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Abstract

Backward adaptive or “on-line” transform coding (TC) of Gaian sources is investigated. We compare
in this context the Karhunen-Loeve Transform (KLT, unjtapproach) to the Causal Transform (CT, causal
approach). When the covariance maifix of the source is used in the TC scheme, KLT and CT presentssimil
coding gains at high rates [1], [2], [3]. The aim of this stugyo model analytically the behavior of these two
coding structures when the ideal TC scheme gets perturbatljs, when only a perturbed value, + AR
is known at the encoder. In the on-line TC schemes considezegl this estimate is used to compute both
the transform and the bit assignmem\ R is caused by two noise sources : estimation noise (finite fset o
available data at the encoder) and quantization noise figedrdata at the decoder). Furthermore, not only the
transformation itself gets perturbed, but also the bitgassient. In this framework, theoretical expressions for

the coding gains in both the unitary and the causal casesared under high rate assumption.
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. INTRODUCTION
A. Karhunen-Leéve and Causal Transforms in classical TC

In the classical transform coding (TC) framework (high ragptimal bit assignment [4], [5]) the
Karhunen-Loéve transform (KLT) has become a benchmankgest has been proved optimal for Gaus-
sian sourcés[9], [10], [11], [12]. A transform is optimal in TC if the disttion between original and
guantized data (usually the Mean Squared Error, MSE) ismii&id for a given source and a given
bitrate [4], [5].

Following initial work [13], others have demonstrated trediwally [13], [14], [1], [15], [16] and nu-
merically [2] that the CT performs as well as the KLT for higitrétes (see Sec Il for a quick overview
of the CT). The causal transform being moreover less cortipatally expensive than the KLT, this

makes it very attractive for TC.

B. Backward Adaptive TC schemes

Classical analyses of TC (see.g. [4], [5] and the references above) assume that the TC coding
parameters (bit assignment and transform) are availaltteeancoder and decoder side. Equivalently,
the covariance matrix of the data, from which the parametansbe computed, is assumed known at
both sides of the coder. Most of the time however, TC schereabwiith non- or locally- stationary
signals. In this case, sending the updates of the signardigmt transformation and bit assignment
as side information may cause a considerable overheaddanrall bitrate. Hence, one can seek to
adapt these parameters on the basis of the data availalble @etoder only. This backward adaptive
framework may be related to the general problermuniversal lossy quantization Universality is
meant heré& as the ability of a system which has agriori knowledge about the source, to achieve
the same rate-distortion performance as a system desigitiethat knowledge. Very few works have
investigated the feasibility of universal transform codethe literature. Some techniques have been
proposed [18], [19] which rely on so-calleédio-stagescodes: the first stage codes the identity of the
code that will be used to code the data; the second stage ttadéata with the previously chosen code.

Using one method [19] a pair (KLT; bit assignment) is choserorg a codebook of transformations

LFor non Gaussian sources, different transforms may yidteéibeompression results, segy.[6], [7], [8].
2Different kind of universality for lossy coding, or codingttva fidelity criterion, are defined in [17].



and bit assignment pairs; the index of the chosen pair isaseside-information to the decoder. This
type of technique is universal in the sense that it allows toneode with the best transform and bit
assignment any source among a particular class. The meihsigigated in the present work are
different in the sense that they do not rely on “universaletmbks” of any kind. Instead of choosing
among several precomputed transforms and bit assignmeatajish the encoder and the decoder to
compute these parameters using previously decoded dataltd technique is computationally more
expensive, but does not require any side-information. Ppeaach of the proposed analysis is similar
to that of [12], where backward adaptivity of the KLT is catesied, using equal step size quantizers.
It is proved in these works that such systems may producedime £oding performances than TC
systems designed with the a priori knowledge®fwhen the numbeK of available quantized vectors
becomes infinite. In the present works we propose to modetamgare the coding performances as a
functions of K for the KLT and the CT, when both the transform and the bitggsaent are backward

adaptive.

C. Formulation of the problem

Let us state more precisely the terms of the proposed ei@hsatThe backward adaptive systems
considered here require that neither the transformationthre parameters of the bit assignment be
transmitted to the decoder. For the purpose of our analygishall assume that the signal is a locally
stationary Gaussian vectorial signalsvith covariance matrix?,. Each source vectar, s
= [z 4 @2 2Nkt May seen as the sample of a vector signal, whose compongptare the
samples ofV scalar signal§z;},i = 1,--- , N, taken at time:. The components of the corresponding
transform vectoy, form a set of transform coefficients which are independantigntized using scalar
guantizers.

