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ABSTRACT

In this paper, an approach based on Variational Bayesian Feature
Saliency (VBFS) for robust audio type classification is proposed.
VBFS aims at finding the most discriminative features in Gaus-
sian Mixture Models based recognition systems. VBFS is applied
to capture inter-type and intra-type feature saliency for different
audio type (music, background noise, wide band speech, narrow
band speech, etc.) in order to increase model generality that’s al-
ways poor in non-speech models. We show that inferring saliency
for different audio type improves classifications. Experiments are
run on Broadcast news 1996-Hub4.

1. INTRODUCTION

An essential part of many speech applications consists in a pre-
liminary phase of audio type classifications in order to separate
different data type. A classical example is for instance broadcast
news transcription, in which there is a huge variability of audio
type: channels can be wide band or narrow band, and speech
can be corrupted by music or generic background noise. Bene-
fits of prior acoustic segmentation in applications like automatic
transcription and speaker diarization have been proved, see for in-
stance [1],[2],[3].

The idea of audio type classification is to split the audio file in
homogeneous parts that can be more easily processed because of
their similar acoustic properties (e.g. when adapting models) (see
[4]). Hopefully non-speech segments should be removed because
they may lead to transcription errors but it is very important not
to remove any speech segment that otherwise will be definitively
lost.

The most common approach to speech/non-speechdiscrimina-
tion and generally to audio type classification uses gaussian mix-
ture models trained on labeled data. This approach suffers from
many drawbacks as outlined in [4]. First of all in broadcast news
audio files, the amount of data available for training non-speech
models is definitely smaller than the amount of speech. Second,
the huge diversity of non-speech segments and the lack of data
produce very poor models for background noises and music. In
[4], the use of MLLR for adapting models is proposed in order to
increase performance.

In this paper we propose the use of a feature saliency (FS)
measure to increase model generality. Feature saliency is first in-
troduced in [5] and can be considered a measure of the discrim-
inant power of a given feature. It can be computed in a super-
vised or unsupervised fashion. FS formulates the feature selection
task as a model selection task so a model selection criterion must
be used. In the original framework a Minimum Message Length

(MML) criterion is used for learning models (see [5]); in [6], we
shown that Variational Bayesian (VB) learning can be applied in
order to obtain model robust to lack of data. The idea we explore in
this paper is that using feature saliency in different acoustic classes
can increase their separability. In fact, features that are commonly
used are generally designed for speech recognition and their be-
havior in modeling classes like music and noise can be very differ-
ent; anyway what we can model is the average discriminative (the
’saliency’) capacity of those features that we expect to be very dif-
ferent when input is speech or non-speech. We show that explicitly
taking into account this new quantity improves the discrimination.

The paper is organized as follows: in section 2 we review the
concept of feature saliency, in section 2.1 we review the varia-
tional bayesian framework, in section 3 we describe the audio type
classification problem, in section 4 we describe the application of
VBFS to the current classification framework and we describe ex-
periments on Broadcast news 1996-Hub4 in section 5.

2. FEATURE SALIENCY IN GAUSSIAN MIXTURE
MODELS

The model considered here was first proposed in [5]. A classical
gaussian mixture model with diagonal covariance matrix can be
written as:
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where � is the observation vector, � is the component number, �
is the feature number, ��� is weight of the  "!$#&% Gaussian compo-
nent and '(�*) are parameters of the  "!+#&% Gaussian component for
the ,-!.#&% feature. If each component represents a different cluster,
the interest of the ,	!/#&% feature can be seen in its capacity to dis-
criminate between clusters. Let us define 0	1���)32 4�)65 , the probability
of the ,7!/#&% feature regardless the cluster it belongs to. For fea-
tures irrelevant to discriminate between clusters, we expect to have0	1���)�2 4�)6598;:<1���)32 '(�*) 5 . To study the capacity of a given feature to
discriminate between clusters, a coefficient =>) (referred as “feature
saliency” ) is introduced for each feature. =>) can be considered as
a mixture between distribution :<1�5 and 0	1�5 . The GMM model is
modified as:
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=�) is now a model parameter that quantifies how a given feature
is relevant for a given cluster with respect to the total distribution
(see [5]). We would like a completely irrelevant feature to result
in =�)F8HG while a relevant feature to result in =�)F8JI ; =�) can be
estimated using hidden variable approach and optimal value can



