayesian algorithm for joint
iterative decoding and parameter estimation. In particular,
we focus on joint decoding and synchronization of low-
density parity-check (LDPC) codes in the presence of phase
noise. The performance of the proposed algorithm is ana-
lyzed by computer simulations showing that a time-varying
channel phase, with a rate of change typical of the instabil-
ities of the transmit and receive oscillators, does not entail
significant degradation with respect to the case of a known
phase.

1. INTRODUCTION

In the recent technical literature, the problem of LDPC de-
coding in the presence of an unknown channel phase has be-
come quite popular. In [1, 2], a simple noncoherent chan-
nel model is considered that tries to capture the phase dy-
namics: the unknown carrier phase is considered constant
over a block of N symbols and independent from block to
block. In [3] an approximate quantized model for the un-
known phase is considered and the receiver is designed based
on this model. Finally, in [4], based on the approach in [5],
different phase models are considered and approximate solu-
tions are derived.

A non-Bayesian approach is adopted in [6, 7, 8]. The
unknown parameters, modeled as deterministic, are esti-
mated by using the Expectation-Maximization (EM) algo-
rithm [6, 7] or an ad-hoc procedure [8], and this estimation
algorithm is embedded into the iterative decoding process.
For all these algorithms, when the channel is time-varying,
the performance rapidly degrades since the receiver is not
designed to exploit the statistical or a priori knowledge of
the phase variations.

Bayesian methods for joint decoding and channel param-
eter estimation amount, roughly speaking, to construct a Fac-
tor Graph (FG) modeling the statistical dependency of the
transmitted data, of the channel parameters to be estimated,
and of the observed signal, and by applying the Sum-Product
(SP) algorithm. The resulting algorithms are naturally iter-
ative, and are well-suited to the decoding of codes such as
LDPC and turbo codes, whose decoding algorithms are typ-
ically iterative even in the fully coherent setting (all channel
parameters known).

Two possible approaches can be adopted for building
a factor graph (FG) which takes into account the channel
model along with the code constraints. In the first one, by
means of a factorization of the joint a posteriori probability
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of the transmitted symbols, a factor graph representing both
the code constraints and the channel model but not explic-
itly the channel parameters can be built. The application of
the SP algorithm to this factor graph leads to a scheme for
joint detection and decoding. This approach is not further
discussed here and an interested reader may refer to [1, 9].

In the second approach, suggested by [5], variable nodes
representing the channel parameters are explicitly introduced
in the FG. The marginalization with respect to the unknown
channel parameters, that is performed with respect to the a
priori probability distribution in the previous approach, is
now performed directly by the SP algorithm. The problem
with these methods is that, while the SP algorithm is well-
suited to handle probability mass functions (i.e., discrete ran-
dom variables), the channel parameters are typically continu-
ous random variables, statistically described by some condi-
tional probability density function (pdf). There are two clas-
sical solutions to this problem. One is based on the use of
canonical distributions, i.e., on pdfs that are efficiently pa-
rameterized. Hence, the SP has just to forward the param-
eters of the distribution. The other method is based on the
quantization of the parameter space. Obviously, this latter
approach becomes “optimal” (in the sense that it approaches
the performance of the exact SP algorithm) for a sufficiently
large number of quantization levels, at the expenses of an
increased computational complexity.

In this paper we derive a novel low-complexity Bayesian
algorithm based on the canonical distribution paradigm.

2. SYSTEM MODEL

We consider a coded transmission system where codewords
c = (c0, . . . ,cK−1) ∈ C are transmitted over a channel af-
fected by additive white Gaussian noise (AWGN) and by a
random time-varying carrier phase (phase noise). The code
C is defined over some complex signal set X (e.g., PSK or
QAM). In addition, to avoid phase ambiguity problems, pi-
lot symbols may be also inserted in the transmitted symbol
sequence. Assuming linear modulation with Nyquist pulses
and slow enough phase time variations so as no intersym-
bol interference arises, the discrete-time basedband complex
equivalent channel model at the receiver is given by

rk = cke jθk +nk, k = 0, . . . ,K −1 (1)

where {nk} is a discrete-time proper complex WGN process
with per-component variance equal to σ 2. The phase noise
process {θk} is modeled as a discrete-time Wiener process:

