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ABSTRACT

In this paper we explore the use of Variational Bayesian (VB)
learning for adaptation in a speaker clustering framework. Vari-
ational learning offers the interesting property of making model
learning and model selection at the same time. We compare VB
learning with a classical MAP/BIC (MAP for training, BIC for
model selection) approach. Results on the NIST BN-96 HUB4
database show that VB learning can outperform the classical MAP-
BIC method.

1. INTRODUCTION

A main task in many speech recognition and audio indexing sys-
tems consists in unsupervised speaker clustering . This task is also
known as speaker diarization. Many different models have been
proposed for achieving this purpose e.g. Hidden Markov Models
(see [1]) or Self Organizing Map (see [3]). Clustering is generally
done in a completely unsupervised fashion. A main problem with
this task is that sometimes very few data per speaker are available
and robust speaker models cannot be obtained. In order to over-
come this problem, speaker model is generally obtained adapting
a prior speaker model; adaptation is usually achieved using MAP
(see [14],[12]).

In many situation the real speaker number is not known and
it must be estimated from data. The most common model selec-
tion criterion used in speaker clustering is the Bayesian Informa-
tion Criterion (BIC) used to penalize too complex models. So the
speaker clustering procedure can be seen as a two step procedure
in which at first a model is learned using Maximum Likelihood
(ML) or MAP adaptation, and then the model is scored using BIC.
Best model is the model with highest BIC score. A relatively new
techniques for making model selection and parameter learning at
the same time is the Variational Bayesian (VB) framework.

In [13] and [11] we investigated the use of Variational Bayesian
learning for unsupervised speaker clustering when no informa-
tion at all on speaker is available and compared results with a
ML/BIC criterion. Results shows that VB can outperform ML/BIC
on this task. In this paper we consider the case in which a back-
ground model for speakers is available and speaker model is ob-
tained adapting the background model. We compare the speaker
segmentation obtained using the VB framework against segmenta-
tion obtained using a MAP/BIC showing that even in this case VB
can perform better.

This paper is organized as follows: in the next section our
model for speaker clustering is presented, then MAP/BIC and VB
model selection are introduced and finally experiments on NIST
BN-96 HUB4 database evaluation set are discussed.

2. HMM FOR SPEAKER CLUSTERING

In this section we define the model we used for the speaker cluster-
ing task. A popular approach uses Ergodic Hidden Markov Mod-
els. This method introduced in [1] considers a fully connected
HMM in which each state represents a speaker and the state emis-
sion probability is the emission probability for each speaker. In
order to obtain a non-spare solution, we use a duration constraint
of 100 consecutive frames as proposed in [3] in order to model
each speaker in a robust way.

Let us designate «,; the transition probability from state r to
state 5. We make here the assumption that the probability of tran-
sition to state j is the same regardless the initial state i.e. a,; =
o v, where 7 =1,...,.5 with S the total number of states;
in other words, under this assumption we can model the ergodic
HMM as a simple mixture model. Let us designate [O1, ..., O7]
a sequence of 7" blocks of D consecutive frames [O;1, ....,O:p]
where D is the duration constraint. It is then possible to write the
log-likelihood :
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where S represent the number of states (that represent a speaker),
M represents gaussian component that models each speaker, and
{Bi;, niy, L's; } represent mixture model parameters (weights, means
and gaussians) . When S is unknown, it must be estimated with a
model selection criterion (for details about this model see [11]).

3. MODEL SELECTION AND PARAMETER LEARNING

Let us consider a data set Y = {y1, ..., y» } and a model m. Each
model m has a set of parameters § with their distributions. The
best model is the model that maximize p(m|Y) i.e. applying bayes
rule we obtain:

m = argmazm, p(m|Y) = argmaz, p(m) p(Y|m)/p(Y)
@

where p(Y') is ignored because it does not depend on m. If
p(m) is considered uniform on the possible model space, the best
model is the model that maximize the so called marginal likeli-
hood p(Y'|m) and can be computed marginalizing w.r.t. model
parameters i.e.

p(YIm) = / (Y16, m) p(6]m) de ®

Marginal likelihood benefits from the so called Occam's razor
properties (see e.g. [15]) i.e. simpler models are preferred to



more complex one. Two main difficulties arise in computing quan-
tity (3). The first a reasonable choice for parameter distribution
p(8|m) must be found. Then integral is not always possible be-
cause in many models (HMM, GMM) it requires integration over
latent variables and parameter distributions. Let us consider sepa-
rately solutions to those two problems. The simplest choice to es-
timate parameter distributions is MAP posterior distributions that
maximize the joint data and parameter probability density giving
the following parameter estimate i.e.

