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Abstract—We present two new iterative decoding algorithms
for channels affected by strong phase noise and compare them
with the best existing algorithms proposed in the literature.
The proposed algorithms are obtained as an application of the
sum-product algorithm to the factor graph representing the joint
a posteriori probability mass function of the information bits given
the channel output. In order to overcome the problems due to
the presence in the factor graph of continuous random variables,
we apply the method of canonical distributions. Several choices
of canonical distributions have been considered in the litera-
ture. Well-known approaches consist of discretizing continuous
variables or treating them as jointly Gaussian, thus obtaining a
Kalman estimator. Our first new approach, based on the Fourier
series expansion of the phase probability density function, yields
better complexity/performance tradeoff with respect to the usual
discretized-phase method. Our second new approach, based on the
Tikhonov canonical distribution, yields near-optimal performance
at very low complexity and is shown to be much more robust
than the Kalman method to the placement of pilot symbols in the
coded frame. We present numerical results for binary LDPC codes
and LDPC-coded modulation, with particular reference to some
phase-noise models and coded-modulation formats standard-
ized in the next-generation satellite Digital Video Broadcasting
(DVB-S2). These results show that our algorithms achieve near-
coherent performance at very low complexity without requiring
any change to the existing DVB-S2 standard.

Index Terms—Channels with memory, factor graphs (FGs),
iterative detection/decoding, low-density parity-check (LDPC)
codes, phase-noise, sum-product algorithm (SPA), Tikhonov
parameterization.

I. INTRODUCTION

THE FACTOR GRAPH (FG) representation and the sum-
product algorithm (SPA) provide a general and powerful

framework to derive low-complexity Bayesian detection and
decoding algorithms [1]. In this paper, we make use of this
framework to derive efficient algorithms for iterative decoding
in additive white Gaussian noise (AWGN) channels affected by
phase noise. We construct the FG corresponding to the joint a
posteriori probability distribution of the information message
bits and of the random channel parameter (phase noise in our
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case), given the received signal. Then, we let the SPA com-
pute the posterior marginal distributions of the information bits.
Bit-by-bit decisions are then made, based on the resulting pos-
terior marginals. The FG takes into account the probabilistic
structure of the channel parameters, such that expectation over
the unknown parameters is implicitly performed by the SPA as
part of the marginalization. The posterior marginal probabili-
ties computed by the SPA are exact if the underlying FG is
cycle-free. In this case, the bit-by-bit decision is optimal, i.e.,
it minimizes the average bit-error probability. More often, the
underlying FG has cycles and the resulting SPA is inherently
iterative. In this case, the SPA does not yield in general the op-
timal MAP decision rule. Nevertheless, the iterative SPA has
proven to provide very good performance in several problems
and, therefore, it can be regarded as a viable low-complexity
solution when the optimal decision rule is just too complex to
be implemented in practice. Since the resulting algorithms are
naturally iterative, they are particularly suited to the decoding
of codes such as low-density parity-check (LDPC) and turbo
codes, whose decoding algorithms are typically iterative (and
suboptimal) even in the fully coherent setting (all channel pa-
rameters known).

Iterative decoding algorithms for channels with unknown
phase have attracted an increasing interest in the recent liter-
ature. The algorithms developed in [2]–[7] are designed for
noncoherent decoding of turbo codes and can be applied to
LDPC codes only if trellis-based separate detection is per-
formed. In particular, in [2] and [7], receivers for both the
block-constant phase model and a discretized random-walk
phase model are developed by using a phase discretization
approach. In [8], the use of FGs that include both the code
constraints and the channel parameter statistics is advocated
in a very general setting. By specializing the approach of [8]
to particular channel phase statistics, several algorithms for
noncoherent detection/decoding have been proposed. In [9]
and [10], LDPC ensemble optimization via density evolution
is considered for a very simplified block-constant phase model
quantized over the two levels 0 and . In [11], a constant and
a random-walk phase noise model with Gaussian increments
are considered and approximations of the SPA are derived
and evaluated. In [12], the messages in the SPA related to
continuous random variables are replaced by Dirac impulses
located at estimated values for the corresponding variable and
different estimation methods are examined. In [13], a phase
model where the unknown carrier phase is constant over a
block of symbols and independent from block to block is
considered, the channel parameters are not explicitly intro-
duced in the FG, and the power allocation to the pilot symbols
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is optimized by using density evolution. Finally, in [14], based
on an assumption of memory truncation, a general Bayesian
approach to LDPC decoding without the explicit representation
of the channel parameters into the FG has been proposed and
applied to different channel models.