θk = θk−1 +∆k (2)
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Figure 1: Factor graph corresponding to eqn. (5).

where T is the signaling interval and the i.i.d. Gaussian incre-
ments ∆k have zero mean and standard deviation σ∆.1 Hence

p(θk|θk−1,θk−2, . . . ,θ0) = p(θk|θk−1) (3)

p(θ0) =
1

2π
, θ0 ∈ [0,2π) . (4)

In the following, the vector of channel phase values will be
denoted as θ = (θ0,θ1, . . . ,θK−1).

3. PROPOSED ALGORITHM

The joint distribution of coded symbols and channel param-
eters can be expressed as

P(c|θ ,r)p(θ |r) ∼ p(r|c,θ )χ(c)p(θ )

= χ(c)p(θ0)
K−1

∏
k=0

p(rk|ck,θk)
K−1

∏
k=1

p(θk|θk−1)

= χ(c)p(θ0)
K−1

∏
k=0

fk(ck,θk)
K−1

∏
k=1

p(θk|θk−1)

(5)

where ∼ indicates that two quantities are monotonically re-
lated with respect to the variables of interest, χ(c) denotes
the code constraint function (χ(c) = 1 for all codewords
c ∈ C , and zero elsewhere), and we have defined

fk(ck,θk) = p(rk|ck,θk) ∼ exp

{

−
1

2σ 2 |rk − cke jθk |2
}

∼ exp
{

1
σ2 ℜ[rkc∗ke− jθk ]−

|ck|
2

2σ 2

}

. (6)

The corresponding factor graph is sketched in Fig. 1.
Omitting the explicit reference to the current iteration and

assuming that the SP algorithm works in the natural domain,
let us denote by Pd(ck) the message from variable node ck
to factor node fk, and by Pu(ck) the message in the opposite

1Note that, since the channel phase is defined modulus 2π, the pdf of the
random variable ∆k can be approximated as Gaussian only if σ∆ � 2π.

direction (see Fig. 1). The message pd(θk) from factor node
fk to variable node θk can be expressed as

pd(θk) = ∑
x∈X

Pd(ck = x) fk(ck = x,θk) . (7)

We also assume that in the lower part of the factor
graph, describing the channel, a forward-backward sched-
ule is adopted. Hence, messages p f (θk) from factor node
p(θk|θk−1) to variable node θk, and pb(θk) from factor node
p(θk+1|θk) to variable node θk, may be recursively computed
as follows:

p f (θk) =

∫ 2π

0
pd(θk−1)p f (θk−1)p(θk|θk−1)dθk−1 (8)

pb(θk) =

∫ 2π

0
pd(θk+1)pb(θk+1)p(θk+1|θk)dθk+1 (9)

with the following starting conditions:

p f (θ0) = p(θ0) (10)

pb(θK−1) =
1

2π
, θK−1 ∈ [0,2π) . (11)

The probability Pu(ck) can be finally computed as

Pu(ck) =

∫ 2π

0
p f (θk)pb(θk) fk(ck,θk)dθk . (12)

We now show a method for the computation of the probabil-
ity Pu(ck) in the form of a series expansion.

The function fk(ck,θk) is periodic in θk. Hence, it can
be expanded in Fourier series. We use the following known
result [10, eqn. (9.6.34)]:

excosθ = I0(x)+2
∞

∑̀
=1

I`(x)cos(`θ ) (13)

where I`(x) is the modified Bessel function of the first kind
of order `. Defining, for a complex number z, φ(z) = arg(z),
after some straightforward manipulations we obtain

fk(ck,θk) = e−
|ck|

2

2σ2
∞

∑
`=−∞

I`

(

|rk||ck|

σ2

)

e− j`φ(rkc∗k )e j`θk . (14)

Substituting (14) into eqn. (7), we may express

pd(θk) =
∞

∑
`=−∞

A(`)
k e j`θk (15)

having defined

A(`)
k = ∑

x∈X

Pd(ck = x)e−
|x|2

2σ2 I`

(

|rk||x|
σ2

)

e− j`φ(rkx∗)