In the classical TC framework, the KLT (denoted By or the CT (denoted by) are computed so that
VR,V*, or LR,L" is diagonal. LetR, denote the covariance matrix of the transformed signale Th
variancesri_ of the transform signals afe, );;, where(.);; denotes théth diagonal element af). The

2

number of bitg; optimally allocated to each transform componert is- b+ % logy ﬁ This

i=1 in)

=

3Vectors will be denoted by underlined lowercase letterd, matrices by uppercase letters. The notafigp denotes the

element on théth row andjth column ofL, and superscrigt stands for transposition.
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bit assignment algorithm is optimal in the sense that fovamset of{agi} and a given per component
bitrate b, the distortion is minimized [5]. This yields the same diStm E (y; — yi)? = E ;% on
each component. The per component distortion may furthgrireaexpressed a& j* = ¢ 202,
wherec is the quantizer performance factor w.r.t. the source [4]heWno transform is used (or
equivalently, the Identity transform) the distortion bews L E ||7]|? = c272(det diag{R,})'/",
where diag{a} represent the diagonal matrix with diagomal For the KLT, the distortion becomes

L E|[7]? = 27 det{R,}'/". Inthe above distortions, the subscriptandV’ refer to the transform.

[4], [5B]). The corresponding coding gain for KLT is then

G° = =
E (7]}

(1)

Elyl7  (det{diagR,}\"
det R, '

The backward adaptive TC systems considered here can dglypmethe previously decoded data.
These schemes are thus based@n: R, + AR instead ofR,, wherelfz£ is an estimate of?,
available at both the encoder and the decoder. Hence trefdramations { for the KLT andL for the
CT) will be such thaﬁAfﬁgf/t or Eﬁgft is diagonal. Lefl” denote eithet’ or L. The per component
distortion will be proportional to the variances of the gsitptransformed by means @, saya’i.
Regarding the bit assignment, the Bitshould be attributed on the basis of estimates of the vaganc
available at both encoder and decoder also. With the natwm@dove, these variance estimates are

(TR, T)y;, which yields

(2)

For most of transformations used in TC, the distortion inttaasform domairi ||7(|* and in the signal
domainE ||z||? is the same. This property is sometimes referred to as “UNdige Gain Property” [1].
This is indeed true for orthogonal transforms (KLT, DCT,.ejcand for the causal transform [1], [2].
We obtain therefore the following measure of distortion dsystem using a transformati@hbased

~

OnR, :

1
N N 2 glosy e m e
~ —2b; 12 ] AN 2
Egi=EY @02 —=ES 2 (T2 (TR T )ii) v 2 3)
=1 i=1



where the expectatiofi is w.r.t. AR in case it is non-determinisfic

D. High rate assumptions

Several assumptions are implicitly or not made by the abesgeription. Firstly, we assume a Gaus-

sian source model. Secondly, the rate must be sufficienglyg. hThe bit assignment mechanism (2)
neglects the fact thiﬂ; can be non integer and negative. This would happen for louegbf the aver-
age bitrate budgét, or even at higher values of for low values of some variance:éi. Thirdly, the
expression (3) assumes that the quantizers’ operatiostrtion-rate laws are of the forp2—2 05
This assumes, besides high rates (independencenatt. b;) and significance of all the transform
signals (they are assigned nonzéfp that these transform signals belong to the family of Ganss
probability density functions (p.d.f.s). For jointly Gaien scalar sources; composing a vectorial
sourcez, this assumption is clearly true for the transform signdtamed by means of a KLT. In
the case of a causal transform however, this is not rigoyowmak, because the prediction residuals
{y;},i = 2--- N, contain a quantized component through the closed loopgtiad (see [2]). At
high rates however, this perturbation is small and the shapthe p.d.f. of the[y;},i = 2--- N, are
accurately approximated by Gaussian p.d.f. (see [20]).ithaidlly, we shall assume that the effects
of quantization are to introduce on the data an uncorrelatete noise with variance2—2b: a’i which
is a customary model in high rate TC, se@. [21], [1]. Finally, for estimation noise, the vectors to
be coded will be assumed independent and identically bliged (i.i.d.). This may be the case if the
sampling period of the scalar signals is high in comparisih their typical correlation time.
Hence, on the one hand, the proposed analysis (3) is indeedlalization in the sense that high rate,
Gaussian sources, etc ..., may not be verified in practicepy &€ system. Also some practical TC al-
gorithms may not provide the optimal, non integer bitraieassignment mentioned in (2) (e.g. greedy
algorithm, etc...). On the other hand, these assumptianguite customary in TC, and without these
assumptions theoretical investigations of TC become vifiguit.