A non-Bayesian approach is adopted in [15]–[21]. In
[15]–[20], the concept of soft-decision-directed estimation is
introduced. The channel parameters are estimated by using
the expectation-maximization (EM) algorithm [15]–[19] or
an ad hoc procedure [20] and the estimation algorithm is em-
bedded into the iterative decoding process. Generally speaking,
non-Bayesian approaches consider the channel phase as a
deterministic unknown constant. Tracking time-variations,
such as in the case of phase noise, is obtained by using some
heuristic sliding window adaptation. As a matter of fact, while
the non-Bayesian schemes may be suited for the block-con-
stant phase model, their performance degrades significantly
in the presence of phase noise since the algorithms are not
designed by exploiting the statistical knowledge of the phase
time-variations.

In this paper, we follow the FG/SPA framework of [8], and
we focus on the random-walk phase noise model with Gaussian
increments, as in [11]. While the SPA is well-suited to handle
discrete random variables, characterized by a probability mass
function (pmf), the channel parameters are typically continuous
random variables, characterized by a probability density func-
tion (pdf). The SPA for continuous random variables involves
integration and computation of continuous pdfs, and it is not
suited for direct implementation. A solution for this problem is
suggested in [8] and consists of the use of canonical distribu-
tions, i.e., the pdfs computed by the SPA are constrained to be
in a certain “canonical” family, characterized by some parame-
terization. Hence, the SPA reduces to propagating and updating
the parameters of the pdf rather than the pdf itself. Beyond
this general idea, several different algorithms can be obtained
depending of the choice of the canonical distribution family.
These approximations of the SPA, albeit all derived from the
same standard approach, offer different complexity and perfor-
mance. Therefore, finding good canonical distribution parame-
terizations suited to the problem at hand is the key step in algo-
rithm design.

The most straightforward parameterization is based on the
discretization of the parameter space [2], [7], [11]. In the case
of phase-noise, the application of the SPA computation rules
to the discretized random-walk yields a BCJR algorithm that
operates on a trellis representation of the phase noise trajecto-
ries. Another well-known approach is based on modeling the
phasor process and the channel observations as jointly Gaussian,
thus obtaining a modified version of the well-known Kalman
smoother [11].

In this paper, we propose two new approaches based on
Fourier and Tikhonov parameterizations, respectively. The
Fourier approach explicitly exploits the fact that the phase pdf
is periodic. Hence, for high-order modulations it yields better
complexity/performance tradeoff than straightforward dis-
cretization. The Tikhonov approach yields a one-dimensional
forward–backward recursion that can be regarded (roughly
speaking) as a nonlinear version of the Kalman smoother. Re-

markably, its performance is nearly as good as the discretized
phase approach (nearly optimal) with considerable less com-
plexity, and it is much more robust than the Kalman smoother
to the placement of pilot symbols.1 As a matter of fact, the
newly proposed Tikhonov parameterization yields an algorithm
with unprecedented performance/complexity tradeoff, thus
setting a new state-of-the art in joint phase synchronization and
decoding.

The reminder of this paper is organized as follows. Section II
is mostly tutorial. It introduces the channel model and presents
the derivation of the exact SPA. In Section III, we briefly
review the discretized-phase BCJR and the Kalman methods,
that are used as terms of comparison of the new proposed
algorithms. Section IV presents the details of the new algo-
rithms. A complexity comparison is carried out in Section V.
Finally, in Section VI we present some numerical results and in
Section VII, we point out some concluding remarks.

