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Abstract

The use of multiple transmit (Tx) and receive (Rx) antennas allows to transmit multiple signal streams in parallel

and hence to increase communication capacity. We have previously introduced simple convolutive linear precoding

schemes that spread transmitted symbols in time and space, involving spatial spreading, delay diversity and possibly

temporal spreading. In this paper we show that the use of the classical MIMO Decision Feedback Equalizer (DFE) (but

with joint detection) for this system allows to achieve the optimal diversity versus multiplexing tradeoff introduced in

[1], when a Minimum Mean Squared Error (MMSE) design is used. One of the major contributions of this work is the

diversity analysis of a MMSE equalizer without the Gaussian approximation. Furthermore, the tradeoff is discussed for

an arbitrary number of transmit and receive antennas. We also show the tradeoff obtained for a MMSE Zero Forcing

(ZF) design. So, another originality of this paper is to show that the MIMO optimal tradeoff can be attained with a

suboptimal receiver, in this case a DFE, as opposed to optimal Maximum Likelihood Sequence Estimation (MLSE).
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I. Introduction

The diversity degree is (currently) defined as the asymptotic slope of the error probability curve at high

Signal-to-Noise Ratio (SNR). So it can be enjoyed with a fixed symbol constellation at high SNR. On the other

hand, if the SNR is increasing, the channel capacity increases and can be taken advantage off by increasing the

rate via an adaptive modulation. However, the work by Zheng and Tse [1] showed that both high SNR benefits

cannot be enjoyed simultaneously and a compromise must be accepted. An optimal diversity-vs-rate tradeoff

exists. In the context of Multi-Input Multi-Output (MIMO) transmission, this is also called the diversity-

vs-multiplexing tradeoff since MIMO systems allow to increase the rate through spatial multiplexing. The

optimal tradeoff for frequency flat MIMO channels has been derived in [1], together with a proper positioning

of some existing space-time coding schemes and a theoretical scheme based on Gaussian codes.

This paper has sparked a number of research activities to propose practical techniques approaching the

optimal tradeoff. In [2], Yao and Wornell et al proposed a numerically optimized rotation based code that

achieves the optimal tradeoff for a 2 × 2 channel. More recently, Tavildar and Viswanath [3] introduced a

design criterion for permutation codes in order to achieve the diversity-vs-multiplexing optimal tradeoff for

the parallel channel, that results from the Zero-Forcing equalized orginal MIMO channel. This equalization

results in a degraded tradeoff when compared to the original channel. Furthermore, the permutation codes

have to be optimized for every setting (constellation size and number of transmit antennas), which limits their

application for rate adaptive systems.

Another technique, LAST, based on lattice coding was proposed by El Gamal et al in [4]. It achieves the

optimal trade-off. In [4], it is stated that the use of LAST codes, as opposed to Linear Dispersion (LD) codes,

is essential to attain the optimal tradeoff. However, the technique proposed in this paper is a special form

of LD codes and the proposed technique also attains the optimal tradeoff. The essential difference between

LAST and LD codes is one of shaping region, which is a hypersphere for LAST codes and a hypercube for LD

codes. A hypersphere allows for some coding gain but is non-essential for the tradeoff considered here. On

the other hand, the shaping region and dithering considered in [4] lead to a significant complexity increase

in both transmitter and receiver. Furthermore, no explicit lattice construction is provided in [4]. And, if a

lattice code can be found, it needs to be adapted for every (multiplexing) rate used. In LD codes, one only

needs to adapt a simple symbol (e.g. QAM) constellation. With the use of a sphere decoder, the decoder
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complexity in [4] is cubic in T where T ≥ Nr + Nt − 1. The use of the sphere decoder for the joint decoding

in the DFE receiver proposed here would lead to a complexity that is cubic in Nt.

+ yk

bk

HT(q)
NrNt

vk

Ns ak

Fig. 1. MIMO transmission with Space-Time Spreading.

A. Space-Time Spreading (STS) Scheme

The Nt × Nr MIMO system with single-carrier transmission is shown in Fig. 1 and is essentially described

by

yk = Hak + vk = HT(q) bk + vk (1)

where the white noise power spectral density matrix is Svv(z) = σ2
v INr , and q−1 bk = bk−1 denotes the one

sample time delay operator. We consider the case of channel state information being absent at the transmitter

(Tx) and perfect at the receiver (Rx). The channel elements are assumed to be i.i.d. Rayleigh fading. The

linear precoding considered here (introduced in [5] and further analyzed in [6]) consists of a modification of

VBLAST, obtained by inserting a square matrix prefilter T(z) before inputting the vector signal bk into the

channel H. The Ns = Nt (”full rate”) component signals of bk are called streams or layers. The suggested

prefilter is

T(z) = D(z) Q , |Qij | = 1√
Nt

D(z) = diag {1, z−1, . . . , z−(Nt−1)} , QHQ = I

(2)

with

Q =
1√
Nt




1 θ1 . . . θ1
Nt−1

1 θ2 . . . θ2
Nt−1

...
...

...

1 θNt . . . θNt

Nt−1




, (3)
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where the θi are the roots of θNt − j = 0 , j =
√
−1.