be inferred using EM algorithm. Basically each component is rep-
resented by a GMM with two components in which a component
is cluster dependent and the other cluster independent. Anyway
if :<1���)�2 '(�*)65 is equal to 0	1���)�2 4�)65 , there are many possible solution
for =�) ; in order to obtain the desired properties, a model selection
criterion must be associated with the learning algorithm, in this
way if :<1�5 8H0	1�5 , the simpler model will be chosen i.e. =>) 8HG .
Furthermore, if � is unknown it must be estimated as well with a
model selection criterion.

Thus, feature selection problem becomes a model optimiza-
tion problem in which the best number of Gaussians must be de-
termined. If data labels are not available, EM algorithm can be
used to learn each cluster parameters and feature saliency.

In the original framework ([5]) the model selection criterion
used is the Minimum Message Length criterion. An EM algo-
rithm is derived to learn model parameters
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A problem with this approach is that the MML selection crite-
rion is not robust w.r.t. lack of data. To overcome this problem,
we proposed the use of Variational Bayesian learning for model
training and selection. In [6], we compared VB and MML feature
saliency for feature pruning in speech recognition, coming to con-
clusion that when poor training data are available VB outperforms
MML. In next section we briefly describe the Variational Bayesian
method.

2.1. Variational Bayesian Learning

Variational Bayesian learning is a very effective framework for do-
ing model selection and parameter learning at the same time. It
consists in approximating the bayesian integral (that’s intractable)
with tractable integral.

Let us consider a data set 
 8����
����� � � � ����� and a model � .
Model selection can be done optimizing the so called marginal
likelihood:
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where :<1&'�2 �.5 is parameter probability given the model and :<1�
�2 '����.5
is data likelihood given model and parameters. Expression (3)
can be computed in an exact way using numerical methods (e.g.
Monte-Carlo methods) but when parameter space is huge, the task
can be computationally prohibitive. Variational Bayesian learning
consists in approximating (3) with a lower bound that makes in-
ference possible using an Expectation-Maximization-like (EM) al-
gorithm. Let us introduce an approximated parameter density (the
variational posterior) ��1&'�2 
 5 and let us consider the log marginal-
likelihood ,	����� � '<:<1&'�2 �.5 :<1�
C2 '����.5 . Considering Jensen inequal-
ity it is possible to write:
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- 1&'�5 is called Free Energy and it is a strict lower bound on the
log marginal-likelihood. Variational Bayesian learning aims at op-
timizing

- 1&'�5 w.r.t. variational posterior distribution ��1 � 2 
 5 . It
is possible to rewrite expression (4) as:
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In our model we have to take care of many hidden variables as well
as parameters. A solution to the hidden variables case is proposed

in [7]. Let us define 1 the hidden variable set, and let us introduce
the joint variational posterior distribution ��1�12�3'�2 
 5 ; if the mean
field simplification is assumed i.e. ��1�12�3'�2 
 5 83��1�1/2 
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 5 ,
In this case the expression for the free energy becomes:
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It is possible to find an EM-like algorithm to find variational pos-
terior parameters distributions. As described in [7], the algorithm
iteratively updates variational posterior distributions over parame-
ters and over hidden variables following those rules:
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Because free energy approximates the bayesian integral, it is in-
tuitively a measure of the model quality. It can be easily proved
using Jensen inequality that if a variational posterior distribution
over models ��1��.5 is defined, then it is proportional to free energy.
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In order to learn parameters of model (2), parameters prior
distributions must be set. The choice of distributions belonging to
conjugate prior family comes very useful because posterior distri-
butions will have the same form as prior distributions. We set the
following prior distributions:
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where 4�dY��e�d���f�dY��g�d����ad��ihTd are hyperparameters, �aj�k , l and m
designate respectively a Dirichelt, Normal and Wishart distribu-
tion. Details about reestimation formulas and a close form for the
free energy (6) can be found in [6].