II. SYSTEM MODEL AND EXACT

SUM-PRODUCT ALGORITHM (SPA)

We consider the transmission of a sequence of complex
modulation symbols over an AWGN
channel affected by carrier phase noise. Symbols are linearly
modulated. Assuming Nyquist transmitted pulses, matched
filtering, and phase variations slow enough so as no inter-
symbol interference arises, the discrete-time baseband complex
equivalent channel model at the receiver is given by

(1)

We assume that the sequence is a codeword of the channel
code constructed over an -ary modulation constellation

. We include possible pilot symbols (known to the
receiver) and/or possible differential encoding as a part of the
code . The vector of noise samples
has independent identically distributed (i.i.d.), complex cir-
cularly symmetric components, with .2 The
vector of channel phases is random,
unknown to both transmitter and receiver, and statistically
independent of and .

A common model for the phase noise process is the
random-walk (Wiener) model described by

(2)

where is a white real Gaussian process with
. Under this assumption and assuming

, it follows that

(3)

1We found that a minimum of pilot symbols to bootstrap the iterative decoder
is necessary to all these algorithms in the case of strong phase noise and long
block length. This will be illustrated briefly in Section VI from an extrinsic
information transfer (EXIT) chart argument. We hasten to say that in the case
of slowly varying phase and short block length these algorithm might work also
without pilot symbols, in a fully noncoherent way.

2A complex circularly symmetric (respectively, real) Gaussian random vector
v with mean m and covariance matrix ��� is denoted by v � N (m;���) [re-
spectively, by v � N (m;���)]. We denote the multivariate complex circularly
symmetric (respectively, real) Gaussian pdf with meanm, covariance matrix ���
and argument x by g (m;���;x) [respectively, by g(m;���;x)].
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where we define as the pdf of the increment ,
i.e.,

(4)

in any interval of length . The Wiener phase noise model
will be considered in the following as a working assumption
in order to derive efficient iterative decoding algorithms. This
assumption will be relaxed in Section VI, where we apply our
algorithms to the DVB-S2-compliant European Space Agency
(ESA) model described in [22] and [23] (see Section VI).

Without loss of generality, we assume that the code admits
an encoding function , mapping binary in-
formation messages into the codewords. The optimal
decision rule that minimizes the average bit-error probability is
given by

(5)

where denotes the a posteriori pmf for the th informa-
tion bit given the received signal vector .
Let denote the joint posterior probability distribu-
tion function3 of the information bits and of the phase noise
vector given . Clearly, the desired can be obtained by
marginalizing with respect to and to all for .
This can be accomplished in an approximated but low-com-
plexity way by the SPA applied on the FG of , as il-
lustrated in the following.

We assume that the reader is familiar with the FG/SPA frame-
work (that can be found, for example, in the excellent tutorial
paper [1]). Therefore, for the sake of space limitation, we will
not recall here this background. From the definition of the en-
coding function and the channel model (1), we obtain the
factorization4

(6)

where we have used the fact that the output signal pdf does
not depend on , that the information bits are uniform and i.i.d.,
therefore, , that the AWGN channel for given is
memoryless. We have also defined the functions

(7)

3We use the term probability distribution function to denote a continuous pdf
with some discrete probability masses. For a probability distribution function,
we still use the symbol P (:).

4In this paper, we use extensively the proportionality relationship f / g,
indicating that f = ag for some real constant a, since the SPA is defined up to
scaling its messages by positive factors, independent of the variables represented
in the graph.

Fig. 1. Factor graph corresponding to (6) for K = 6.

Fig. 2. Factor graph corresponding to (8).

and the code indicator function , equal to 1 if
is the codeword corresponding to and to zero, otherwise. The
FG corresponding to (6) is shown in Fig. 1 for .