Orrap = argmaze p(6)p(Y8) 4)

This solves the first problem (parameter distributions) but not the

second (making the integral). Generally the most common solu-
tion is approximating the integral with a simplest function. The
Bayesian Information Criterion (see [10]) is an asyntoptical ap-
proximation of marginal likelihood (3) i.e.

log p(Y|m) = log p(Y|m, 8) = Zlog N ®)

where § is the estimation for model parameters ¢ (here we con-
sider a MAP estimation), v is the free parameter number and N
is the observation number. In real data applications, penalty terms
is generally multiplied by a threshold value A heuristically deter-
mined. It is important to notice that in (5) there’s no reference to
distributions p(6|m) but only on the number of free parameters.
It can be shown that when N — oo, BIC converges to marginal
likelihood.

In the next section we will show how Variational Bayesian
learning solves the two problems with the same elegant solution.

4. VARIATIONAL BAYESIAN LEARNING

Variational Bayesian learning is an approximated method that al-
lows computation of an upper bound of marginal log-likelihood
(3). First of all let us suppose that the true parameter posterior
distribution p(8|m) can be approximated by some other distribu-
tions ¢(8|Y, m) (referred as variational bayesian posterior distri-
butions). Using Jensen inequality, it is possible to write:

logp(Y|m) = log / d6q(8]V, m)PLEITIP(Y: 8lm)
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F'(9) is called FreeEnergyand it is a strict lower bound on the log
marginal-likelihood. It is easy to show that the difference between
marginal log-likelihood and the free energy is:

p(6lY, m)

KL(q(8]Y, m)lIp(8]Y, m)) = — / (o1, mtog B

™
i.e. the KL divergence between approximated distributions
and exact posterior distributions (that are actually unknown). If
q(8]Y, m) = p(8|Y, m) then expression (7) would be zero, and
the bound will be equal to the true marginal log-likelihood.
Let us now manipulate the free energy F'(6) and write it in the
following form:

F(H)Z/dﬁq(HIK m)log p(Y0,m) — D(q(6]Y, m)||p(8]m))
®)

Variational Bayesian learning aims at optimizing () w.r.t. vari-
ational posterior distribution ¢(6|Y, m).

Second term in expression (8) represents the KL divergence
between variational posterior distributions and parameter prior dis-
tributions; it acts as a penalty term that becomes larger for more
complex models. In this sense the free energy can be used as a
model selection criterion (see section 4.2).

If the variational posterior distribution is constrained to be a
delta distribution i.e. ¢(8|Y,m) = 6(6 — 9'), the free energy
reduces to the MAP estimator:

maz o) F(8) = maz, / 5(6 — 0 Ylog[p(Y|8)p(8)]d6

= mazylog[p(Y|6 )p(8))] ©

where the term [ q(6)log q(9)d9 has been dropped because it is
constant.

4.1. Variational Bayesian learning with hidden variables

Many popular models like HMM or GMM use hidden variables.
Hidden variables make impossible the computation of (3) in closed
form. In [4] the problem is solved using an independence assump-
tion between hidden variables and parameters. This is actually the
key for computing, even if in an approximated form marginal like-
lihood. Let us denote by X the hidden variables set. Variational
posterior becomes ¢( X, 6|Y, m) and the simplification is assum-
ing it factorizes as ¢(X,0|Y, m) = q(X|Y, m)q(8]Y, m). Then
the free energy to maximize is:

p(Y, X, )

F(8,X) = /deXq(X|Y, MOV, mlogl ]

p(Y, X16)

=< log
(XY, m)

>x,6 —=D[q(8]Y, m)||p(8]m)] (10)
where < . >. means average w.r.t. z. Note that ¢ is always
understood to be conditioned on Y and m. To find the optimum
q(9) and ¢(X) an EM-like algorithm is proposed in [4] based on
the following steps:

q(X|Y, ’ITL) x 6<logp(Y,X|®)>¢9 (11)
(8], m) oc <19 P XIDZX () (12)

By iteratively applying eq.(11) and eq.(12), it is possible to esti-
mate variational posteriors for parameters and hidden variables. If
p(8]m) belongs to a conjugate family, posterior distribution ¢(8|Y, m)
will have the same form as p(6|m).

Under this assumption it can be shown that free energy can be
computed in a closed form for conjugate-exponential models (see

[16]).