Note that for a channel with a delay spread of L symbol periods, the prefilter can be immediately adapted by

replacing the elementary delay z−1 by z−L in D(z). In what follows, we focus on the frequency-flat channel

case, in which case symbol stream m (bm,k) passes through the equivalent SIMO channel

Nt∑

i=1

z−(i−1)H:,iQi,m

which now has memory due to the delay diversity introduced by D(z). It is important that the different

columns H:,i of the channel matrix get spread out in time to get full diversity (otherwise the streams just

pass through a linear combination of the columns, as in VBLAST, which offers limited diversity). The delay

diversity only becomes effective by the introduction of the spatial spreading matrix Q, which has equal

magnitude elements for uniform diversity spreading. The specific Vandermonde choice for Q shown in (3)

corresponds to the DFT matrix multiplied by a diagonal matrix containing the elements of the first row

of Q. This choice for Q can be shown to lead to maximum coding gain in case of QAM symbols [5],[6]),

among all matrices with normalized columns. With the proposed space-time spreading, each symbol stream

has the same Matched Filter Bound (MFB), which is proportional to the channel Frobenius norm, namely

MFB = ρ 1
Nt

||H||2F . Hence full diversity (regardless of channel fading structure, and equal to NtNr for i.i.d.

fading), is exploited. Also, since the prefilter T(z) is paraunitary and transforms the white vector stream

bk into the white vector stream ak, no loss in ergodic capacity is incurred. The STS scheme discussed here

has been introduced in [5],[6]) as a full (symbol) rate full diversity scheme. With hindsight, such a scheme in

signal processing parlance meant a scheme that can reach the endpoints on both axes of the optimal diversity-

vs-multiplexing tradeoff curve. However, whether the whole optimal curve can be attained depends on the

receiver, as illustrated in this paper with two examples.

A strongly related approach with an interesting interpretation is obtained as follows. Consider grouping

the symbol sequence bk in groups of Nt consecutive symbols, then one group bk−Nt+1:k of Nt symbols forms

a square matrix of size Nt × Nt. An alternative approach is obtained by transposing the matrix bk−Nt+1:k

before inputting its colums into T(z) (hence inputting the rows of bk−Nt+1:k into T(z) instead of the columns,

this interleaving has no effect if no channel coding is introduced). It corresponds to spreading within streams

instead of between streams. The resulting scheme can be interpreted as follows. It corresponds to the sawtooth

threading approach of [7], which transforms the time-invariant (flat) MIMO channel into a periodically time-

varying SIMO channel for each stream (period Nt), and then the temporal fading gets exploited with the
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Nt × Nt constellation rotation matrix Q as suggested in [8].

In the case of linear dispersion codes [9],[10], a packet of T vector symbols ak (hence a Nt ×T matrix) gets

constructed as a linear combination of fixed matrices in which the combination coefficients are symbols bk. A

particular case is the Alamouti code which is a full diversity single rate code corresponding to block length T =

Nt = 2, Ns = 1. Here we focus on essentially continuous transmission in which linear precoding corresponds to

MIMO prefiltering. The linear convolutive precoding scheme proposed here can also be considered as a special

case of linear dispersion codes (making abstraction of the packet boundaries) in which the fixed matrices are

time-shifted versions of the impulse responses of the columns of the MIMO prefilter T(z).

In what follows we denote the overall channel by G(z) , HT(z). At the receiver side we propose a

decision feedback equalizer (DFE) receiver. This receiver, as we will see, achieves the optimal diversity versus

multiplexing trade-off and has an acceptable complexity that results from a sphere decoding of a vector of

size Nt. The drawback of the DFE receiver is the error propagation due to the successive detection and

cancellation. The error propagation has no impact on the frame error rate, but it degrades the symbol (and

bit) error rate. To avoid this, we can take advantage of the presence of binary channel codes (used in general

for error correction) and choose appropriate codes, like those introduced in [11], [12], that allow successive

joint detection and decoding.

B. Frame Structure

Although the proposed linear prefiltering technique is ideally intended for continuous transmission, in

practice data gets transmitted in packets or frames. As with convolutional channel codes, the proposed

convolutive linear precoding may require proper handling of the frame borders. The memory introduced

by the prefiltering does not have to lead to interframe interference, at least for a frequency-flat channel, if

circulant convolution would be used for the prefilter. However, the requirement of proper initialization of a

Decision Feedback Equalizer (DFE), as proposed here, necessitates the introduction of a guard interval of size

equal to the memory of the DFE feedback filter, which is equal to the size of the memory of the prefilter,

hence of size Nt−1 symbol periods. We shall assume w.l.o.g. that the frame of T symbol periods starts with

a guard interval of size Nt−1 followed by data symbols at time k = 1, 2, . . . , T−Nt+1, and is followed by the

guard interval of the next frame. The introduction of the guard interval leads to a reduction in rate by a

factor 1 − Nt−1
T which can be made arbitrarily small by increasing the frame length T . We shall neglect this
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reduction in the sequel to simplify notation.

++

−
decoderF(z)yk

B(z)

xkG†(z)
b̂k

Fig. 2. Conventional MIMO DFE receiver.

II. Conventional MIMO DFE Receiver

Consider the classical MIMO DFE, in which the symbol vectors bk are processed sequentially in time (see

Fig. 2). We call this the conventional MIMO DFE [13], as opposed to the sequential processing MIMO DFE

(an extension of the VBLAST Rx to channels with memory) in which the component sequences of bk are

processed sequentially (in component order) [14].

The Rx starts with a preprocessing by the matched filter (MF) G†(z), the output of which is xk = G†(q)yk.

The DFE, operating on the MF output, produces the following symbol estimate

b̂k = − B(q)︸ ︷︷ ︸
feedback

bk + F(q)︸︷︷︸
feedforward

xk , (4)

where the feedback filter B(z) =

Nt−1∑

i=1

Biz
−i is such that B(z) = INt + B(z) is causal, monic and minimum

phase. There are two possible designs of interest for the DFE filters, the Minimum Mean Squared Error

(MMSE) and the MMSE Zero Forcing (ZF) designs. We consider the MMSE design first.