Under the assumption of first-order Markov model [see (3)]
for the phase noise, we can further factor the term as

obtaining

(8)

The corresponding FG is sketched in Fig. 2 and represents the
starting point for the development of the proposed algorithms.

The SPA applied to the FG in the upper box, corresponding
to the code constraints, consists of the well-known standard be-
lief propagation whose efficient implementation depends on the
structure of the code and needs no details here. Hence, we
shall concentrate on the SPA message propagation in the lower
part of the graph. Omitting for simplicity of notation the ex-
plicit reference to the current iteration, let us denote by
the message from variable node to factor node , and by

the message in the opposite direction (see Fig. 2). The
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message from factor node to variable node can be
expressed as

(9)

We also assume that in the lower part of the FG, describing
the phase-noise evolution, a forward–backward node activation
schedule is adopted. Therefore, messages from factor
node to variable node , and from factor
node to variable node , can be recursively
computed as follows:

(10)

(11)

with uniform pdfs as initial conditions

(12)

The message from to is given by

(13)

The vector of messages rep-
resents the observation (in the form of sequence of a poste-
riori pmfs) of the coded symbols “seen” through a virtual mem-
oryless channel, and are processed by the upper part of the
graph according to the standard belief propagation algorithm.
At each iteration, this produces updated messages

and updated estimates of the a posteriori
probabilities .

Equations (10), (11), and (13), form the main part of the SPA
for iterative decoding in the presence of phase noise. It is clear
that the implementation complexity of the exact SPA is imprac-
tical, since the messages from and to the variable nodes
are continuous pdfs. In order to obtain practical algorithms, we
follow the canonical distribution approach proposed in [8]. This
consists of constraining the messages from/to the continuous
variables to take values in a prescribed family of pdfs, that ad-
mits a compact parametric representation. Hence, the messages
computation reduces to the computation of the pdf parameters.
This representation can be exact or, more often, may involve
some approximations. In the case of approximations, finding
good choices of the pdf parameterization such that the resulting
algorithm yields good performance and low computational com-
plexity is generally nontrivial. In the following, we discuss dif-
ferent options for the problem at hand. The proposed algorithms
will be compared, in terms of performance and complexity, with
the best solutions in the literature that are briefly recalled in
Section III.

III. CANONICAL DISTRIBUTIONS EMPLOYED

IN THE LITERATURE

A. Discretization of the Channel Parameters:
Discretized-Phase BCJR

This case corresponds to letting the canonical distribution be
a weighted sum of impulses. This approach has been adopted
for Viterbi- and BCJR-like receivers in [24] and [2], [7], [11],
and [12], respectively. The channel phase is assumed to take
on the following values: .
In [2], the authors found that for -PSK signals,
values are sufficient to have no performance loss. This approach
is referred to as discretized-phase BCJR (dp-BCJR) since after
discretization of the phase random-walk the phase trajectories
are represented on a trellis diagram with states, and the SPA
message updating rules are identical (not surprisingly) to the
BCJR algorithm. Obviously, the dp-BCJR approach becomes
“optimal” (in the sense that it approaches the performance of
the exact SPA) for a sufficiently large number of discretiza-
tion levels, at the expenses of an increasing computational
complexity.

B. Gaussian Parameterization: Kalman Smoother

Another exemplification of the canonical distribution ap-
proach consists of modeling the phasor process as
a complex circularly symmetric Gauss–Markov process and
treating and as jointly Gaussian. This
assumption yields the forward and backward recursions (10)
and (11) in the form of a Kalman smoother [11] (also, see [25,
Ch. 5] for a detailed description).

IV. PROPOSED ALGORITHMS

A. Fourier Parameterization

The function defined in (7) is periodic in .
Hence, it can be expanded in Fourier series. We use the
well-known identity [26, eq. (9.6.34)]

(14)

where is the modified Bessel function of the first kind of
order . Letting, for a complex number , , after
some straightforward manipulations, we obtain

(15)
Substituting (15) into (9), we may express

(16)

having defined

(17)
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Note that for -PSK signals, the expression of coefficients
, neglecting irrelevant proportionality terms (see footnote

4), simplifies to

(18)

In this case, at the first iteration, when the probabilities of sym-
bols are all equal to (except for the pilot symbols),
these coefficients are zero for .