4As in (3), the sign= will be used along the derivations though this equality is@tt only asymptotically (w.r.t. the
rate); the sigre will be used when the original expression (3) will be repthbg an approximation based on the dominant

perturbation terms.



Paper Outline : The main characteristics of the CT are first outlined in $&cli. The expressions
of the distortion (3) and that of the corresponding codini @ae then compared for the KLT and the
CT. This is done in three cases. In the first case (SectionAlF is caused by a quantization noise:
the coding schemes are based on the statistics of the datgtsat by an additive white noise. In the
second case)\ R corresponds in Section IV to an estimation noise : the codatgmes are based the
sample covariance matrig, = + SO K | z;zt. Finally, both influences of quantization and estimation
noises are analyzed in Section V. Numerical simulationgesented in Section VI. The last Section

summarizes the main results and draws some conclusions.

II. CLASSICAL CAUSAL TRANSFORM CODING AT A GLANCE

The causal transform was first proposed in [13]. In the cates#d, the transformed vector is obtained
by subtracting the reference vectoy; = z;, — fg% , whereL is a lower triangular matrix whose
diagonal entries are zeros. The reference s@@gl is based on the past quantized samples [13]. The
componentg; ,, appear as the prediction errorsigf,, with respect to the previous (whence the name of
causality) quantized components, t{nﬂk e 333_1,k}- For optimal bit assignment, the optimal linear
CT is unit diagonal and lower triangular. It may be written/as- I — L wherel denotes thel{ x N)
Identity matrix. The non-zero coefficie{s-L; 1 --- — L; ;—1} of L are the optimal linear prediction

coefficients [22]. In other wordd, is such that

LR,L' = R, = diag{o;, -- o, }. (4)

It follows that R, = L—leL—t, which represents the LDU (Lower-Diagonal-Upper) factation of
R, [4]. Extensive details about the Causal Transform can bedaw [13], [1], [2], [3]. If we neglect
the fact that the prediction is based on quantized data, Bg|? = E[[||?, : CT and KLT present

the same coding gai@® of eq. (1). These distortions ard¢f shall be used as references in the sequel.



[l. QUANTIZATION EFFECTS ON THECODING GAINS

In this case, transformations and bit assignment are cadpuging quantized data . The statistics
of the quantized data is assumed to be perfectly known irstgsion. In other words, we assume that
an infinite number of quantized vectat$ is available at the decoder, so tHafs,q is known.

Under the assumptions discussed in Sec. AR = Ezi! = 03[, whereag denotes the variance of

the quantization noise. Thus, the distortion (3) becomes

—Q[b + 1 log, (Tqu Tt)zz
~ 2 =,
E Hg”%q - 202 (HZ 1(TR50‘1T )M)N /yz (5)

whereT refers to the transformation, andefers to quantization. Expression (5) may now be evaluated

forf:[,f:f/andfzf.

A. ldentity Transformation

In this case, the number of bits attributed to the quanti2eis

Zi:b+—log i , (6)
(I (Rao)is)

and the variance’i are indeed R, );;. The distortion (5), wheré is replaced by anda’i by (Rg)ii,

2|

becomes

(Ry)ii
(Rya)ii”

N
ElgI2, = 3 c27 (det diagRu.) ™
=1

(7)

where diagd denotes the diagonal matrix with same diagonaliaghis leads t®

Elgl3, = Elgl? (det(f+a(diang)—l))%tr{(1+a§(diagR£)—1)‘1}. (8)

The distortion is increased (w.r.t. a scheme base& grbecause the bits allocated on the basis of the

variances of the quantized signals are not the optimal ohespproximation of (8) up to the second
> -1

5The calculations for the present and the following subsastare omitted for lack of space but can be found in [3].

order of the perturbations gives

»Ql\)

Elgl?, = 27 (det diag{R,})'/" (Hiv1
9)

%

N
Bl |1+ 7Y ZZ
i=1

Zz i=1 ]>Z l _).7]



The perturbation effect w.r.t. the ideal case is only caumsethe perturbation upon the bit assignment.