The main issue on using Variational Bayesian Learning for
this problem is the lack of data for some classes that are generally
modeled like background noise. The bayesian framework makes
the estimation more robust w.r.t. spare training data, providing
better models and pruning extra freedom degrees.

3. AUDIO TYPE CLASSIFICATION SYSTEM

In order to test VBFS, an audio type classification system designed
for Broadcast News (BN) audio type is used. Experiments are run
on the Hub-4 BN96. The aim here is to classify each frame in a
given category. In a classical BN application the first discrimina-
tion consists in speech/non-speech separation. Once non-speech
parts are discarded, the discrimination consists generally in wide-
band/narrow-band speech.

Generally the recognizer is based on gaussian mixture models.
Speech in broadcast news data is labeled as belonging to six

classes (tagged as F0-FX), noise is labeled as belonging to three
classes: music, background speech and other background. Build-
ing a GMM for each labeled classes becomes unpractical because
lack of data in some classes. It has been shown (see for instance
[2]) that discrimination improves if the following models are con-
sidered: a model for speech corrupted with music (the F3 labeled
speech), a model for narrow-band speech, a model for the other
speech labels that are actually wide-band speech under different



0 5 10 15 20 25 30 35 40
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Speech          
Music           
Background noise

Fig. 1. Feature saliency for Speech and non-speech; feature order is 12 MFCC+energy+ � + ���

Background Music Speech+music Speech wide Speech narrow
Components 134 143 37 301 124

Pair KL 1E+07 1.6E+07 1E+08 5.9E+05 5.3E+06

Table 1. Final components number and pair-wise KL divergence for the considered audio type models

conditions, and finally a model for music and a model for other
non-speechdata (backgroundspeech and other background noises).
Here arises the need for robust models because the huge variability
in non-speech data makes difficult the model generalization.

Decoding is performed using a Viterbi based decoder with all
models in parallel. To avoid spare solution, segments resulting
smaller than 20 frames after the decoding are aggregated in order
to obtain more compact segments.

4. VBFS AUDIO TYPE CLASSIFICATION

The previously described feature saliency framework can be ap-
plied to audio type classification in two possible ways in order to
capture the intra-type (i.e. the saliency for a given audio type) and
the inter-type feature saliency (i.e. the saliency for all audio types).
Let us consider separately the two cases.

When the modeling aims at determining the intra-type saliency,
model (2) is simply provided with an audio type data and an un-
spervised EM-like algorithm described in [8] is used to learn pa-
rameters and saliency. In this way a feature saliency specific to a
given audio type is determined i.e. the capacity of given features
to separate the data in different clusters. We expect a high feature
saliency for speech data (because features were specifically de-
signed to process speech) and low feature saliency for non-speech
(because features are not designed to model different noise type
or music type). The recognizer will replace the classical GMM
with a model like (2) for each audio type. Intuitively the VBFS
should be more general in the sense that, even when the noise
(or the music) in the test will be very different from the one in
the training set, we expect to retain the information about the dis-
criminant power of each feature when the non-speech occurs. For-
mally speaking, when the algorithm aims at modeling intra-type
feature saliency, it looks for
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are parameters of
model � and 
 � are data labeled as belonging to model � .

When the modeling aims at determining inter-type saliency, a
single model (2) for the entire audio file is learned i.e. we find a

global saliency for the feature set. Anyway labels with different
audio type are provided resulting in a semi-supervised learning. In
this case the saliency simply becomes a sort of feature weighting in
order to determine the most discriminant features for separation in
between models. From this side this approach should be more effi-
cient in the sense that it directly aims at the discriminative task, but
on the other may suffer because of poor generalization properties.
Formally speaking, when the algorithm aims at modeling intra-
type feature saliency, it looks for
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now a single set of feature saliency for all the training set is found.

