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Abstract

We consider multiple users in a DS-CDMA system op-
erating in a multipath environment. The received cy-
clostionary spread signal sampled at the chip rate is con-
verted to a stationaryvector signal, leading to a linear mul-
tichannel model. Prior knowledge of the transmission pulse
(spreading sequence) is exploited to obtain the desired user
channel estimate blindly. It is shown that the multiple user
problem can be decoupled and a single user scenario can
be obtained to apply the blind estimation and interference
cancelation algorithms banking on limited a priori knowl-
edge. The FIR channel estimation problem is investigated
and the optimal MMSE receiver for multipath channels is
presented along with a computationallymore efficient Inter-
ference Canceling Rake Receiver (ICRR). Both the MMSE
receiver and the ICRR are parameterized in terms of the
desired user’s channel and quantities that can be estimated
from second-order statistics.

1. Multiple User Data Model

Theu users are assumed to transmit linearly modulated
signals over a linear channel with additive Gaussian noise.
It is assumed that the receiver employs a single antenna to
receive the mixture of signals from all users. Oversampling
is inherent to CDMA systems due to the large (extra) band-
width and the need to resolve chip pulses. Therefore, the
use of multiple antennas, while certainly bringing extra di-
versity beyond the spread bandwidth [5], might not be as
fetching as in other multipleaccess methods. The received
signal can be written in baseband notation as

y(t) =
uX

j=1

X
k

aj(k)gj(t� kTs) + v(t), (1)
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whereaj(k) are the transmitted symbols from the userj,
Ts is the common symbol period,gj is the overall channel
impulse response for thejth user. Assuming thefaj(k)g
andfv(t)g to be jointly wide-sense stationary, the process
fy(t)g is wide-sense cyclostationary with periodTs. Over-
sampling the received signal atL times the symbol rate
(LTc here is the processing gain), we obtain the wide-sense
stationaryL� 1 vector signaly(k) at the symbol rate. The
overall channel impulse response forjth user’s signal,gj,
is the convolution of the transmitter pulse (spreading code)
andhj(t), the convolution of the pulse shape and the actual
channel (assumed to be FIR) representing the multipath fad-
ing environment. This can be expressed as

gj(t) =
L�1X
l=0

cj(l)hj(t� lTc), (2)

whereTc is the chip duration. We consider that the longest
FIR channel length among all users isLc (in Tc ’s). For
channels that are shorter, we can still consider them to be
of lengthLc with zeros concatenated at the end. Letkj be
the chip-delay index for thejth user:hj(kjTc) is the first
non-zero chip-rate sample ofhj(t). The parameterNj is
the duration ofgj(t) in symbol periods. It is a function of
Lc andkj. If Lc < L, then in asynchronous conditions
(kj 6= 0), 2 � Nj � 3: the overall channel spans at most
three symbol periods. We consider user1 as the user of in-
terest and assume thatk1 = 0 andN1 = 2 (synchronization
to user 1). LetN =

Pu

j=1Nj . The vectorized chip-rate
samples lead to a discrete-timeL � 1 vector signal at the
symbol rate that can be expressed as

y(k) =
uX

j=1

Nj�1X
i=0

gj(i)aj(k � i) + v(k)

=
uX

j=1

Gj;Nj
Aj;Nj

(k) + v(k)

= GNAN (k) + v(k)

(3)



where

y(k) =

264 y1(k)
...

yL(k)

375 , gj(k) =

264 g1j(k)
...

gLj(k)

375
v(k) =

264 v1(k)
...

vL(k)

375 Gj;Nj
=
�
gj(Nj � 1) : : :gj(0)

�
GN =

�
G1;N1 : : :Gu;Nu

�
Aj;Nj

(k) =
�
aHj (k � Nj + 1) : : : aHj (k)

�
AN (k) =

�
AH
1;N1

(k) : : : AH
u;Nu

(k)
�

,
and the superscriptH denotes Hermitian transpose.
The matrixG1;N1 (for user 1) can be written in terms
of the spreading code and the channel vectorh1 as
G1;N1 = [g1(1) g1(0)] with g1(i) = C1(i)h1, and where,

C1(0) =

266664
c1(0) 0

c1(1)
... c1(0)

...
...

c1(L � 1) c1(L � Lc � 1)

377775 , and,

C1(1) =

26666664

0 c1(L� 1) : : : c1(L� Lc)
...

...
...

...
c1(L� 1)

...
0 : : : 0

37777775
For the interfering users, we have a similar setup except
that owing to asynchrony, a third coefficient might appear
inGj;Nj

.
It is clear that the signal model as described above ad-

dresses a multiuser setup with a possiblity of joint interfer-
ence cancelation for all sources simultaneously [6] provided
the timing information and spreading codes of all of them
are available. As we shall see later, it is possible to de-
compose the problem into single user ones thus making the
implementation suitable for applications such as at mobile
terminals or as pre-processing stage at the base station.