0’2 . . . . .
These perturbation terms are of the fof%)? High rate means that the quantization noise vari-

11

ance is small in comparison with that of the signal compahehience we see from eq. (9) that this

perturbation is a second order term.

B. KLT

As observed in [12] also, i¥” denotes a KLT ofR,, thenV (R, + 01)V! = A + 021 = A4, and
V is also a KLT of R, + o21. Thus, the perturbation tera I on R, does not change the backward
adapted transformatiorl/ = V. The variances of the transformed signals remain unchartgéid:
(VR V") = X\;. However, the variance estimates at the decode(lam,«V?');; = \; + 02. These
variances are used to assign the E,jtsThese are computed as in eq. (2), wh@raaplacesf and R q

replacesﬁz. The actual distortion becomes
1 (Vqu Vt)z'z'
— 10g2 N — ; T
(L2 (VB Vi)V (g vty

N =
Z c2 2
i=1

N
= 3" 2 (det diag{V RuaV'}) ¥
=1

El717,,

(VRgV')ii (10)
(VRgaV)ii

SinceV R, V! andV R,, V" are diagonal, one can show that

(VR V)i 9, 1 —1 2/ i v—1y—1
2 VquVf » tr{(IJrcrq(R£ ) T} = tr{(I+aq(A) ) L (11)
Also,
det (Rgq) = det (Rg) det(] + o7 (R, 1) (12)
Finally, the distortion for the KLT with quantization noige
Elgl?, = Elgl?4(det(I +o2(A"))¥ tr{(IT+02(A71)) '} (13)

Again, the increase in distortion comes from the pertudmaticcurring upon the bit assignment mech-

anism. An expression approximating this distortion may lbeined by

N 0_2 % 0_2 -1
B33, = (et dag{R})F 4 (H(lﬂ_i)) Z(”rﬁ) e

i=1 i=1
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By developing the product and the sum in (14), it can be chiethkat the terms proportional mg

vanish, so that

1
N 2\ N N 2\ 1 4 N 4
9q 9q N-1 9q 1 9q
(II(HA_)) 2 (”x) SN TNy @9
=1 i=1 i i=1 j>i

This leads to the following approximated distortion

o S . 1
Elgl, ~ Elglt (1455 | 5D - 22 1 (16)
— \o 4 ‘N
Using (8) and (13), the corresponding expression for théngoghin in the unitary case with quantiza-

tion noise is

(det([+a (diagR,)™ 1))
(det(I +o2(A71)))

tr

(I + o2(diagR,) ")~ 1}'

Gyg=G°
V,q (I+02( 1))—1}

17)

v
Vi

tr

With (9) and (16) Gy, can be approximated as

Gyg =~ GY

04 N1 N ) 1 N 1 1
L+ 32 ( 2 ?(@? o) & L Mj)ﬂ -

The perturbation effect w.r.t. the ideal case is only caumsethe perturbation upon the bit assignment.
As in the case of Identity transformation, the perturbatenms in eq. (18) are second order terms of

o2 o2
) or (5%

i

the form(

v

C. Causal Transform (CT)

In the causal case, the encoder computes a transformatien.’ such thatl/ R, LT = R’g. The
causal transform corresponds to a LDU factorizatioigf. R’g is the diagonal matrix of the variances
used for the bit assignmem‘/(andR’g are both available to the decoder). In this case, the diffare
vectory is z — L'z%. By the analysis of [2], the quantization noise is filteredthg rows of’ (see

Figure 1). Note that in this cask || z[|7,  still equalsE ||g||7, ,, sincez = 27 —z = y?+ L'z? —z =

Itdz

Yy -y =
Regarding the estimates of the rates, they are computed. lﬁZ)eqvhereTA is replaced b)i’, andlfzl

by R... At high rates, it is shown in [2] that the actual variancethefsignals; obtained by means of
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L' may be approximated &' Ry« L'" — 02I);;. Using (5), the distortiorE 17117/, is then given by

1 L'Ry LT,
—2[b + = log, (L RgaL " )i

2 N Ty e ,
Elgli, = e2 (Llim (B e i) Y (L'RpL™ — o71)i (19)
=1

o S 2t (det diag{L R LTy ¥ (1 — —Cal)i

~~ ;C < e Iag{ 4 }) — m .
Since the transformatiof’ is unimodula?, the determinant in the previous expression equals the-dete
minant in (12). The sum in (19) may be written ag (tf — o2 (L’ Ry L'T)"1)} = tr {(I agR;_l)}.