A. MMSE Conventional MIMO DFE Rx

The linear MMSE symbol vector estimate (MMSE linear equalizer output) can be expressed as

b̂
lmmse

k = Sby(q)S−1
yy(q)yk = σ2

aG
†(q)(σ2

aG(q)G†(q) + σ2
vI)

−1 yk

= (G†(q)G(q) + 1
ρI)

−1 G†(q)yk = R−1(q)xk

(5)

where R(z) = G†(z)G(z) + 1
ρ I and ρ = σ2

a

σ2
v
. The symbol estimate leads to symbol estimation error b̃

lmmse

k =

bk − b̂
lmmse

k and we can write

bk = b̂
lmmse

k + b̃
lmmse

k = R−1(q)xk + b̃
lmmse

k . (6)
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The orthogonality principle of MMSE estimation leads to the power spectral density matrix

Slmmse

b̃b̃
(z) = Sbb(z) − Slmmse

b̂b̂
(z) = σ2

v R−1(z) . (7)

Consider now the minimum and maximum phase spectral factorization of R(z) (see [13]). Let B(z) be the

unique causal, monic (B(∞) = INt) minimum phase factor of R(z), then

R(z) = B†(z)MB(z). (8)

where M is a constant positive definite hermitian matrix. Then b̂
lmmse

k = B−1(q)M−1 B−†(q)xk. By

canceling the anticausal InterSymbol Interference (ISI) linearly, namely by choosing F(q) = M−1B−†(q), we

get the DFE Rx

F(q)xk = M−1 B−†(q)xk = M−1 B−†(q)R(q) (bk − b̃
lmmse

k )

= B(q) bk + B(q) b̃
lmmse

k = B(q) bk + ek = bk + B(q) bk + ek ,

(9)

and hence

b̂
mmsedfe

k = F(q)xk − B(q) bk = bk + ek (10)

and in fact ek = −b̃
mmsedfe

k with See(z) = σ2
v B(z)R−1(z)B†(z) = σ2

v M−1 (hence ek is temporally white).

The feedback filter B(z) = B(z) − I is closely related to the backward MIMO prediction error filter P†(z)

of the spectrum R(z), which satisfies P†(z)R(z)P(z) = Constant Matrix. Indeed, obviously P(z) = B−1(z)

and Constant Matrix = M . So M is the covariance matrix of the backward prediction error vector of the

spectrum R(z). The following Theorem provides B(z) in the case of a frequency flat MIMO channel.

Theorem 1: For a frequency-flat MIMO channel combined with the proposed precoder filter T(z) in (2),

the feedback filter is

B(z) = T†(z)LH T(z) , (11)

with corresponding

M = QHΣQ , (12)

where L and Σ result from the LDU triangular matrix factorization of HHH + 1
ρI = LΣLH .

Let Σ = diag {σ1, . . . , σNt} and note that (12) corresponds to the eigendecomposition of M .

Proof : We need to show that B(z) = T†(z)LH T(z) = QH D†(z)LH D(z)Q is a minimum phase causal

monic filter and verifies B−†(z)R(z)B−1(z) = Constant Matrix. Since LH is upper triangular with unit
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diagonal, then due to the diagonal structure of D(z), D†(z)LH D(z) is a monic causal filter. As Q is unitary,

B(z) is also a causal monic filter. Furthermore detB(z) = detLH = 1, which shows that B(z) is minimum

phase. To complete the proof of the theorem it is sufficient to verify that B−†(z)R(z)B−1(z) = QH ΣQ = M

is a constant matrix. �

Unbiased MMSE (UMMSE) Conventional MIMO DFE Rx

The discussion below will be valid also for the case Nt > Nr. This will lead to singular matrices and requires

the introduction of (Moore-Penrose) pseudoinverses [15] which will be denoted by (.)]. Now, it is well-known

that b̂
mmsedfe

k = F(q)xk − B(z) bk is a biased estimate of bk, since indeed

F(q)xk − B(q) bk = [M−1 b−†(q)G†(q)G(q) −B(z)] bk + M−1 B−†(q)G†(q)vk

= (I − 1
ρ M−1 B−†(q)) bk + M−1 B−†(q)G†(q)vk

= (I − 1
ρ M−1) bk + ẽk ,

(13)

where the sample

ẽk = M−1 b−†(q)G†(q)vk − 1

ρ
M−1 (b−†(q) − I) bk (14)

is now uncorrelated with the sample bk. The covariance matrix of the vector ẽk is

Cẽẽ =
∮

dz
j2π z [M−1(σ2

v B−†(z)G†(z)G(z)B(z) + σ2
b ρ−2(B−†(z) − I)(B−1(z) − I))M−1]

=
∮

dz
j2π z [M−1(σ2

vB
−†(z)G†(z)G(z)B(z) + σ2

v ρ−1B−†(z)B−1(z))M−1] − σ2
vρ

−1M−2

=
∮

dz
j2π z M−1(σ2

vB
−†(z)(G†(z)G(z) + ρ−1I)B−1(z))M−1 − σ2

v ρ−1M−2

=
∮

dz
j2π z (M−1σ2

vMM−1) − σ2
v ρ−1M−2

= σ2
v M−1(I − 1

ρ M−1) .

(15)

The UMMSE feedforward filter is

FU(q) = (I − 1

ρ
M−1)] M−1B−†(q) = (M − 1

ρ
I)] B−†(q), (16)

whereas the corresponding feedback filter is

B
U
(q) = (I − 1

ρ
M−1)] (B(q) − I) . (17)

The output of the DFE is then

b̂
U

k = FU (q)xk − B
U
(q) bk

= bk + ẽU
k ,

(18)
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where C
ẽU ẽU = σ2

v M−1(I − 1
ρ M−1)]. The capacity1 of such a Tx system with UMMSE DFE Rx, assuming

perfect feedback and joint decoding of the components of bk, is (interpreting (18) as a vector AWGN channel)

C = ln det(I + σ2
aC

]

ẽU ẽU )

= ln det(I + ρ(I − 1
ρ M−1)M)

= ln det(ρM) .