2. Previous Work

Blind solutions for CDMA systems have received con-
siderable attention since the pioneering work of [2]. The
desirable feature of such a scheme is that its informational
complexity is the same as that of a matched filter detector,
i.e., only the desired user signature waveform and timing
are required for its operation. Besides, it seems intuitively
correct to employ at the mobile terminal an algorithm that
banks simply on the information destined for itself.

The problem addressed in [2] is that of DS-CDMA com-
munications over the a channel without multipath. Other re-
cent work has been concentrated on investigating solutions
for multipath channels. Constrained optimization schemes
were proposed in [8] [3] where the receiver’s output en-

ergy is minimized subject to appropriate constraints. Con-
vergence to the optimal MMSE receiver is sought in these
receivers. The above mentioned receivers have been shown
to converge asymptotically (SNR! 1) to the decorrelat-
ing solution. However, the solution in [3] handles the syn-
chronous case while the solution in [8] degrades as the num-
ber of asynchronous users increases.

In this paper, we present the optimal MMSE receiver for
multipath channels and asynchronous conditions, obtained
by applying multichannel linear prediction to the received
cyclostationary signal. An alternativerake-like configura-
tion is also presented and blind implementation of these
structures is explored.

3. MMSE Interference Suppression by Linear
Prediction

3.1. Multichannel Linear Prediction

Consider multichannel linear prediction with the predic-
tor error transfer functionP(z ) yielding prediction error
~yk = P(z )yk. We then have,P(z )Syy(z )Py(z ) = S

eyey(z ).
The prediction errors are white for infinite prediction order
[6].

3.2. The Optimal MMSE Equalizer

LetG(z ) = G1(z ) be the channel transfer function for
the desired user The structure of the optimal MMSE linear
equalizer is given in fig. 1. We find,

FMMSE(z ) = Say(z )S�1yy (z ) = �2aG
y(z )S�1yy (z ), (4)

where,G(z ) can be estimatedblindly using second-order
statistics of the received signal as explained in section 5
andGy(z ) = GH(1=zH). As for S�1yy (z ), a finite num-
ber of correlation lags ofy(k) are adequate to determine
the prediction error filtersP(z ) leading to the FIR model
S�1yy (z ) t Py(z )R�1

eyey P(z ) [7]. It is seen thatS�1yy is Infinite
Impulse Response (IIR) in general. In the noiseless (singu-
lar) case, however, the FIR assumption onS�1yy (z) turns out
to be exact. In other words, a finite number of correlation
lags ofy(k) are adequate for its estimation. Let us denote

S/P
y(t)

Tc

y âk

G
y(z )S

�1
yy (z )

Figure 1. Optimal MMSE Receiver Structure

by u1 and u2, the number of users with channel lengths
spanning two and three symbol periods respectively. Then,



for the decorrelating condition (P(z)G(z) = constant ) to
hold, the shortest FIR predictor that suffices is of order

M =

�
2u1 + 3u2
L� u1 � u2

�
. (5)

From the above discussion, it is clear that the optimal re-
ceiver length is not only a function of the number of sym-
bols spanned by ISI but also of the number of active users.
Furthermore, the effect of future symbols renders the struc-
ture non-causal.

3.3. The Noise Subspace

We stackM successivey(k) vectors in a super vector
YM (k) = YM (k) = TM;u(GN )AN+u(M�1)(k)+VM (k),
where,TM;u = [TM(G1;N1) � � � TM (Gu;Nu

)] andTM(x)
is a banded block Toeplitz matrix withM block rows and�
x 0n�(M�1)

�
as first block row (n is the number or rows

in x). Assuming the chip rate sampled noise to be white, the
covariance matrix of the received signal can be written as

RY
M = TM;u(GN )Ra

N+u(M�1)T
H
M;u(GN )+�2vILM . (6)

Let us consider the noiseless covariance matrix (v(t) � 0).
We further suppose that the transmitted symbols are un-
correlatedRa = �2I. Upon applying Gram-Schmit or-
thogonalization scalar component by scalar component, on
the elements ofYM (k), we build the UDL factorization of
(Ry

M )�1, and obtain the consecutive prediction error fil-
ters and variances. We can writePYM (k) = eYM (k) )

PRY PH = R
eY , where,eY(k) contains the prediction er-

rors and the rows ofP the prediction error filters of con-

secutive orders.R
eY is diagonal and contains the predic-

tion error variances. Referring to section 3.2, we see that
the first singularities will be encountered within the block
rowM of RY in which the elements ofy(k +M � 1) are
processed. IfTM;u(GN ) is of full column rank, then we
shall come acrossM = M (L � u) � N + u singulari-
ties whereM 2 f0; 1; � � � ; L � u � 1g. The correspond-

ing elements inR
~Y are zero. The rows in the lower tri-

angular matrixP corresponding to these zero diagonal ele-
ments are termedsingular prediction error filters[6]. For
M = M + 1, TM+1;u(GN ) will have L more columns
while justu more rows; hence the rank ofRYY increases
by u. We stack all singular prediction error filters in a
(M (L � u) � N + u) � LM matrix, GM , the row space
of which is the transpose of the noise subspace.