Thus (19) becomes

~ ~ 1 _ 1 ’_
B33 o = E 151} @et(Z + o2(A™)))¥ tr{ (1= 02(R, ™))} (20)
The excess in distortion comes not only from the perturbatiocurring on the bit assignment mech-
anism but also from the filtering of the quantization noise to the first order of perturbations, we
obtain

N 2 % N
EHQH%L/,q = 27 (det diag{Rz})% (H ) Z( _U Rzl) >

=1 =1 gI

N
o2 1 1
(5 o)
i=1

(21)

%

)

E|glf
Yi

where theggi correspond to optimal prediction error variances in abserfiguantization noise.

The corresponding exact expression for the coding gain is

Gy = ot + o3 (diag{Ry})~1) > tr {(I + o7(diag{Rs}) ") '} 22)

(det(I + o2(A-) ¥ tr{ (1= o2(R) )}

Up to the first order of perturbation we get,

2 N
o 1 1

1- -2 ———=]. 2
NZ}()\Z- a§>] (23)

The approximated expression (23) shows that the pertorbaffects of the bit assignment mechanism

GL’,q ~ GO

(2nd order terms) are in the causal case negligible in casgrawith those of the noise feedback (1st
order terms). This coding gain is similar to that obtained2i where only the noise feedback was
accounted for (no perturbation on the bit assignment).

An interesting consequence of (23) is that the performarfideocausal TC scheme depend on the

6L being unit diagonal and lower triangular, its determinaniads the product of its diagonal elements, which is one.
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order in which the signal§z; } get decorrelated. As shown in [2], the signaJshould be decorrelated
by order of decreasing variance if we wat, , to be maximized (see also Fig. 3 and 6 in Section
VI1). In other words, in the vectat;, = [z za - - - )", the component; should be that of largest
variance,z, the component with second largest variance, etc..., if wet W noise feedback to be

minimized.

IV. ESTIMATION NOISE

We analyze in this section the coding gains of a backwardta@gagcheme based on an estimate of
the covariance matri)fi£ =+ Szt = R+ AR, whereAR corresponds to the estimation noise.
In the following, the subscripK refers to the estimation noise correspondingikiovectors. In this

case, one can show thAtR is a zero mean Gaussian random variable, with
2
EvedAR) (vedAR))' ~ B ® Ra, (24)

where® denotes the Kronecker product.

Using K data vectors, encoder and decoder compute a transforniBtiwhich diagonalizesl:?£ :
fﬁgf = ﬁg. The number of bits assigned to each component is as in equi(B)the definition ofl’
andﬁ2 above.

Now, the actual variances of the signals obtained by apgp@mo T are(fszt)u. Note that in the
causal case; = | —f@ = Eg, SO thatR’g = ERQEP In the causal case, there is a qualitative difference
with the previous section, where the quantization noisefiltased by the predictors of’. Here, the
estimation noise does not perturb signals, but only transitions and bit assignments. The resulting

distortion for a sample covariance matrix basediomectors is as in eq. (3), witb@f%_ = (ngft)n-.

A. Identity Transformation

With 7' = I, and using a similar analysis as in the previous section, btaimfor the distortion

(X y ¥ N N\ -1
E|gl}x = Ec2 (det diag{R,})™ <H<1+ iﬁ%) 3 <1+ <(§R)>fe>
> (AH) S (AR) (QA”) @9
i ;( (Fy)ii poE W;; (Ryp)ii (Ry)jj
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With (24), the second expectation in (25) may be written as

2
N - _N-12N _N-1
2N2 Z( > 2N?Z Z 29N? K NK ' (26)

and the third expectation leads to

2
: 2 Y s
i i Ry)jj i g )i\ te ) (27)

%

we || > ((diag{R.})"/* R, (diag{R,})"/?) ||

where>(A) denotes the strictly lower triangular matrix made with ttrecdy lower triangular part of

A, and||.||? denotes the Frobenius norm.Ifdenotes diagR, }, we obtain

AR )ii AR 1 _1
Y Gl ~ (D 2R,D" 3| ~ | diag{ D2 Ry D" ) o8

i g>i )]J N

Q

}VQ(tr {R;D7'R,D71} — N).
Finally, the expected distortion for Identity with estinwat noise is, for sufficiently high,

Bl El17 (14 - 3t Ra(dlag () R (diag(R)) ). (29)