(19)

In order to show that C equals the capacity of the MIMO channel, note that

C = lndet (ρM) = ln det(ρΣ) = ln det (INt + ρHH H)

= ln det (INr + ρHHH) =
∮

dz
j2π z ln det (INr + ρG(z)G†(z))

(20)

since det(QH Q) = 1 and det(L) = 1. Hence such a Rx and decoding strategy conserves capacity. The

linear precoding introduces memory into the equivalent channel G(z), whereas the DFE makes the equivalent

channel memoryless again (temporal correlation in the noise gets ignored at the DFE detection point).

B. MMSE ZF Conventional MIMO DFE Rx

For this case we need to assume Nr ≥ Nt. The linear MMSE Zero Forcing (ZF) symbol vector estimate is

b̂
lmmse zf

k = (G†(q)G(q))−1G†(q)yk

= R−1(q)xk

(21)

where now R(z) = G†(z)G(z). Consider again the spectral factorization R(z) = B†(z)MB(z). Then in the

same way as for the MMSE design, and again with the usual DFE analysis assumption that detected symbols

(in the feedback) are correct, we get

b̂
mmzfdfe

k = F(q)xk − B(q) bk

= bk + ek ,

(22)

where F(q) = M−1B−†(q), B(q) = T†(q)LH T(q), See(z) = σ2
v M−1, M = QHDQ, and this time L, D

result from the LDU factorization of HHH = LDLH . Unlike the MMSE design, the MMSE ZF design makes

no compromise between noise enhancement and interference cancellation. It removes (zero-forces) the entire

interference. Hence bias is not an issue and the noise at the output of the equalizer, ek, is Gaussian.

1The notion of capacity will be used loosely here, in the sense of mutual information for the case of Gaussian inputs with the

same spectrum.
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In both DFE designs, the feedback filter B(z) is monic causal and FIR of length Nt, and by the same analysis

the feedforward filter F(z) = M−1QHD†(z)L−1 D(z)Q is anticausal and FIR of length Nt also. Note that

B−1(z) is FIR because B(z) does not have zeros. In both DFE designs, different choices are possible for

the detection of the symbol vector bk. For example a V-BLAST-like detector can be used. However, such a

sequential processing of the symbol vector components degrades performance. The optimal choice is the joint

detection of the components of bk using a weighted minimum distance detector which in the MMSE ZF case

minimizes ||b̂k − bk||2C−1
ee

= (b̂k − bk)
HC−1

ee(b̂k − bk) w.r.t. bk (b̂k is the DFE output). Such a detector has an

acceptable complexity especially for a small number of transmit antennas and small constellation size. The

complexity can be reduced by the use of sphere decoding. Such a DFE detector with joint decoding is less

complex than direct Maximum Likelihood Sequence Estimation (MLSE), which could in principle be done

with the Viterbi algorithm, but in which the number of states grows exponentially with N 2
t (instead of Nt for

joint detection in the DFE) due to the memory of Nt−1 introduced by the precoder T(z).

III. Diversity-vs-Multiplexing Tradeoff

In what follows, we study the diversity-vs-multiplexing tradeoff achieved by the Conventional MIMO DFE

equalizer, applied to the linearly precoded system considered here.

A. Case of UMMSE DFE Design

Theorem 2: In the case of a frequency-flat channel, Nt = 2n (n integer), the use of a weighted minimum

distance detector and QAM constellations allows the Conventional MIMO DFE Rx, with UMMSE design, to

achieve the optimal diversity-vs-multiplexing tradeoff given by d∗(r) (see [1]). d∗(r) is given by the piecewise-

linear function connecting the points (k, d∗(k)), k = 0, 1, . . . , p, where

d∗(k) = (p − k)(q − k) (23)

with p = min{Nr,Nt} and q = max{Nr,Nt}.

This theorem shows that the proposed transmitter-receiver combination with UMMSE design allows to attain

the optimal diversity-vs-multiplexing tradeoff derived in [1].

Proof : Consider the unbiased MMSE Conventional MIMO DFE Rx. Let
.
= denote exponential equality,

i.e., f(ρ)
.
= ρb means

lim
ρ→∞

ln f(ρ)

ln(ρ)
= b . (24)
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The proof of Theorem 2 is structured in three steps. In Step 1 we characterize the frame (block) error

probability in terms of the probability of a first symbol error. In Step 2 we derive a lower bound on this first

symbol error probability. Finally, in Step 3, we characterize the behavior of the error probability for large

SNR and derive the diversity-vs-multiplexing tradeoff.

Step 1:

The symbol vectors of the transmitted frame are detected sequentially in time using the DFE Rx. We denote

by Ek the event of making an error when detecting the kth symbol vector bk (Ec
k is the complement or the

event in which no error is made when detecting the kth symbol vector). Whenever there is an error on any

of the detected symbols, the frame is said to be in error. Pe denotes the frame error probability. Pe is the

probability of the union of individual error events Ek, k = 1, . . . , T−Nt+1,

Pe = P (∪T−Nt+1
k=1 Ek) . (25)

The union and intersection of events is distributive, so the event E1 ∪ E2 can be written as the union of the

two events E1 and E2 ∩ Ec
1,

E1 ∪ E2 = E1 ∪ (E2 ∩ Ec
1) . (26)

E1 and E2 ∩ Ec
1 are two disjoint sets (E1 ∩ (E2 ∩ Ec

1) = ∅), hence

P (E1 ∪ E2) = P (E1) + P (E2, E
c
1), (27)

where P (A,B) denotes P (A ∩ B). Exploiting this fact, we can show by recursion that

Pe =

T−Nt+1∑

k=1

P (Ek, E
c
1, E

c
2, . . . , E

c
k−1) (28)

Since probability is non-negative, Pe ≥ P (E1), and obviously Pe

.
≥ P (E1). We would like to show that

Pe
.
= P (E1), which will be obtained if we can show that Pe

.
≤ P (E1). Since T is finite, it is sufficient to show

that P (Ek, E
c
1, E

c
2, . . . , E

c
k−1)

.
≤ P (E1) for any k ∈ {2, . . . , T−Nt+1}. To that end, consider a genie-aided

receiver that has access to the correct value of the past detected symbols bi, i = 1, . . . , k − 1 and cancels

exactly the interference coming from these symbols. The genie-aided receiver reproduces for most of the frame

the same situation of the first symbol for which there is no interference from the past. Then the probability
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of error of the genie-aided receiver when detecting symbol k, P
g.a
k = P (Ek|b1, . . . , bk−1), satisfies

P
g.a
k





= P (E1) , k = 1, . . . , T−2(Nt−1)

≤ P (E1) , k = T−2Nt+3, . . . , T−Nt+1 .