Pdfs and take on the same form, i.e., they are
periodic as well and can be expanded in Fourier series as

(19)
Substituting (16) and the above expression for in (10),
we obtain

(20)

We notice that, for practical values of , the pdf is
essentially 0 for argument outside an interval centered in 0
of size much smaller than . Hence, we can write

(21)

where we define . By using (21) in (20),
we obtain

(22)

yielding the forward recursion for the Fourier coefficients

(23)
where denotes convolution of sequences. From condition
(12), we derive the initial condition , where
denotes the Kronecker delta. Similarly, the backward recursion
to compute the coefficients is given by

(24)

with initial condition .

The computation of these coefficients can be simplified taking
into account the symmetries , ,

and . Finally, substituting (15) and (19) into (13)
and defining

(25)

we have

(26)

Remark: Truncation of the Fourier Coefficients: The con-
volution of the infinite-length sequence of Fourier coefficients
can be effectively implemented by truncation. Hence, only a re-
duced number of coefficients can be taken into account due
to the fact that, for a given , functions are monotonically
decreasing for increasing values of . Standard smoothed trun-
cation methods (windowing) can be applied [27]. In particular,
we found experimentally that a Kaiser window with optimized
parameter [27] yields satisfactory results, as it will be demon-
strated in Section VI.

B. Tikhonov Parameterization

Let us consider (9). If the messages were the exact
probabilities of the code symbols, it would be

(27)

We approximate by the nearest Gaussian pdf in the
sense of divergence (Kullbach–Leibler distance) [28]. This
yields the Gaussian pdf with mean and variance

. Letting and be the first- and second-order
moments of , given by

(28)

we obtain

(29)

Substituting (29) in the forward recursion (10), we obtain

(30)

When the channel phase is slowly varying, i.e., for ,
we have . In this case, the solution
of the recursion given by (30) with initial condition (12) is a
sequence of Tikhonov pdfs, given by

(31)
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TABLE I
COMPUTATIONAL LOAD PER CODE SYMBOL PER ITERATION FOR M -PSK MODULATIONS

where can be recursively computed as

(32)

with the initial condition . Similarly, the solution of the
backward recursion (11) under the above approximations is the
sequence of Tikhonov pdfs

(33)

where can be recursively computed as

(34)

with the initial condition . From (13), (31), and (33),
we obtain

(35)

When the phase varies more rapidly, such that the approxima-
tion is no longer valid, we show
in Appendix A that the distributions and are still
approximately given in the form (31) and (33), where now the
coefficients and are updated by the modified forward
and backward recursions

(36)

(37)

where we define the function

(38)

In a practical implementation, the function can be
computed via a lookup table (LUT).

Remark: Modification in the Case of Long Pilot
Fields: When the pilot symbols are arranged in bursts (training
sequences) separated by long blocks of code symbols, as in
the case of the DVB-S2 system [29], it is necessary to slightly
modify the algorithm in order to speedup the convergence
process and to avoid the risk of a phase ambiguity. In fact,
consider the recursive integral equation (10) from the second
iteration on. If the product

TABLE II
COMPUTATIONAL LOAD PER CODE SYMBOL PER ITERATION FOR

M = 4, L = 8,M = 32, N = 17, AND Q = 3

contains a dominant exponential term, i.e., if there exists a mod-
ulation symbol such that

(39)

where is a real parameter to be optimized by computer
simulation, it is preferable to let and . Oth-
erwise, we choose and , as in (28). This corresponds to
using a decision-aided scheme based on hard decisions for some
symbols . Similar considerations also hold for the recursive
integral equation (11). In the numerical results related to the
DVB-S2 system, we found that yields satisfactory
results.