4.2. Model selection

An extremely interesting property of the Variational Bayesian learn-
ing is the possibility of selection models while training. As it was
outlined in the previous section, the free energy (8) can be used
as a model selection criterion because the KL distance between
parameter posterior distributions and parameter prior distributions
acts as a penalty term similar to the BIC criterion penalty. Let us
introduce the model posterior probability ¢(m) on a given model
m. It can be shown (see [4]) that optimal ¢(m) can be written as:

a(m) oc exp{F (8, X, m)} p(m) (13)



where p(m) is the model prior. In absence of any prior infor-
mation on model, p(m) is uniform and optimal ¢(m) will simply
depend on the term F'(6, X, m) i.e. since higher free energies will
result in higher ¢(m), free energy can be used as model selection
criterion.

To summarize, Variational Bayesian learning offers a solution
to joint optimization of parameters and marginal likelihood bound
at the same time, giving the possibility of selecting a model and
learning parameters simultaneously.

5. DISCUSSION: VB VS. MAP/BIC

MAP and VB learning are achieved using iterative algorithms, the
Expectation-Maximization algorithm (see [8]) for the MAP (see
[14]) and an EM-like algorithm for the VB proposed [4]. As pre-
viously outlined MAP is a point estimate (it considers densities)
while VB is a mass estimate in other words MAP optimizes pa-
rameters while VB optimizes distributions over parameters. Be-
cause of this, VB embeds the so called Occamrazor property that
allow the training to learn the best model avoiding overfitting (see
[15],[16]). From a practical point of view both algorithms take
benefits of the fact prior distributions over parameters are chosen
in the conjugate family because posterior distributions have the
same form of prior i.e. for both approaches we have

post(8) = p(0]Y) x prior(§) (14)

where post and prior are respectively the prior and the poste-
rior distribution and have the same form. This will result in a
similar M-step in the learning algorithm but in a different F-step
([41). Another important difference consists in prediction on un-
seen data. MAP trained models can use parameters, but VB does
not have optimal parameters but optimal distributions that must
be integrated out. As outlined before, integration cannot be done
exactly but approximation (6) must be considered again.

6. EXPERIMENTS

6.1. Occam razor principle

As previously discussed, VB learning is a full bayesian learning
(contrarily to MAP) and benefits from the so called Occam razor
properties i.e. fitting data with models that are not too big or too
small but *just right’. In order verify this principle we run the
following experiment: let us consider a speaker background model
GMM with M = 256 components and let adapt it with different
amount of data. Let us consider the accumulator (a.k.a. gaussian
statistics) of each gaussian component with its mean (1/M) and
its variance. In this case, variance can be seen as a measure of how
hard clustering is done, high variance will mean hard clustering
(data are clustered in few big clusters) while small variance will
mean soft clustering (data are split over all clusters). Figure (1)
plots accumulator variance as a function of the amount of data used
for adaptation. It is easy to notice that for small amount of data,
MAP clusters data harder than VB (giving overfitting problems),
while when available amount of data increases, VB accumulator
variance is higher than MAP. This can be seen as a consequence
of the Occam razor principle that tries to find an "average’ solution
for all possible amounts of data avoiding too simple models when
few data are used or too complex models when large amount of
data are used.
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Fig. 1. Accumulator variance w.r.t. amount of data

6.2. Broadcast News speaker clustering

In order to compare the VB model selection and the MAP/BIC
model selection we run experiments on the four files of the evalu-
ation data set NIST-1996 HUB-4 . All files are processed in order
to obtain 12 LPCC coefficients.

Contrarily to what we have done in [13] where we have used
heuristic priors, priors to speaker model is this time informative
i.e. a background speaker model is provided and is adapted using
MAP or VB procedure. We find out that a 32 component GMM s
appropriate to this task. The model is trained with data contained
in training set labeled as regions FO, F1, F2.

Prior distributions are fixed belonging to a conjugate family.
Let us define following probability distributions over parameters
in model (1):

P(aj) = Dir(Aao;) P(Bi;) = Dir(Aso;)
P(pi;|Ti) = N(poj, §0;Ti5) P(T's;) = W(vos, ®oy)

where Dir(), N(), W() are respectively Dirichlet, Normal, Wishart
distributions and {A\a 0, Ag0;, poj, &o;, v0;, Poj; } are hyperparam-
eters that come from a background model.

The training procedure uses the following algorithm: the sys-
tem is initialized with a huge speaker number M ;,;+:: then opti-
mal parameters are learned using adaptation based on VB and on
MAP. Initial speaker number is then reduced progressively from
Minitiar t0 1 and parameter learning is done for each new initial
speaker number. Optimal speaker number is estimated scoring the
different models with VB free energy (that was used as objective
function in the training step) and with BIC criterion. The system
is initialized with M;,iria1 = 35 speakers modeled by a 32 com-
ponents GMM with duration constraint of 100 frames (1 second).
Adaptation using the MAP framework uses the same EM proce-
dure described in [14]. Details about estimation formula for VB
learning applied to model (1) can be found in [11]. Actually only
distributions on means and gaussian weights are considered for
adaptation, while covariance matrices coming from background
model are not modified.

