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ABSTRACT

It is well known that the peaks in log Mel-filter bank
spectrum are important cues in characterizing the speech
sounds. However, low energy perturbations in the power
spectrum may become numerically significant after the log
compression. We show that even if the spectral peaks are
kept constant, the low energy perturbations in the power
spectrum can create huge variations in the cepstral coeffi-
cients. We show, both analytically and experimentally, that
exponentiating the log Mel-filter bank spectrum before the
cepstrum computation can significantly reduce the sensitiv-
ity of the cepstra to spurious low energy perturbations. Mel-
cepstrum modulation spectrum [3] is computed from the
processed cepstra which results in further noise robustness
of the composite feature vector. In experiments with speech
signals, it is shown that the proposed technique based fea-
tures yield a significant increase in speech recognition per-
formance in non-stationary noise conditions when compared
directly to the MFCC and RASTA-PLP features.

1. INTRODUCTION

As is well known, in the presence of commonly encoun-
tered additive noise levels, the formants are less affected as
compared to the spectral “valleys” which exhibit spurious
ripples. The DCT of a log Mel-filter bank spectrum (log-
MelFBS) which is commonly known as MFCC[2] feature
vector, is sensitive to ripples in the spectral valleys which,
otherwise, do not characterize the speech sounds. This is
one of the reasons for the poor performance of MFCC fea-
tures in additive noisy conditions. Observing that the higher
amplitude portions ( such as formants) of a spectrum are
relatively less affected by noise, Paliwal proposed spectral
subband centroids (SSC) as features [8, 9]. In this work, we
analytically show that exponentiating the logMelFBS can
decrease the sensitivity of the cepstra to the spurious pertur-
bations in the logMelFBS valleys as compared to the peaks.

Lim has proposed the use of spectral root homomor-
phic deconvolution system (SRDS) [4] as an approximately

more general case of logarithmic homomorphic deconvolu-
tion system (LHDS) [1]. SRDS uses a root compression���������
	���

of the mel-filter bank energies instead of the
logarithmic compression used by LHDS. Although, Lock-
wood et. al [5] and Tokuda et. al [6] have proposed a unified
approach to root Mel-cepstral coefficients (RMFCC), many
researchers have used RMFCC with a motivation based on
auditory and perceptual data. However, in this work, we use
LHDS based MFCC features[2]. We provide a signal pro-
cessing reason for the high sensitivity of the MFCC features
towards additive noise and propose a solution to alleviate
this problem by exponentiating the logMelFBS by a suitable
positive power greater than unity. In [3], we proposed the
use of Mel-cepstrum modulation spectrum (MCMS) fea-
tures for robust ASR. MCMS features[3] are obtained by fil-
tering cepstral trajectories using a bank of band-pass filters
in the range � � � ��������� . In this work we derive MCMS fea-
tures from the cepstra of the exponentiated logMelFBS. The
experimental results show that these two sequential process-
ing techniques synergistically improve the recognition rate
in presence of additive non-stationary noise as compared to
the MFCC and RASTA-PLP feature vectors.

2. PERTURBATIONS IN LOG MEL-FILTER BANK
SPECTRUM

One of the outcomes of logarithmic compression of the Mel-
filter bank energies is the reduction of the dynamic range
of the spectral amplitudes. Consequently, the spurious per-
turbations which are numerically insignificant in the power
spectrum domain may become numerically significant after
the logarithmic compression of the Mel-filter bank energies.
In figure 1, we illustrate this problem. Blue and red curves
are two instances of a logMelFBS with same formants but
different perturbations in the low energy. These perturba-
tions account for approximately

 ��������� of the power spec-
tral energy (before the log compression) and therefore do
not characterize the speech sound. However, DCT being a
linear transformation, gives an equal weightage to the for-
mants and the low energy filter bank outputs and therefore



is sensitive to the spurious ripples. A natural solution to this
problem is to weight the logMelFBS such that formants be-
come more significant than the low energy mel-filter bank
samples. To this end, a copy of the logMelFBS itself, is a
good candidate for the “lifter” as it will emphasize the for-
mants much more than the low energy log Mel-filter bank
outputs. This is same as exponentiating the logMelFBS with
a power � ���������	� ��
 

. In figure2, we plot squares of
the two instances of the logMelFBS, same as in figure 1.
As can be visually noted from the curves in figure 2, the
formants have become more prominent as compared to the
spurious ripple. In figure 3, the blue curve corresponds to
the percentage absolute difference between the first

�
DCT

coefficients of the two logMelFBS same as in figure 1 and
red curve corresponds to the percentage absolute difference
between the first

��
DCT coefficients of the squared log-

MelFBS same as in figure 2. The fact that the red curve lies
below the blue curve, indicates that the squaring of the log-
MelFBS decreases the sensitivity of lower DCT coefficients
towards spurious ripples in low energy region.