4. Interference Canceling Rake Receiver

Let us investigate the case where the interferers plus the
channel noise are treated as Gaussian noise of unknown

color. In such a scenario, the interference canceling scheme
shown in fig. 2 is optimal. The transformation

xk = A(z )yk =

�
x1;k
x2;k

�
=

�
Gy(z )G(z )ak + w1;k

w2;k

�
(7)

where,

A(z ) =

�
G
y(z )

G?y(z )

�
, and,

G?y(z ) =

266664
�G2(z ) G1(z ) 0 : : : 0

0 �G3(z ) G2(z) : : :
...

...
...

...
GL(z ) 0 : : : �G1(z )

377775
splits yk into the desired signal and interference compo-
nents. Many other configurations for the signal blocking
matrix,G?y(z ), are possible [7], the one above being con-
venient when the channel coefficients are known (estimated
a priori). It is clear thatw2;k contains no signal of interest
but some of its components are correlated withw1;k and
can be used to lower the interference level in the latter. In
order to accomplish this, consider the transformation

bk = B(z )xk =

�
1 �W (z )
0 IL�1

� �
x1;k
x2;k

�
, (8)

where, W (z ) = Sx1x2S
�1
x2x2

= Sw1w2S
�1
w2w2

is the
Wiener filter for interference cancelation, sinceb1;k are un-
correlated with and independent ofb2;k = x2;k = w2;k

and sinceb1;k depends onak, then onlyb1;k is required for
further processing. Drawing connections with the MMSE
equalizer described in the previous section, it is seen that

FMMSE(z ) = SasS
�1
ss (z )

h
Gy(z ) G?y(z )

i
, (9)

Hence, the interference canceler followed by a scalar
MMSE linear equalizer corresponds to the optimal MMSE
equalizer of (4). We refer to this structure as the interference
canceling (IC) rake receiver for obvious reasons.

The ICRR maximizes the ratio of signal to noise power
spectral densities. With negligible ISI in the desired sig-
nal andi.i.d. symbols, the signal power spectral density is
constant and the ICRR maximizes the SNR, i.e., ICRRt
MMSE.

x1;k

x2;k
ak

yk

G
y(z)

G(z)

G
?y(z) W (z)

b1;k
vk

Figure 2. Inter. Canceling Rake Receiver



4.1. IC Filter Length

Once again consider the noiseless case. In order to
decorrelate, we need

W (z )G?y(z )Gint(z ) = z
�1Gy(z )Gint(z ), (10)

where,Gint(z ) are the contributions (possibly rank defi-
cient) from the interfering users’ channels, andm is the or-
der of the channel moving average (MA) process. Then the
length of the interference canceling Wiener filterW (z ) is
[6]

M >

�
�(u� 1)

L� u

�
, (11)

where,� equals two or three depending upon the preva-
lent channel lengthNj . It can be seen that for fully
loaded systems (u t L), M can be fairly large. This
effect can be alleviated by using multiple diversity (an-
tenna) channels. The delayd for the FIR filterW (z ) =
w0z

d � � �wM�1z
�(M�1)+d in order to decorrelate can be

shown to be constrained within0 6 d 6M � 1.

5. Blind Channel Identification

Exploitation of the prior knowledge available in terms
of the spreading code (transmitter pulse) has been shown to
improve the estimation [1].

5.1. Noise Subspace Method

In [6], it was shown that joint estimation, using subspace
techniques, ofu cochannel users transmitting is possible
(blindly) upto au � u non-singular matrix (an instanta-
neous mixture). In contrast to a TDMA system, the direct
sequence spreading waveform is different for every user in
DS-CDMA systems. There is, therefore, enough structure
in the problem to identify the channel without ambiguity
using subspace techniques [4].

Given knowledge of the noise subspaceGM , the channel
vectorh1 can be identified as the solution of

min
h1

kGMTM(G1;N1)k. (12)

The noise subspace is determined from the singular predic-
tion error filters as explained before.