= − j`φ(rk) ∑
x∈X

Pd(ck = x)e−
|x|2

2σ2 I`

(

|rk||x|
σ2

)

e j`φ(x)

= e− j`φ(rk) ∑
x∈X

Pd(ck = x)e−
|x|2

2σ2 I`

(

|rk||x|
σ2

)

x`

|x|`
. (16)

Note that for M-PSK signals, the expression of coefficients
A(`)

k , neglecting irrelevant terms, simplifies to

A(`)
k = e− j`φ(rk)I`

(

|rk|

σ2

)

∑
x∈X

Pd(ck = x)x` . (17)
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In this case, at the first iteration, when the probabili-
ties of symbols P(ck) are all equal to 1/M (excepting
for pilot symbols), these coefficients are zero for ` 6=
0,±M,±2M,±3M, . . .. In general, a reduced number N of
coefficients must be taken into account due to the fact that,
for a given x, functions I`(x) are monotonically decreasing
for increasing values of `. When this truncation is performed,
it is suitable to apply a window to the truncated coefficients.
By means of computer simulations, we found that the Kaiser
window with an optimized parameter β [11] assures the bet-
ter performance.

Pdfs p f (θk) and pb(θk) will be of the same form, i.e.,
they will be periodic and can be expanded in Fourier series:

p f (θk) =
∞

∑
`=−∞

B(`)
f ,ke j`θk (18)

pb(θk) =
∞

∑
`=−∞

B(`)
b,ke j`θk . (19)

Substituting (15) and (18) into eqn. (8), we obtain

∞

∑
`=−∞

B(`)
f ,ke j`θk

=
∞

∑
m=−∞

∞

∑
n=−∞

A(m)
k−1B(n)

f ,k−1

∫ 2π

0
e j(m+n)θk−1 p(θk|θk−1)dθk−1

=
∞

∑
`=−∞

∞

∑
m=−∞

A(m)
k−1B(`−m)

f ,k−1

∫ 2π

0
e j`θk−1 p(θk|θk−1)dθk−1 .

(20)

For practical values of σ∆, the pdf p(θk|θk−1) is strictly lim-
ited to an interval of duration less than 2π . Hence we may
write
∫ 2π

0
e j`θk−1 p(θk|θk−1)dθk−1 =

∫ ∞

−∞
e j`θk−1 p(θk|θk−1)dθk−1 .

(21)
By direct computation, it is easy to show that in the case of
the phase model (2) it is

∫ ∞

−∞
e j`θk−1 p(θk|θk−1)dθk−1 = D`(σ∆)e j`θk (22)

where

D`(σ∆) = e−
σ2

∆`2

2 . (23)

Hence

∞

∑
`=−∞

B(`)
f ,ke j`θk =

∞

∑
`=−∞

[

D`(σ∆)
∞

∑
m=−∞

A(m)
k−1B(`−m)

f ,k−1

]

e j`θk

(24)
obtaining a recursive equation for the computation of the co-
efficients B(`)

f ,k:

B(`)
f ,k = D`(σ∆)

∞

∑
m=−∞

A(m)
k−1B(`−m)

f ,k−1 = D`(σ∆)[A(`)
k−1 ⊗B(`)

f ,k−1]

(25)
where ⊗ denotes convolution between sequences. From con-
dition (10), we derive the following starting condition:

B(`)
f ,0 = δ (`) (26)

where δ (`) denotes the Kronecker delta. Similarly, to com-

pute coefficients {B(`)
b,k}, we have the following backward re-

cursion:
B(`)

b,k = D`(σ∆)[A(`)
k+1 ⊗B(`)

b,k+1] (27)

with starting condition

B(`)
b,K−1 = δ (`) . (28)