B. KLT

In the unitary case, the expected distortiErﬂgH%/ K is as in eq. (3), withl’ replaced be7, and
02;i by (XA/RQA/'*)Z-Z-. Using an analysis similar to the previous subsection, ¥peaed distortion for

the KLT when the transformation is based Brnvectors becomes, for sufficiently largé

“n2 a2 (L ~1 ¥ JAR)T!
BIgl e = EIDR (B et RESRP U RZAR )
~ Elgly 0+ [3+ %))

The corresponding coding gain is

G

Bl o f, L [tr{R(dag{R.})'R(diag{R,})"'} , N-1 1
VETEgIE K N? > N|)

(31)
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C. Causal Transform (CT)

As commented in the introduction of this section, the exgeclistortion withL computed Withﬁg

is
1 Zﬁxit 2
N —2[b+§10g2 N( — A) L]
| =1 . (32)
~\ & LR,L")
— B (deDR,Dt) Yy Ll
( - ) ; LR, L")

where we used a factorization similar to that used in (7). Mgwhe unimodularity property of, we

can write the determinant in (32) as
i ~
(det Zﬁ@t) ¥ = det R, = det(R,) det(I + R, 'AR), (33)

and sincel diagonalizes@, we can write the sum in (32) as

>

=1

(LR.LY):

TR =tr{(I+R,'AR)""'}. (34)

h> )

The perturbation terms in eq. (33) and (34) are the same ircdbsal and the unitary case : the
equality of the determinants in eq. (33) comes from the udimerity of the transformationg and
V, and the equality of the traces in (34) comes from their detating property. Hence, because
both CT and unitary KLT are decorrelating and unimodulangfarms, they yield the same distortion
E HQH%K =E HQH%/’K, as given by eq. (30). The coding gains with estimation naigethus equal

for KLT and CT and may be approximated by eq. (31).

V. QUANTIZATION AND ESTIMATION NOISE

This Section deals with the most general case of this studyprésence of quantization and es-

timation noises, transforms and bit assignment should bepated using a numbek of decoded
K

vectors, or equivalently usmﬁxq =5 qumq The estimated transforff is such thafFR Ttis

i=1
a diagonal matrix, which corresponds to the estimated neeis of the transformed signals. We shall

continue denoting by’ii the actual variances of the transformed signals (obtailyemjoblyingf to

z). The expected distortioft HQH% K C8N be computed as in eq. (3), w@ replaced byﬁgq (the
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subscripts, and g refer to the presence of quantization and estimation noide$ distortion must now

be evaluated for Identity, KL and causal transforms.

A. Identity Transformation

With 7' = I, and by writingR, = Ryq — 021, we obtain

1 Rya)ii
N —2[b + 5 10g2 N( ﬁ) L]
Eljl3x,=EY 2 (L2 (Be)i) ¥ (RL4),
i=1
1 Rya)ii
N 2[4+ §log2 N( ;) -] (35)
—02 E 202 (ITi21 (Rga)is) ™ i
i=1

For sufficiently high resolution and larg€, the expected distortion for Identity transform with quant
zation and estimation noise leads to

~ ~ . _ N
EN|gI3 s, ~ E[7I3 (det(I + o2(diag{R,})~1))"/

% [14 & [1 = o tr {Ren(diagRyn) ™ Rya( diagRya) ~'}] — 5 tr{(diagRee) ']
(36)

B. KLT

In the unitary case;yyi = (X7R£K7t)ii. After some computation we find for the expected distortion

in the unitary case, when the transformation is base& @uantized vectors,

1

0.2
EIGI3  ~E 1713 (det(I +02(Re) ™)) =+ —} o~ tr{(Ry)—l}] L@

N-1]1 1
2 N

for large K and under high resolution assumption. The correspondipgesgion for the coding gain is

EIillfy oot +o3(diag{R,})~")""

Gp kg™ 1/N

VK EHQH%/Kq - (det(I +03(R£)_1))
[1 + %(1 — ﬁ tr{qu(diag{qu})_leq(diag{qu})_l}) — ”—Jé tr{(diag{qu})‘l}]

1+ 2214+ ) — St {(Raa) )]

X .
(38)
The above expression exhibit three kinds of terms : thosgrdérg estimation noise only (through),

those regarding quantization noise only (throwgbl, and cross influence terms.
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C. Causal Transform (CT)
In the causal case, an estimatéis computed fromR,., and the actual variances améi =

E(E’RZqE/T — aﬁ])ii. Thus, when the transformation is based ldhquantized vectors (for high