Consider ����� DCT coefficient of a � point sequence � .
It can be approximately seen as a weighted sum of the “dis-
crete” derivatives of the sequence � evaluated at � equidis-
tant samples and multiplied by alternating signs. For in-
stance, if ����� and ���  � , we have,
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(1)

where, �GF � . � denotes “discrete” derivative of � . Therefore
the sensitivity of the DCT of the logMelFBS can be approx-
imately measured in terms of the sensitivity of derivatives
of the logMelFBS. We define the sensitivity index H �DI �KJ �
as the ratio of derivatives of the function L )M � � � at a Mel-
formant energy �N� I and a low Mel-filter bank energy
value �:� J . Given (1), we expect H ��I �KJ � to measure the
relative contributions of a peak of the logMelFBS and the
low energy Mel-filter bank energies in a DCT coefficient
which is a cepstral coefficient.

H ��I �OJ � �QPSRUT2V ?S= @<W XOY[ZPSR<T V ?S= @<W X\Y^] � �\_K`�\_Oa
� J 0 Ib�������	�cIedfJ
g H ��I �KJ ��h  � � �

(2)

Similarly we define the sensitivity index i �DI �OJ � as the ratio
of the derivatives of the function +�jkM . � L )M � � � � � L )M � � � �-l at a
Mel-formant energy �m� I and a low Mel-filter bank energy
value �n� J .
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(3)

The value of H h  � � in (2) implies that a unit change
in the low Mel-filter bank energy value, namely � J F F will
have a far greater influence on the computation of the DCT
of logMelFBS as compared to a unit change in the Mel-
formant energy, namely � I F F . Therefore, it can be seen in
the light of (2) that the DCT of the logMelFBS is quite
sensitive to the perturbations in the low-energy regions as
compared to those around the formants. However, for the
domain

 � ��� J�h I ���
and ��
 

, i ��I �OJ � is al-
ways greater than H �DI �KJ � . This can be achieved by using� L )M � ��6  � � l as � being power spectral energy never takes
negative values. The fact that the i ��I �OJ � is always greater
than the H ��I �OJ � implies that we have been able to decrease
the sensitivity of cepstral coefficients to spurious low en-
ergy perturbations. An important parameter in the above
mentioned processing scheme is the exponent � . As can
be seen from (3), the sensitivity ratio i ��I �OJ � increases ex-
ponentially as the exponent � increases. However, a large
value of � will result in the case where the spectral mod-
ulations of the largest formant takes very high numerical
values which render the spectral modulations of the other
formants numerically insignificant relative to those of the
largest formant. Therefore an intermediate value of � is the
most suitable for such a processing scheme.1
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Fig. 1. Log Mel-filter bank energies of clean and
noisy(perturbed) speech.

1The experiments results with different values of P reconfirmed these
observations.
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Fig. 2. Square of the log Mel-filter bank energies of clean
and noisy(perturbed) speech.
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Fig. 3. Absolute percentage error between the cepstral co-
efficients due to perturbations. Blue curve corresponds to
the DCT of the log Mel-filter bank spectrum while red curve
corresponds to the DCT of the squared log Mel-filter bank
spectrum.

3. EXPERIMENTS AND RESULTS

In order to assess the effectiveness of the proposed scheme
for reducing the effect of spurious perturbations in the low
Mel-filter bank energies, speech recognition experiments were
conducted on the OGI Numbers95 corpus [11] using the
proposed processing scheme for the logMelFBS. The lex-
icon size for this connected digits recognition task is 30
words with 27 different phonemes. To verify the robustness
of the features to noise, the clean test utterances were cor-
rupted using additive non-stationary factory noise and f16
cockpit noise from the Noisex92 [12] database. Throughout
the experiments, Mel-frequency cepstral coefficients (MFCC)
[2] and their temporal derivatives have been used as speech
features. Hidden Markov Model and Gaussian Mixture Model
(HMM-GMM) based speech recognition systems were trained
using public domain software HTK [9] on the clean train-
ing set from the original Numbers95 corpus. The system
consisted of 80 tied-state triphone HMM’s with 3 emitting

states per triphone and 12 mixtures per state. Three kinds of
feature sets were generated:

� [MFCC+Deltas:] 13 MFCCs with deltas.