(29)

Indeed, the DFE symbol estimation error is stationary as far as the noise contribution is concerned, whereas

for the residual ISI, it is determined by the filter F(z)G†(z)G(z) − B(z) = − 1
ρ F(z) which is anticausal and

FIR of memory Nt−1. So the ISI is stationary for most of the frame, except for the last Nt−1 symbols, where

less future symbols interfere due to the following guard interval. The second part of (29) will be discussed at

the end of Step 2. On the other hand

P
g.a
k = P (Ek|b1, . . . , bk−1)

≥ P (Ek, (E
c
1, E

c
2, . . . , E

c
k−1)|b1, . . . , bk−1)

= P (Ek|Ec
1, E

c
2, . . . , E

c
k−1, b1, . . . , bk−1)P (Ec

1, E
c
2, . . . , E

c
k−1|b1, . . . , bk−1) .

(30)

In the event (Ec
1, E

c
2, . . . , E

c
k−1), the symbols b1, . . . , bk−1, are correctly detected, which provides access to

their true values, hence

P (Ek|Ec
1, E

c
2, . . . , E

c
k−1, b1, . . . , bk−1) = P (Ek|Ec

1, E
c
2, . . . , E

c
k−1). (31)

Obviously, when knowing the true values of b1, . . . , bk−1, the probability to make an error on deciding them

is zero, hence

P (Ec
1, E

c
2, . . . , E

c
k−1|b1, . . . , bk−1) = 1 , (32)

and (30) becomes

P
g.a
k ≥ P (Ek|Ec

1, E
c
2, . . . , E

c
k−1)

≥ P (Ek|Ec
1, E

c
2, . . . , E

c
k−1)P (Ec

1, E
c
2, . . . , E

c
k−1)

= P (Ek, E
c
1, E

c
2, . . . , E

c
k−1),

(33)

where in the second inequality we used the fact that P (Ec
1, E

c
2, . . . , E

c
k−1) ≤ 1. Combining (29) and (33), we

conclude that P (Ek, E
c
1, E

c
2, . . . , E

c
k−1) ≤ P (E1), and from (28)

Pe ≤ (T − Nt + 1)P (E1) . (34)

Since T is finite, Pe

.
≤ P (E1). The desired result then follows

Pe
.
= P (E1). (35)
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The above results are independent of the criterion used for the design of the equalizer filters, and assume only

the DFE structure.

Step 2:

In this step of the proof, we derive a lower bound on the first symbol error probability for a fixed channel

realization P (E1|H). In Step 2, we shall denote b1 as b to simplify notation. We use the weighted minimum

distance detector at the output of the UMMSE Conventional MIMO DFE (18):

||b̂U − b′||2
C

]

ẽU ẽU

= ||b̂ − (I − 1

ρ
M−1)b′||2

C
]

ẽẽ
. (36)

An error occurs if we decide b′ 6= b for transmitted b. For an error to occur we need to have

||b̂ − (I − 1

ρ
M−1)b′||2

C
]

ẽẽ
≤ ||b̂ − (I − 1

ρ
M−1)b||2

C
]

ẽẽ
, (37)

where Cẽẽ = σ2
v M−1(I − 1

ρ M−1). If we denote by ∆b = b − b′, then (37) is equivalent to

∆bH(I − 1

ρ
M−1)C]

ẽẽ(I − 1

ρ
M−1)∆b ≤ 2<{∆bH(I − 1

ρ
M−1)C]

ẽẽ ẽ}, (38)

where ẽ = ẽ1 is defined in (14) and <{.} denotes the real part of its argument. Consider now the rotated

symbols c = Q b. Then the MMSE DFE estimate ĉ = Q b̂ gets produced with the filters

Bc(z) = QB(z)QH = D†(z)LH D(z)

Fc(z) = QF(z) = Σ−1 B−1
c (z)Q .

(39)

and the corresponding symbol estimation error Q ẽ has a diagonal covariance matrix σ2
v Σ−1(I − 1

ρΣ−1). Let

∆c = Q∆b and ṽ = C
]/2

ẽẽ
ẽ = σ−1

v Σ1/2(I− 1
ρΣ−1)]/2Q ẽ. Note that Cṽṽ = P(I− 1

ρ
Σ−1) which is the projection

matrix on the column space of (I − 1
ρΣ−1). Cṽṽ is a diagonal matrix of ones and zeros, and hence verifies

Cṽṽ ≤ INt . Now, (38) translates to the following inequality for ∆c

∆cH Σ(I − 1
ρ Σ−1)∆c ≤ 2σv <{∆cH(I − 1

ρΣ−1)1/2Σ1/2 ṽ}

≤ 2σv ||(Σ − 1
ρI)

1/2∆c||2 ||ṽ||2
(40)

where the second inequality is an application of the Cauchy-Schwartz inequality [15]. This can also be written

as

||ṽ||22 ≥ 1

4σ2
v
∆cH(Σ − 1

ρI)∆c

= 1

4σ2
vρ

(
∆cHρΣ∆c − ∆bH∆b

)
.

(41)
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The instantaneous channel capacity is C(H) = ln det(I + ρHHH) = ln det(ρΣ). Σ being diagonal, Jensen’s

inequality leads to

1
Nt

∆cH(ρΣ)∆c ≥ (
∏Nt

i=1 ρ σi |∆ci|2)
1

Nt

= e
C(H)

Nt (
∏Nt

i=1 |∆ci|2)
1

Nt .