K and under high resolution assumption) the distortion bexsom

1 (L'RypaL'7)ii
N 2+ 2 log N 7B 7T 7] ~ ~
Elgl  =ED e (i (M Baa L)) (D Ry BT = 620)5. (39)

=1
The above expression leads to
1/N

El3l2, ., ~ B3 (det(I + o2(Rs) ™)) — |5+%

0.2
P [1 + i} -~ tr{(R’g)‘l}] . (40)

The corresponding expression for the coding gain in theataase can then be estimated as

By oot +og(diagiRe}) )™

DKa " BRI, (det( + 02(Ry)—1) "N
[1 + % [1 = g tr {Rye(diag{Rya}) ™' Rye(diag{Rya}) '} — %tr{(diag{P@q})‘l}]
[1+ 82 [+ 4] - B {(/Rs L'T) 1Y

G

X

(41)
Again, perturbation terms regarding the influence of quatitn, estimation noise, and both can be
identified.

It can be checked that the expressions (41) and (38) tendj@a(i (22) respectively @ — oo, and
both to (31) a$'3 — 0. This means indeed that & — oo, the estimation noise vanishes, and we
face a quantization noise problem only, which leads to tealte of Sec. Ill. ASJg — 0 also, only

estimation noise remains, which leads to the results of ISec.
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VI. SIMULATIONS

For the simulations, we generated real Gaussian i.i.dov&etith covariance matrisz = HjRARlH]t.,
j =1,2. Ragry denotes the covariance matrix of a first order autoregregsiocess with normalized
cross correlation coefficient H; is a diagonal matrix whoséh entry isi'/3 for H; (increasing vari-
ances), andN — i + 1)1/3 for H, (decreasing variances). The goal of these numerical diahsa
is first to check whether the generic distortion as describegh. (3) (and the corresponding coding
gains) corresponds to their theoretical expressions efivthe three cases of quantization, estimation
noise, and both. Also, these curves may give more visugjhingin the actual behavior of the back-
ward adaptive TC schemes than the mathematical expressiansio. In the curves;° correspond
the maximum gain in TC as defined in eq. (1). The following &athms were therefore used to check

our analytical results.

A. Quantization Noise

For several rates (fror to 6 b/s), bit assignments and transforrid € I, L' andV respectively)
were computed using, = Ry, + 071, whereo? = 277" det Rg;/N (that is, the distortion occurring
in a high rate transform coding framework with optimal bisiggment). The choice of the constant is
not relevant because (3) is very general; we chose’= which correspond to entropy coded uniform
quantization. The bits to be allocated were computed byw®h the appropriatd’ anda%i for the
three cases. In a similar manner, the corresponding d@tsrivhere computed using (3). These result-

ing distortions were then used to compute the coding gaihgshwvere compared with the theoretical

expressions.

« In Figure 2,G° is the upper straight line. The coding gain with quantizatimise is plotted for the
KLT (upper solid curves) and the CT (lower solid curves),dignals of decreasing variances, and with
p = 0.9, N = 4. The theoretical exact expressions are given by (17) andt#2corresponding curves
are dotted. The theoretical approximated expressionsia®r gy (18) and (23), and the corresponding
curves are dashed.

« Figure 3 shows the influence of the variance ordering in tleewlelation process. The upper curves
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(solid: observed and dots: theoretical) depict the gainiabt with the CT by decorrelating the signals
by decreasing order of varianc& ), and the lower curves (solid and diamond) by increasingrord
(Rz,)- The theoretical expression is eq. (22).

From these Figures, it is checked that the expressions (i 22) are actually exact. From Fig.
2, approximated expressions (18) and (23) match their eox@atterparts as the rate increases. The
performances of the CT are slightly inferior to those of tHeTKfrom a few percents) and vanishes
at high rates. From Fig. 3, it appears that processing thealsidoy order of decreasing variance

maximizes the coding gain, as discussed in Sec. IlI-C.