Results are provided in terms of average cluster purity (acp)
and average speaker purity (asp) and k' = /acp - asp (for details
see [11]).

Table 1 shows results on the four files. Line (a) shows MAP re-
sults when the speaker number is a priori known, line (b) shows the
best score obtained by the MAP system changing speaker number
from M;nitiar = 35. Line (c) shows results for MAP system with
BIC selection. Lines (d),(e) and (f) are analogous to lines (a), (b)
and (c) but model learning and model selection is done using VB



File File 1 File 2 File 3 File 4
N. | acp | asp K N. | acp | asp K N. | acp | asp K N. | acp | asp K

(@) MAP (known) 8 | 052 072|062 14 | 068 | 078 | 073 | 16 | 0.71 | 0.77 | 0.74 | 18 | 0.65 | 0.69 | 0.67
(b) MAP (best) 20 | 081 084|083 |22 |084|080|082]| 29 |078]|0.74]|0.76 | 18 | 0.65 | 0.69 | 0.67
(c) MAP (selected) | 15 | 0.80 | 0.81 | 0.81 | 18 | 0.78 | 0.85 | 0.81 | 16 | 0.69 | 0.77 | 0.73 | 20 | 0.63 | 0.64 | 0.64
(d) VB (known) 8 | 068|088 077 | 14 | 069 | 080 | 074 | 16 | 0.74 | 0.83 | 0.78 | 21 | 0.67 | 0.73 | 0.70
(e) VB (best) 22 | 083 085|084 | 18 | 085|087 | 086 | 22 | 082 | 082|082 | 20 | 0.69 | 0.72 | 0.70
(f) VB (selected) 22 | 08308 |084| 19 | 087|080 |083]| 16 | 078 |0.79 | 079 | 19 | 0.67 | 0.73 | 0.70

Table 1. Results on NIST 1996 HUB-4 evaluation test for speaker clustering

learning. We actually present in line (c) the best results obtained
with an empirical threshold setto A = 0.4.

First of all we can notice that on the three considered situation
VB always outperforms the MAP/BIC framework. Probably the
most interesting result comes from best results obtained from the
two approaches (lines (b) and (e)) that shows that VB does not
simply make selection better than MAP but it is the training itself
that has a higher score. Results with informative priors are still
comparable to that with heuristic prior described in [13].

Inferred cluster number is near to real speaker number for file
3 and file 4 while it is definitely far from reality in file 1 and file
2. Actually final cluster number obtained with informative pri-
ors is always higher than the one obtained using heuristic priors
described in [13]. It can easily explained considering the fact
that models are adapted from a background model giving origin
to some small spurious cluster that are not merged together. For
instance in file 1 the real cluster number is 8 while the inferred
cluster number is 22, anyway values for acp and asp is high show-
ing a good clustering; this is because there are many small clusters
of speech and non-speech that are not merged together.

The use of informative priors (i.e. a background model) for
speaker clustering presents the advantage that robust models can
be obtained with small amount of data. Sometimes a speaker does
not provide enough speech to generate a model and in systems
without prior information it is simply clustered in a bigger clus-
ter: that explains the fact in our previous heuristic prior system
(see [13]), inferred cluster number is smaller. Anyway a drawback
comes from the quality of the background model: if for any rea-
son it is not a good prior model for the current speech, the same
speaker may be split in more clusters. This is a very important
issue in Broadcast news segmentation because speech is often cor-
rupted by many noise sources (e.g. music, background speech,
various noises) that are obviously unpredictable by the background
model; in those cases an absence of prior information may be more
efficient (for clustering) than a wrong prior information. For this
reason the system would definitively benefits of a prior step of
speech/non-speech discrimination.

7. CONCLUSION

In this paper we compare on a speech clustering task two frame-
work the first one based on MAP learning and BIC selection and
the second one based on Variational Bayesian learning that allows
model selection and parameter learning at the same time. Both
systems use prior information constituted by a background model
trained on the BN train set. Performance provided in terms of clus-
ter purity and speaker purity shows that VB approach to speaker
clustering can outperform MAP/BIC approach. This confirm what
we have investigated in ([13]), where we compared VB approach

with heuristic priors against ML/BIC coming to the same conclu-
sions.
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