(42)

Now consider a Tx scheme in which the transmitted rate varies with SNR. The different components of bk come

from the same QAM constellation of size (2M)2 = ρ
r

Nt , (r ≥ 0) where R(ρ) = r ln ρ is the overall allocated

rate2 and M is a positive integer. The minimum distance of the constellation is 2d, with d2 =
3σ2

b

2(ρ
r

Nt −1)
. So

the components bi, i = 1, . . . , Nt of b belong to the QAM constellation d(l + j p), l, p ∈ {−2M + 1,−2M +

3, . . . , 2M − 1} = {2(l − M) + 1, l = 0, 1, . . . , 2M − 1}. The error components ∆bi of ∆b then belong to the

set 2d(l′ + j p′), l′, p′ ∈ {−2M + 1,−2M + 2, . . . , 2M − 1} = {−(2M − 1)+ l, l = 0, 1, . . . , 4M − 2}. This leads

to the upper bound

∆bH∆b ≤ Nt4d
2((2M − 1)2 + (2M − 1)2) ≤ 8d2Ntρ

r
Nt . (43)

On the other hand the choice of Q ensures that [5]

(

Nt∏

i=1

|∆ci|2)
1

Nt ≥ 4d2

Nt
. (44)

Applying the bounds (42), (43), (44) to (41), leads to

||ṽ||22 ≥ 1

4σ2
vρ

(
Nt(e

C(H)
Nt

4d2

Nt
) − 8d2Ntρ

r
Nt

)

= d2

σ2
vρ

(
e

C(H)
Nt − 2Ntρ

r
Nt

)

= 3

2(ρ
r

Nt −1)

(
e

C(H)
Nt − 2Ntρ

r
Nt

)

= 3

2(1−ρ
−

r
Nt )

(
e

C(H)−r ln ρ

Nt − 2Nt

)
= γ(H) .

(45)

For a given channel realization, the error event E1 is included in the event described by (45), hence

P (E1|H) ≤ P
(
||ṽ||22 ≥ γ(H) |H

)
. (46)

The normalized symbol error ṽ, which is ṽk for k = 1, can be written as

ṽk = C
]/2

ẽẽ
ẽk = ṽ

(1)
k + ṽ

(2)
k

= C
]/2

ẽẽ
M−1 B−†(q)G†(q) vk︸ ︷︷ ︸

ṽ(1)
k

− 1

ρ
C

]/2

ẽẽ
M−1 (B−†(q) − I) bk

︸ ︷︷ ︸
ṽ(2)

k

. (47)

2The actual rate is R(ρ) = (1−Nt−1
T

) r ln ρ as already commented on earlier.
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ṽ
(2)
1 can be written as ṽ

(2)
1 = −1

ρC
]/2

ẽẽ
M−1 B b1 where B = [B1|B2| . . . |BNt−1] and b1 = [bT

2 bT
3 . . . bT

Nt
]T . By

construction of vector norm induced matrix norm [15], ||ṽ(2)
1 ||2 ≤ ||σb

ρ C
]/2

ẽẽ
M−1 B||2 || 1

σb
b1||2. Now, on the

one hand,

(σb

ρ C
]/2

ẽẽ
M−1 B)(σb

ρ C
]/2

ẽẽ
M−1 B)H = Eṽ

(2)
1 ṽ

(2)H
1

≤ Eṽ
(1)
1 ṽ

(1)H
1 + Eṽ

(2)
1 ṽ

(2)H
1 = Eṽ1ṽ

H
1 ≤ I .

(48)

Consequently ||σb

ρ C
]/2

ẽẽ
M−1 B||2 ≤ 1. On the other hand, all the components of b1 belong to the same QAM

constellation, hence

|| 1
σb

b1||22 ≤ 1

σ2
b

Nt(Nt − 1)2d2(2M − 1)2

= 3Nt(Nt − 1) (2M−1)2

(2M)2−1 ≤ 3Nt(Nt − 1) = γ2
1 .

(49)

We conclude that ||ṽ(2)
1 ||2 ≤ γ1. Now, by the triangle inequality [15], we get ||ṽ1||2 ≤ ||ṽ(1)

1 ||2 + ||ṽ(2)
1 ||2 ≤

||ṽ(1)
1 ||2 + γ1. Upper bound (46) now leads to

P (E1|H) ≤ P
(
||ṽ(1)

1 ||22 ≥ γ2(H) |H
)

(50)

where γ2(H) = (
√

γ(H)−γ1)
2. ṽ

(1)
1 has a zero mean Gaussian distribution, with a bounded covariance matrix

C
ṽ(1)ṽ(1) ≤ INt , by a reasoning similar to the one in (48), and with rank equal to p. Let W be a Nt×p matrix

of rank p such that C
ṽ(1)ṽ(1) = WWH ≤ INt . Denote n = W]ṽ

(1)
1 where W] = (WHW)−1WH . Then n

is Gaussian with zero mean and covariance matrix Cnn = Ip. Also WWH ≤ INt implies WHW ≤ Ip, and

since ṽ
(1)
1 = Wn, we get

||ṽ(1)
1 ||22 = nH WHWn ≤ ||n||22 . (51)

From (50), the error probability is then majorized by

P (E1|H) ≤ P (||n||22 ≥ γ2(H) |H) . (52)

So the main idea in the probablity of error analysis without Gaussian assumption is that in the normalized

error, the contribution of the residual ISI is finite, whereas for any rate below capacity, an error events gets

situated in an exponentially receding tail of the Gaussian noise part.

For the last Nt−1 symbol periods of the frame, less symbols appear in the residual ISI and as a result γ1

gets reduced to γ
′

1 and γ2 gets increased to γ
′

2, hence

P (E1|H) ≤ P (||n||22 ≥ γ
′

2(H) |H) ≤ P (||n||22 ≥ γ2(H) |H) (53)
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which leads to the second part of (29), at least for the asymptotic analysis considered here.