B. Estimation Noise

In this case, estimates of the covariance matrix of the daee womputed usind< vectors by
% Zfil x;xt, K = N,N+1,--- ,103. Foreach estimatég, the transformd’ = IA/, L were computed
SO thatfﬁzft is diagonal, and the bit assignments were computed usingates of the variances
(TR,T");. In order to evaluate the expected distortion (3), the su(B)invas considered as a random
variable, whose expectation was evaluated by Monte Carlalations. This was done for the Identity
transform, in the causal and in the unitary case. The codaimgsgn presence of estimation noise are
compared fotN = 4 andp = 0.9. The ratio of the corresponding distortions are the “Obsgv” in
Figure 4. The corresponding theoretical expression (“Tétszal G”) is given by (31) (it should be the
same for the KLT and CT because both transforms are dectimgelznd unimodular)G? is the upper
straight line.
As expected, there is no difference between the unitary lmmddusal case. Our calculations assume
small perturbations (larg&). It can be observed that the model matches the actual codingafter a
few tens of vectors. Backward adaptive systems yield simpigsformances as systems designed with
the knowledge of?, after a few hundreds of decoded vectors. Note also that iviaya useful to use

backward adaptive TC schemes (the coding gain is superibfdoK > N + 1).

C. Quantization and Estimation Noise

In this case, the quantized vectors were obtained for edeh tay adding to the sets of i.i.d. Gaus-

sian vectors uncorrelated white noise vectors with comadamatrixCrgI = 272 (det Rg)%l . For
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each set of’ quantized vectors, an estimate of the covariance matrikefdata was computed by
LK %% K = N,N +1,---,10%. Again, for each estimat&,., the transformg’ = V, L
were computed so thdffﬁgqft is diagonal, and the bit assignments were computed usiilgatss

of the variance$f§£qft)ii. In order to evaluate the expected distortion for the thraesformations,
the sum was considered as a random variable, whose expectas evaluated by Monte Carlo sim-
ulations. The ratio of the corresponding distortions ae=“Bbserved Gains” of the following figures.
The theoretical gains are given by (38) for KLT and (41) forULD

« The coding gains in presence of estimation and quantizatgise are compared for KLT and CT
(signals of decreasing variances) in Figure 580k 4, p = 0.9 and a rate o8 bits per sample. Upper
straight line isG°. The upper solid line curve is the theoretical coding gainkaT, and the lower
solid line curve the theoretical coding gain for CT. The upgeshed curve is the observed coding gain
for KLT, and the lower dashed curve the observed coding gaicT.

The observed behaviors of the transformation are relgtivell matched by the theoretically predicted
ones ag{ amounts to a few tens. Als amounts to a few hundreds, the performances of on-linersgste
approach those of systems designed with the optimal tramsfand bit assignment. The performances
of the CT are slightly inferior to those of the KLT. This difesnce vanishes at high rates (cf Fig. 2). In
Fig. 5, the coding gains toward which both the KLT and the CSteay converge can be read from Fig.
3, withr = 3 b/s.

« The influence of the ordering of the signals for the same pefrars as above is plotted in Figure 6.
In the limit of large K, the actual gains converge to the results obtained in the where quantiza-
tion noise only is considered (the estimation noise vasishEhe proposed model matches the actual
convergence behaviors in the causal and unitary casesaafeav tens of decoded vectors. Finally,

decorrelating the signals by order of decreasing variappeas the best strategy.

VIlI. SUMMARY AND CONCLUSIONS

We proposed an analytical model for the performances ofataml unitary on-line TC schemes.
We described the effects of backward adaptation as pettonbeffects : backward adaptation impacts

the ideal high rate TC framework by perturbing both the tramss’ design and the bit assignment
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mechanism.

It appears that as quantization noise only is considerdd tloa bit assignment mechanism is perturbed
for the KLT (2nd order perturbation term), whereas the CTesafadditionally from quantization noise
feedback (1st order term). As one accounts for estimatiggeramly, both transforms present the same
performances because they are both decorrelating and duiaro As both types of perturbations are
accounted for, the CT remains slightly inferior from a rdtstortion point of view to its unitary coun-
terpart because of the quantization noise feedback. Thisldick vanishes at high rates. It can be
minimized if the signals get decorrelated by order of desirgavariances.

As K amounts to a few hundreds, the performances of on-line T@mgsapproach those of systems
designed with the optimal transforms and bit assignmeng dritline TC systems modeled by eq. (2)
and (3) are advantageous w.r.t. a system using no transfarwafues of K’ larger than~ N + 1
vectors.

The results of simulation show that the analytical desicripbf the considered systems is fairly ac-
curate. We provided exact expressions for the coding garfaraas the quantization noise only is
concerned. When estimation noise is accounted for, theogempanalysis reliably estimates the distor-
tions and the corresponding coding gains after a few tens@jdakd vectors.

As a follow-up of these works, we are currently investigatsystems using different bit assignment

mechanisms than that assumed in eq. (2).
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