Note that the computation of these coefficient can be simpli-
fied taking into account that A(−`)

k = A(`)∗
k , B(−`)

f ,k = B(`)∗
f ,k , and

B(−`)
b,k = B(`)∗

b,k . Finally, substituting (14), (18), and (19) into
eqn. (12) and defining

E(`)
k = e−

|ck |
2

2σ2

{

B(`)
f ,k ⊗B(`)

b,k ⊗

[

I`

(

|rk||ck|

σ2

)

e− j`φ(rkc∗k)

]}

(29)
we have

Pu(ck) =
∞

∑
`=−∞

E(`)
k

∫ 2π

0
e j`θk dθk = E(0)

k . (30)

4. NUMERICAL RESULTS

The performance of the proposed schemes is assessed by
computer simulations in terms of bit error rate (BER) ver-
sus Eb/N0, Eb being the received signal energy per informa-
tion bit and N0/2 the two-sided noise power spectral density.
The considered code is a (3,6)-regular LDPC code with code-
words of length 4000 found in [12]. Binary PSK (BPSK) and
quaternary PSK (QPSK) modulations are considered and a
maximum of 200 iterations of the SP algorithm on the overall
graph is allowed. A pilot symbol every 19 coded bits is added
in order to make the iterative decoding algorithms bootstrap.
This corresponds to a decrease in the effective transmission
rate, resulting in an increase in the required signal-to-noise
ratio of about 0.223 dB which has been introduced artificially
in the curve labeled “known phase” for the sake of com-
parison. Hence, the gap between the “known phase” curve
and the others is uniquely due to the need for phase estima-
tion/compensation, and not to the rate decrease due to pilot
symbols insertion.

In Fig. 2, the performance of the proposed algorithm is
shown for σ∆ = 6 degrees and different values of the num-
ber N of considered Fourier coefficients. Values of N > 17
are not considered since they do not produce any perfor-
mance improvement. Therefore, the value of N = 17 (i.e.,
−8 ≤ ` ≤ 8 in all the equations of the previous Section)
can be considered as optimal for σ∆ = 6 degrees. The gap
of about 0.2 dB with respect to the curve labeled “known
phase” is only due to the loss in channel capacity for a time-
varying channel phase. In fact, the proposed algorithm per-
forms as well as the algorithm based on the phase quantiza-
tion [5] which is also shown for comparison assuming L = 16
quantization levels (no improvement has been observed for
increasing values of L and this is in agreement with a re-
sult in [13] where the authors state that for M-PSK signals,
L = 8M values are sufficient to have no performance loss).
This latter algorithm can be regarded as a “practically opti-
mal” benchmark. In Fig. 2, the performance of the proposed
algorithm for N = 17 and that of the quantized-based algo-
rithm for L = 16 are also shown for σ∆ = 12 degrees.
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Figure 2: Performance of the proposed algorithm for BPSK
and different values of the number N of considered Fourier
coefficients.
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Figure 3: Performance of the proposed algorithm for QPSK.

In the binary case considered in the previous figure, the
proposed algorithm has a practically optimal performance
and a complexity similar to that of the algorithm based on
phase quantization. However, for a modulation format char-
acterized by a more dense constellation, if for the quantized-
based algorithm the optimal number of quantization level,
and thus the complexity, must be increased, it can be ex-
pected that the number N of considered Fourier coefficients
in the proposed algorithm remains practically the same. This
aspect is shown in Fig. 3 where a QPSK modulation is con-
sidered. The phase noise has σ∆ = 6 degrees. For the
quantized-based algorithm L = 8M = 32 quantization lev-
els are considered whereas for the proposed algorithm, the
number of Fourier coefficients is still N = 17.

5. CONCLUSIONS

In this paper, the problem of joint detection and decoding of
LDPC codes, transmitted over a channel affected by phase
noise, has been considered. A factor graph, taking into ac-
count both the code constraints and the channel behavior,
was built and by means of the sum-product algorithm, the
marginal a posteriori probabilities of the transmitted code
symbols were computed. To overcome the problem of an ex-

change of messages in the graph representing the probability
density functions of continuous random variables, we used
the method of canonical distributions. In this case, the above
mentioned probability density functions were represented by
means of a finite number of parameters which become the
messages to exchange. The proposed algorithm exhibits a
practically optimal performance and an affordable complex-
ity.
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