Step 3:

In step 3 we seek to study the behavior of the error probability for large SNR, in order to derive the diversity-

vs-multiplexing tradeoff achieved by the proposed scheme. Let λi, i = 1, . . . , p, be the nonzero eigenvalues of

HHH sorted in a nondecreasing order. We continue in the footsteps of [1] and introduce the variables α i via

λi = ρ−αi . At high SNR we have (1 + ρλi)
.
= ρ(1−αi)

+
, where (x)+ denotes max{0, x}. On the other hand

the capacity satisfies C(H) =
∑p

i=1 ln(1 + ρλi), hence eC(H) .
= ρ

∑p
i=1(1−αi)+ . In [1], it was shown that for an

allocated rate r ln ρ, the outage probability is

P (outage)
.
= P (

p∑

i=1

(1 − αi)
+ ≤ r)

.
= ρ−dout(r), (54)

where dout(r) is given by the piecewise-linear function connecting the points (k, dout(k)), k = 0, 1, . . . , p, where

dout(k) = (p − k)(q − k) . (55)

It was also shown in the same reference that any scheme with rate R(ρ) = r ln ρ has an error probability that

satisfies

Pe

.
≥ ρ−dout(r), (56)

hence dout(r) = d∗(r) is also called the optimal diversity-rate tradeoff curve. Let ε ∈ (0, p). We define the

outageε event as
∑p

i=1(1 − αi)
+ ≤ r + ε. The complementary event of outageε is denoted as no outageε. An

upper bound on P (E1) can now be derived as

P (E1) ≤ P ({outageε} ∪ E1)

= P (outageε) + P (E1, no outageε).

(57)

since

{outageε} ∪ E1 = {outageε} ∪ ({no outageε} ∩ E1) . (58)

From (54) we conclude that

P (outageε)
.
= P

(
p∑

i=1

(1 − αi)
+ ≤ r + ε

)
.
= ρ−dout(r+ε) . (59)
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Let’s characterize P (E1, no outageε). By applying the Chernoff bound to (52), we get for any λ ∈ (0, 1)

P (E1, no outageε) =
∫
no outageε

P (E1|H) f(H) dH

≤
∫
no outageε

P (||n||22 ≥ γ2(H)|H) f(H) dH

≤
∫
no outageε

(1 − λ)−Nte−λγ2(H) f(H) dH .

(60)

In particular for λ = 1
2

P (E1, no outageε) ≤
∫

no outageε

2Nte−
γ2(H)

2 f(H) dH . (61)

For any channel realization, the event no outageε means
∑p

i=1(1 − αi)
+ > r + ε, or hence e

C−r ln ρ
Nt

.
=

ρ
1

Nt
(
∑p

i=1(1−αi)
+−r) .

> ρ
ε

Nt . Introducing the definition of γ2 then into (61) leads to

P (E1, no outageε)
.
≤ 2Nt e

− 1
2



(

3

2(1−ρ
−

r
Nt )

(ρ
ε

Nt −2Nt)

) 1
2

−γ1




2

∫
no outageε

f(H) dH

.
≤ 2Nt e

− 1
2



(

3

2(1−ρ
−

r
Nt )

(ρ
ε

Nt −2Nt)

) 1
2

−γ1




2

= γε(ρ) .

(62)

Now limρ→∞
ln γε(ρ)

lnρ = −∞ for any ε > 0. Hence for any finite y we have P (E1, no outageε)
.
≤ ρ−y, and by

consequence

P (E1, no outageε)
.
≤ ρ−dout(r+ε) . (63)

Combining this result with (57) and (59) leads to

P (E1)
.
≤ ρ−dout(r+ε) . (64)

This is valid for any ε > 0, hence

P (E1)
.
≤ ρ−dout(r) = ρ−d∗(r) . (65)

Using (35), we arrive at an upper bound for the frame error probability

Pe

.
≤ ρ−d∗(r) . (66)

Combined with the lower bound of (56), this allows us to conclude that the proposed scheme attains the

optimal diversity-vs-multiplexing tradeoff, i.e.

Pe
.
= ρ−d∗(r) . (67)
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�

It is actually possible to extend this result to any number of transmit antennas.

Theorem 3: The use of a weighted minimum distance detector and QAM constellations allows the Con-

ventional MIMO DFE Rx, with UMMSE design, to achieve the optimal diversity-vs-multiplexing tradeoff

for any number of transmit antennas Nt.

Proof : Theorem 2 showed that the UMMSE Conventional MIMO DFE achieves the optimal tradeoff for

Nt = 2n with n integer. The proof of Theorem 2 can be extended to the case of Nt 6= 2n by using a number

of data streams Ns = 2dlog2 Nte and a precoding matrix Q that contains only the first Nt rows of QNs

QNs
=

1√
Ns




1 θ1 . . . θ1
Ns−1

1 θ2 . . . θ2
Ns−1

...
...

...

1 θNs . . . θNs

Ns−1




, (68)

where now the θi are the roots of θNs − j = 0 , j =
√
−1. The overall channel is G(z) = HD(z)Q. One can

now introduce a virtual channel Hs of size Nr × Ns, that contains H in the first Nt columns and zeros in

the remaining columns: Hs = [H | 0Nr×(Ns−Nt)]. This leads to G(z) = Hs DNs(z)QNs
where DNs(z) is the

delay diversity matrix of size Ns ×Ns. Using this embedding, steps 1 and 3 of the proof of Theorem 2 remain

unchanged, whereas for step 2 Nt should be replaced by Ns = 2dlog2 Nte. �

B. Case of MMSE ZF DFE Design

Theorem 4: In the case of a frequency-flat channel and Nr ≥ Nt, Nt = 2n (n integer), the use of a

weighted minimum distance detector and QAM constellations (for the streams bm,k) allows the Conventional

MIMO DFE Rx, with MMSE ZF design, to achieve the diversity-vs-multiplexing tradeoff given by dZF (r).