� [ RMFCC+Deltas: generated by root Mel-filter bank
spectrum with

� � � �  � ] 13 root Mel-cepstral coef-
ficients with deltas.

� [ ExpoMFCC+Deltas: generated by exponentiated log-
MelFBS with � � � ��� ] 13 exponentialted log-Mel-
cepstral coefficients with deltas.

Per utterance cepstral mean subtraction was applied to each
of the above feature vectors. The speech recognition re-
sults using the above mentioned feature sets in clean and
noisy conditions are reported in table 1. The root

� � � �  �
and the exponent � � � ��� gave the best recognition results
for the RMFCC and ExpoMFCC features respectively. The
exponentiated logMelFBS MFCC system performs signif-
icantly better than the usual MFCC features in the noisy
conditions. We note that the performance of the proposed
features is similar to that of RMFCC features using the op-
timal value of the root

� � � �  � . Figure 4 illustrates the
fact that the proposed technique can significantly reduce the
mismatch between clean and noisy MFCC features.

In [3], we proposed the use of Mel-cepstrum modula-
tion spectrum (MCMS) features for robust ASR. MCMS
features[3] are obtained by filtering cepstral trajectories us-
ing a bank of band-pass filters in the range � � � ��������� . In this
work we derived MCMS features from the cepstra of the
exponentiated logMelFBS. The recognition results are re-
ported in table 2. All the features in this table have mean and
variance normalized cepstra. The superior performance of
ExpoMFCC+MCMS features can be noticed in the last col-
umn of the table 2. The average word error rate (WER) for
the ExpoMFCC+MCMS features in clean and all the noisy
conditions in

 � � C � . This corresponds to a relative im-
provement of ��� � � � over RASTA-PLP features and

  �
� �

over the optimal RMFCC features.

Table 1. Word error rate results for factory and f16 noise.
The best results for RMFCC (R=0.10) and Exponentiated
MFCC (P=2.7) are reported.

SNR MFCC RMFCC ExpoMFCC
Clean 6.1 6.1 6.2
Fact SNR 12 14.0 12.0 11.6
Fact SNR 6 31.5 20.6 20.3
Fact SNR 0 75.7 45.7 44.3
F16 SNR 12 15.8 12.3 12.1
F16 SNR 6 32.8 20.8 20.9
F16 SNR 0 75.1 44.2 43.4
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Fig. 4. Mean square error of MFCC vectors in clean and
noisy conditions, normalized by the average power of the
corresponding MFCC feature vector in clean condition.
Blue curve corresponds to baseline MFCC while red curve
corresponds to MFCC derived by squaring the log Mel-filter
bank spectrum. These mean estimates were computed using
nearly 160000 speech frames.

Table 2. Word error rate results for factory and f16 noise.
All the features in this case have cepstral mean and variance
normalization.

SNR RASTA-PLP RMFCC ExpoMFCC+MCMS

Clean 6.5 6.1 5.0
Fact SNR 12 10.6 10.4 9.2
Fact SNR 6 18.4 16.7 15.2
Fact SNR 0 37.9 35.3 31.6
F16 SNR 12 11.2 10.2 9.5
F16 SNR 6 17.9 15.7 14.4
F16 SNR 0 34.8 28.9 26.0
Average 19.6 17.6 15.8

4. CONCLUSION

We identify a numerical sensitivity problem with the MFCC[2]
features. It is analytically shown that by exponentiating the
logMelFBS one can desensitize the MFCC coefficients to
spurious low-energy spectral perturbations. Finally, Mel-
cepstrum modulation spectrum[3] is derived from the cep-
stra which in turn has been derived by exponentiating the
logMelFBS. The experimental results show that significant
noise robustness can be achieved by the use of the proposed
features in all conditions as compared to the RASTA-PLP
and root MFCC features.
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