V. COMPLEXITY CONSIDERATIONS

We address the computational complexity of the proposed al-
gorithms and compare it with the complexity of the dp-BCJR
and the Kalman smoother. We assume that the computation of
non linear functions is performed by using a lookup table and
restrict our evaluation to the case of -PSK. Table I presents
computational complexity in terms of number of operations (ad-
ditions and multiplications) between two real arguments and ac-
cesses to LUT, per coded symbols per decoder iteration. For the
dp-BCJR algorithm, the integer parameter has been further
introduced. In fact, being a Gaussian random variable with
small variance, only the transitions from any phase state to the

adjacent phase states can be taken into account in the
resulting trellis. For example, in [2], is used, meaning
that the phase can either remain constant or change by
at every th trellis step. It should be noticed that the value of

depends on the number of discretization levels , i.e., ul-
timately on the modulation constellation size (see [2] and
Section III-A).

As an example, the number of operations per code symbol
per iterations for quadrature phase-shift keying (QPSK) (

), , , and is reported in
Table II. The complexity advantage of the algorithm based on
the Tikhonov parameterization is clear. It should also be noticed
that, depending on the implementation, complexity should be
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measured in different ways. For example, for a DSP implemen-
tation additions and multiplications have the same cost, while
for a very large scale integration (VLSI) implementation the
chip area and the suitability to parallel computation should also
be taken into account. Such detailed evaluation, specific to a
given implementation, is beyond the scope of this paper.

VI. NUMERICAL RESULTS

In this section, the performance of the proposed schemes
is assessed by computer simulations in terms of bit-error rate
(BER) versus , being the received signal energy
per information bit and the one-sided noise power
spectral density. Unless otherwise stated, the considered code
is a (3,6)-regular LDPC code of length 4000 [30] with binary
phase-shift keying (BPSK) modulation and a maximum of 200
iterations of the SPA on the overall graph is allowed. For each
simulated point, a minimum of 100 frame errors were counted.

In all simulated cases, pilot symbols are inserted in the trans-
mitted codeword in order to make the iterative decoding al-
gorithms bootstrap. In fact, by studying the extrinsic informa-
tion transfer (EXIT) charts [31] of the overall detector/decoder,
not shown here for the sake of space limitations,5 it can be ob-
served that the iterative decoding system has a fixed point at zero
extrinsic information, irrespectively of the SPA approximation
adopted. This means that in the absence of pilot symbols the it-
erative decoder will be stuck at zero symbol reliability forever.
This observation clearly identifies the role of pilot symbols in it-
erative joint decoding and phase estimation: they are analogous
of “doping” symbols currently used in turbo-coding design, in
order to remove the zero fixed point and make the iterative de-
coder bootstrap (see, for example, [31] and [33]).

Pilot symbols involve a slight decrease of the effective infor-
mation rate, resulting in an increase in the required signal-to-
noise ratio. This increase has been introduced artificially in the
curve labeled “known phase” for the sake of comparison. Hence,
the gap between the “known phase” curve and the others is
uniquely due to the need for phase estimation/compensation,
and not to the rate decrease due to pilot symbols.

Beyond the Wiener phase noise model described in Section II,
we considered the DVB-S2 compliant ESA phase noise model
given as follows: is the sum of the outputs of two infi-
nite impulse response filters driven by the same white Gaussian
noise process with unit variance, where the filters are chosen to
fit an experimental phase noise mask. The filter transfer func-
tions are given by (see [22] and [23] for details)

where is the symbol interval.
In Fig. 3, the newly proposed algorithm based on Fourier pa-

rameterization is compared with the dp-BCJR (our benchmark
algorithm). One pilot symbol in every block of 20 transmitted
symbols was used. The ESA phase noise model and a more se-
vere Wiener model (2) with , have been considered. In

5The interested reader may refer to [32] for the relevant curves.