The tradeoff dZF (r) is the piecewise-linear function connecting the points (k, dZF (k)), k = 0, . . . ,Nt, with

dZF (k) =
Nt − k

2
(2Nr − Nt − k + 1) . (69)

The tradeoff of the MMSE-ZF DFE gets compared to that of the MMSE DFE in Fig. 3.

Proof : The proof of Theorem 4 follows the same lines as the proof of Theorem 2. We point out below

the minor differences.
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(r, Nt−r
2

(2Nr − Nt − r + 1))

(0, Nt(Nr − Nt−1
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er

:
d
∗ (
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Spatial Multiplexing Rate: r

(2, (Nr − 2)(Nt − 2))

(0, NrNt)

(1, (Nr − 1)(Nt − 1))

(r, (Nr − r)(Nt − r))

(Nt, 0)

UMMSE DFE

MMSE ZF DFE

Fig. 3. Diversity-vs-Multiplexing tradeoff comparison between MMSE and MMSE-ZF DFE designs (assuming Nr ≥ Nt).

Step 1:

This step is the same as step 1 of Theorem 2, its main result is

Pe
.
= P (E1) . (70)

Step 2:

As we have established in step 2 for Theorem 2, an error occurs when detecting the first symbol if ∆bHM∆b ≤

2<{∆bHM e1} where M = QHDQ, ∆b = b1−b′1, ∆c = Q∆b and ṽ1 = σ−1
v D1/2Q e1 (see section II-

B). Unlike in the MMSE design, the MMSE ZF Conventional MIMO DFE makes no compromise between

interference cancellation and noise enhancement, and cancels the interference entirely. Hence ṽ1 has a Gaussian

distribution ṽ1 ∼ CN (′, INt
). Again using the Cauchy-Swartz inequality we get

∆cHD∆c ≤ 2σv ||D1/2∆c||2 ||ṽ1||2 , (71)

which can also be written as

||ṽ1||22 ≥ 1

4σ2
v

∆cHD∆c

= 1

4σ2
vρ

(
∆cH(I + ρD)∆c − ∆bH∆b

)
.

(72)

Let eβ(H) =
∏Nt

i=1(1 + ρDii) = det(I + ρD). Using Jensen’s inequality we get

1

Nt
∆cH(I + ρD)∆c ≥ e

β(H)
Nt

(
Nt∏

i=1

|∆ci|2
) 1

Nt

. (73)
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As in the proof of Theorem 2, the error event can be shown to be included in the following event

||ṽ1||22 ≥ 3

2(1 − ρ
− r

Nt )

(
e

β(H)−r ln ρ

Nt − 2Nt

)
= γ(H) . (74)

Step 3:

Nr ≥ Nt is required for the MMSE ZF design to hold. D is identifiable from the QR factorization of H = UR.

In fact, U is a Nr ×Nt unitary matrix and R is a Nt ×Nt upper triangular matrix, and also LDLH = RHR

with Dii = |Rii|2. Denote h1:i = [h1 . . . ,hi] where hi is column i of H, and hi = P⊥
h1:i−1

hi the projection of

hi onto the orthogonal complement of h1:i−1. Then |Rii| = ||hi||2 and Dii = ||hi||22 = h
H
i hi.

β(H) has been reported in [1] to be the instantaneous capacity of the BLAST technique. The αi get introduced

via Dii = ρ−αi , i = 1, . . . ,Nt. Paralleling the steps in [1], an outage event occurs for
∑Nt

i=1(1 − αi)
+ ≤ r. In

[1], it has been shown that P (outage)
.
= ρ−dZF

out(r), where
.
= denotes the exponential equality. dZF

out (r) is the

piecewise-linear function connecting the points (k, dZF
out (k)), k = 0, . . . ,Nt, with

dZF
out (k) =

Nt − k

2
(2Nr − Nt − k + 1) . (75)

It was also shown in the same reference that any scheme with rate R(ρ) = r ln ρ, and a ZF constrained

structure, has an error probability that satisfies

Pe

.
≥ ρ−dZF

out(r) . (76)

The rest of the proof is the same as for Theorem 2, apart that P (E1|H) is upper bounded by

P (E1|H) ≤ P (||ṽ1||22 ≥ γ(H)|H)

≤ 2Nt e−
γ(H)

2 .

(77)

In the end we conclude that Pe
.
= ρ−dZF

out(r) and

dZF (r) = dZF
out (r) . (78)

�
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IV. Concluding Remarks

In this paper we showed again, be it for the specific transmission problem and equalizer considered here,

that even though a MMSE design tends to the corresponding MMSE ZF design at high SNR, those two designs

have a substantially different behavior from a diversity point of view, even though diversity is characterized

at high SNR. Furthermore, MMSE designs also apply to scenarios in which zero forcing is not possible. For

finite SNR, it may be desirable to robustify the transmission scheme against error propagation by combining

it with error correcting codes [11], [12], [16].

The introduction of a DFE reduces the cascade of prefilter, frequency-flat channel and DFE to a frequency-

flat MIMO system again, leading to the joint detection of a vector of symbols of size Nt (when it is a power

of two). We conjecture that the complexity of this detection problem constitutes a lower bound for the

complexity of MIMO transceiver schemes attaining the optimal diversity-vs-multiplexing tradeoff.

We may also remark that even though the space-time spreading transmission scheme considered here is

easily extended to the frequency fading channel case [14], the use of a DFE to attain the optimal tradeoff is

not so clear. What happens in the frequency-flat case is that the feedforward and feedback filters of the DFE

are simple functions of the prefilter T(z) and the channel H separately and do not require to consider the

cascade G(z). This separation property disappears in the frequency fading case.
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