5.2. Sub-Response Matching (SRM)

The SRM algorithm is elaborated upon in [1]. Here,
it suffices to say that the sub-channelsGi(z) obtained as
a result of oversampling are stacked together in a signal
blocking matrixG?y(z ) (7) in order to obtain an expres-
sion of the formG?y(z )G(z ) = 0, which can be solved

under an appropriate constraint. Letg =
�
gH1 (1) gH1 (0)

�H
be the overall channel vector, andT (g?), the time do-
main correspondent ofG?y(z ). Then the SRM criterion
kT (g?)YMk22, can be written as the minimization with re-
spect tog of

tr fT (g?)YMYH
MT

H (g?)g

= tr fg?

 
MX
k=1

Y2(k)YH
2 (k)

!
g?Hg, (13)

where,tr denotes trace.
This is a quadratic cost function in the actual channel

coefficients,h1. Implementation details for SRM can be
looked up in [1]. It is worth pointing out however, that this
method banks on asymptotically removing the contribution
of white noise. Hence for the multiuser problem, the SRM
estimate could turn out to be biased.

5.3. Identifiability Conditions

Although the general identifiability conditions [6] i.e.,
constrainingTM;u(GN ) to be full column rank largely suf-
fice, they are by no means necessary for the channel estima-
tion in this particular problem. To show this, let us split the
matrix TM;u(GN ) as [TM;1(GN1) TM;u�1(GN2:u)].
Then we can state the identifiability conditions as follows:

� (A.1) TM;1(GN1) must have full column rank

� (A.2) LetW1 andW2 be the respective range spaces of
TM;1(GN1) andTM;u�1(GN2:u ). Then,dim(W1 +
W2) = rankfTM;u(GN )g, where,TM;u�1(GN2:u)
could be rank deficient. Then, the conditiondim(W1\
W2) = 0 along with(A.1) is necessary in order to es-
timate the channel vector uniquely.

The first condition is evidently necessary and always holds
for Lc < L, sinceG1;N1 = [g1(1) g1(0)] with g1(0) =�
gH1;1(0) : : : g

H
1;Lc�1

(0) 0 : : :0
�H

.
It is easy to see that the conditions above are rather

relaxed for an environment with asynchronous interferers,
i.e., they hold with probability 1!

5.4. Channel Order Over-estimation

In the channel estimation algorithm described above, it
was assumed that the channel delay spread,Lc was known
a priori. When this is not the case, we propose to over-
estimate the channel length for the desired user. The key
observation is that as long as the overestimatedLc does not
exceedL + 1, we haveN1 = 2. Hence overestimating
the channel does not lead to any uncertainty in the overall
channel response which remains of lengthN1 = 2. Hence,



the solution forbh1 obtained from one of the above meth-
ods coincides with the true channel vectorh1 followed by
a number of zeros accounting for the overestimated part of
the channel impulse response.

6. Simulations

We tested the Interference Canceling Rake Receiver
(ICRR) over a frequency selective channel modeled as an
FIR filter with Lc = 12 taps. A spreading factor of 31
was used. Near-far conditions prevail in that the interfering
users are randomly (ranging from 3 to 10 dB.) stronger than
the user of interest.

Fig.3 compares the ICRR performance to the linear pre-
diction based MMSE receiver withS�1yy (z ) of three and five
symbol lengths for 9 asynchronous interferers. For refer-
ence, a plot of the constrained beamformer-like receiver of
[8] is also shown. Referring to (5) (withu1 = 7 andu2 = 3
in the simulations), we obtain anM = 1 symbol periods.
It is observed that all receivers give more or less a perfor-
mance approaching the optimal MMSE (prediction based)
receiver. However, it is seen in fig. 4 that as the number
of users increases, so should the receiver length, conform
with (5). For this plot the interference canceler is of sub-
stantial length (five symbol periods) while the beamformer
is no longer capable of canceling out the interference.

0 5 10 15 20 25 30
10

15

20

25

30

35

40

45

E
b
/N

0
    (dB)

O
ut

pu
t S

IN
R 

   
(d

B)

Performance Comparisons for Various Schemes for 10 users and length 31 Codes

Lin Pred. 3 
ICRR        
Lin. Pred. 5
Ref.[10]    

Figure 3. Performance of Various Receivers
u =10, L =31

7. Concluding Remarks

We presented the linear prediction based MMSE receiver
and the ICRR. Both receivers require blind channel estimate
for the user of interest which can be obtained using one of
the two methods presented. The MMSE requires the esti-
mation of a linear predictorP(z ) and the interference can-
celerW (z ) respectively. Both can be estimated from sec-
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Figure 4. Receiver Performances for different
u’s, L =31

ond order statistics. The former is anL� L matrix transfer
function and its estimation requires more data and its imple-
mentation is more complex as compared to the1� L inter-
ference cancelerW (z ). For limited delay spreadLc < L,
the ICMF behaves like the MMSE receiver.
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