Fig. 3. Performance of the algorithms based on discretization of channel
parameters (dp-BCJR) and Fourier parameterization. BPSK and two different
phase models are considered.

Fig. 4. Performance of the algorithms based on discretization of channel
parameters (dp-BCJR) and Fourier parameterization. QPSK and the Wiener
model with � = 6 are considered.

the case of the ESA model, all the receivers were designed by
assuming a Wiener phase noise model with , opti-
mized via simulation.

In the case of the Wiener model, different values of dis-
cretization levels and different values of the Fourier coef-
ficients have been considered. No improvement has been ob-
served for values of and this is in agreement with a result
in [2]. Similarly, values of were not considered since
they do not produce any performance improvement. Therefore,
the value of (i.e., in all the equations of
Section IV-A) can be considered as nearly-optimal for .

The advantage of the Fourier algorithm over the dp-BCJR ap-
pears for high-order modulations. In fact, while the dp-BCJR re-
quires a number of states that increases linearly with the modu-
lation size, the new algorithm needs a nearly constant number of
Fourier coefficients. This fact is highlighted in Fig. 4, where the
QPSK modulation is considered. Again, a Wiener phase noise
with and one pilot symbol every 20 transmitted sym-
bols is used. The dp-BCJR algorithm is applied with and
with quantization levels (phase states), whereas
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Fig. 5. Performance of the algorithm based on Tikhonov parameterization and
the Kalman smoother. BPSK and two different phase models are considered.

Fig. 6. Performance of all the proposed algorithms and comparison with other
algorithms proposed in the literature. BPSK and the Wiener phase model with
� = 6 are considered.

the Fourier algorithm makes use of coefficients. We no-
tice that the dp-BCJR needs states, in agreement with
the findings of [2], yielding practically the same performance
of the Fourier algorithm with only , with evident com-
plexity savings (see Table II).

In Fig. 5, the newly proposed algorithm based on Tikhonov
parameterization is compared with the Kalman smoother in the
same conditions of Fig. 3. We observe that, despite the very low
complexity, both algorithms have practically the same perfor-
mance of the much more computationally demanding dp-BCJR
and Fourier algorithms. This fact can be also observed from
Fig. 6, where all the considered algorithms are compared for
the Wiener phase noise with . In this figure, the perfor-
mance of two other algorithms described in the literature is also
shown for the sake of comparison. The first one is the “ultrafast”
algorithm with overlapped windows described in [21], with the
value of optimized by computer simulation. The second one
is based on the EM algorithm [15]–[19]. In order to adapt the al-
gorithm to a time-varying channel phase, a sliding-window ver-
sion of the EM algorithm is used, where the window size was
optimized by computer simulation. The resulting algorithm is
denoted by sliding-window EM (EM-SW). We found that the

Fig. 7. Performance of the algorithms based on Tikhonov parameterization
and the Kalman smoother. BPSK and two different pilot distributions are
considered.

optimal window has width of 60 symbols for the considered
phase noise. In both cases, the performance loss is due to the
fact that these two algorithms are designed for a different phase
model, i.e., a block-constant phase. Based on the above experi-
ments and on extensive numerical evidence (not shown for the
sake of space limitation), we conclude that all the proposed al-
gorithms exhibit a practically optimal performance (i.e., they
perform as well as the discretization approach). Among them,
the algorithm based on the Tikhonov parameterization is partic-
ularly attractive because of its low complexity.

It remains to assess the advantage of this latter algorithm
with respect to the Kalman smoother, of roughly the same com-
plexity (see Table I). This is evidenced in terms of the sensi-
tivity to the placement of pilot symbols. Fig. 7 shows the per-
formance for the Wiener model with and two dif-
ferent distributions, namely, 1 pilot symbol in each block of
20 consecutive transmitted symbols and 20 pilots in each block
of 400 consecutive transmitted symbols, such that the effective
information rate is the same. We may observe that the algo-
rithm based on Tikhonov parameterization is almost insensitive
thanks to the algorithm modification described in Section IV-B.
A similar modification is not possible in the case of the Kalman
smoother, since it can be shown that the choice of a dominant
term corresponds to a hard-decision based uniquely on the de-
coder outcome . We verified that this modification pro-
duces no performance improvement for the Kalman smoother.
We interpret this fact by noticing that the Tikhonov parameter-
ization makes explicit use of the fact that the phasor must
lie on the unit circle, while the Kalman smoother, assuming that
the phasor is a Gauss–Markov process, is somehow more mis-
matched with respect to the true statistics of the channel.

Note that, in general, the distribution of the pilots has to be
optimized for the specific detection algorithm employed. Nev-
ertheless, in many communications standards the placement of
pilot symbols is determined a priori, without any specific detec-
tion algorithm in mind. Therefore, an algorithm which is almost
insensitive to the placement of pilot symbols is very useful in
practice. For example, this is the case of the DVB-S2 system,
where pilot symbols are organized into bursts of 36 symbols
every 1476 transmitted symbols [29]. We consider two standard-
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Fig. 8. Performance of the algorithms based on Tikhonov parameterization
and the Kalman smoother. The ESA phase model is considered along with
8-PSK and 32-APSK modulations.

ized LDPC codes with codewords of length 64 800 [29]. The
first one has rate 2/3 and is mapped onto an 8-PSK modulation.
The second one has rate 4/5 and is mapped onto a 32-APSK
modulation. The above mentioned phase noise ESA model is
considered. The performance is shown in Fig. 8. For the algo-
rithm based on Tikhonov parameterization, the loss due to phase
noise is less than 0.1 dB in both cases. Notice that a further
improvement in performance may be obtained if the maximum
number of iterations is not limited to 50. The Kalman smoother
does not perform as well mainly because of the bursty allocation
of pilot symbols.

VII. CONCLUSION

In this paper, the problem of iterative decoding in AWGN
channels affected by phase noise has been considered. We pro-
posed two new algorithms based on suitable approximations of
the SPA applied to the FG representing the posterior joint pmf
of the information bits and the random channel phase process
given the received signal. Our approximations are based on the
concept of canonical distributions, i.e., we impose that the mes-
sages propagated by the SPA take on values in a certain para-
metric family of distribution functions, such that the approxi-
mated SPA reduces to updating and propagating the function
parameters. We proposed two new parameterizations: one based
on Fourier series and the other based on a minimum divergence
Gaussian approximation and on the Tikhonov distribution.

Among the considered schemes, the novel algorithm based
on Tikhonov parameterization exhibits practically optimal per-
formance and very low complexity, and represents an attractive
solution for systems, where powerful LDPC-coded modulations
are transmitted in the presence of phase noise with bursty pilot
symbols, such as in next-generation satellite DVB.

While in this paper we have considered the case of perfect
frequency synchronization, an important extension of this work
should consider also frequency errors. After the first submission
of this paper, we extended the Tikhonov parameterization algo-
rithm to the case of channels affected by a random but constant
frequency offset uniformly distributed in an interval centered
around the nominal carrier frequency [34].

APPENDIX

MODIFIED TIKHONOV PARAMETERIZATION

The integral (30), whose domain can be any interval of length
, when is in the form (31) and

can be put in the form

(40)

for a suitable choice of the complex parameter and real vari-
ables and . By discarding irrelevant multiplicative factors, we
shall show that , where
is given in (38). To this purpose, we use the following approx-
imation which holds for large values of (in practice,

)

for (41)

In fact, for sufficiently large values of , the Tikhonov pdf
has its support in a small interval around

. Hence, by using a second-order Taylor expansion, we have
. A normalization constant has

been further added to obtain a pdf. Then, using (41) in (40), we
obtain

(42)

where (a) follows from the observation that, for ,
the function has its support in a small interval
around , (b) and (d) follow from (41) and (c) can be easily
proved by direct calculation. Eventually, we obtain
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