4.1. Practicalities

Feature saliency parameters can be found using an EM like algo-
rithm; details about update formula can be found in [8]. Anyway
an implementation issue related with this model is that hidden vari-
able number increases when FS is considered. A simple GMM
with N components must handle l hidden variables, a GMM with
feature saliency must handle approximatively l�
 l	��� hidden
variables, where � is the feature number. This results in a very
slow convergence of the batch EM algorithm. In order to increase
the convergencespeed of the algorithm, learning is implemented in
an incremental fashion. The choice for the incremental algorithm
follows from considerations in [9].

5. EXPERIMENTS

In this section we describe experiments we run on Broadcast news
1996-Hub4. As proposed in [2], we used the development set for
training session and evaluation set for decoding session. As out-
lined in [4], training data for music and background noise are def-
initely poor and offers poor generalization. For this purpose we
compare the classical GMM based classifier with the previously
proposed inter-type and intra-type feature saliency based GMM.

All GMM were initialized with 512 components. Feature set
consists in 12 MFCC+energy and their delta and delta-delta coef-



GMM inter-type FS intra-type FS
Speech Non-Speech Speech Non-Speech Speech Non-Speech

Background 67.6% 76.7% 77.2%
Music 71.3% 76.9% 78.7%

Speech + Music 83.8% 87.2% 89.2%
Speech Wide 97.7% 98.6% 98.7%

Speech Narrow 95.3% 95.5% 96.5%

Table 2. Speech/Non-Speech discrimination using classical GMM, intra-type FS and inter-type FS

ficients.
Figure (1) shows intra-type feature saliency for speech, mu-

sic and background noise. It is interesting to notice that saliency
of speech is always bigger than saliency of non-speech as we ex-
pected because MFCC features are actually designed to model
speech. For MFCC and derivatives of first orders saliency of music
is higher than saliency of noise; when delta-delta coefficients are
considered the difference is less relevant.

A first effect of the Variational Bayesian learning is that extra
degrees of freedom are pruned out i.e. the final number of gaussian
components is generally smaller than the initial one and depends
on data quantity and on current data distribution. This is a direct
consequence of the fact VB makes model selection and parameter
learning at the same time. First line of table (1) shows the final
gaussian components for the five models we consider: obviously
there is a strong relation between number of components and data
available to train the model.

Another interesting point is quantifying how different VBFS
distributions are from classical GMM distributions. A natural mea-
sure would be the KL divergence. KL divergence cannot be com-
puted in close form when distributions are mixtures. For this rea-
son, a pairwise KL divergence that constiutes an upper bound to
real KL divergence is used (see [10]): if �/8������ � � � and f.8
� � h � : � the pairwise KL divergence (PKL) is defined as:
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The PKL is symmetrized resulting in the Symmetric PKL diver-
gence:
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Second line of table (1) shows the SPKL divergence between the
traditional GMM distribution and the feature saliency distribution
for the same audio type. Divergences for wide and narrow speech
are smaller compared to other audio type i.e. the saliency distribu-
tion is near to the traditional distribution when saliency is high.

Following the idea that the most important parameter is the
loss of speech (see [4]), because once speech is discarded, it can-
not be recovered, table (3) reports values of loss and missed non-
speech for classical GMM system and for the two inter-type and
intra-type feature saliency systems. The most performing tech-
nique seems to be the intra-type feature saliency.

Table (2) reports the classification error rate for each of the five
models (Music, Background, Speech+music, Speech wide-band
and Speech narrow-band ) using again the three different tech-
niques. Wide band speech and narrow band speech do not have any
important improvements using the features saliency framework;
this is easy to explain looking at figure (1). In fact for speech, fea-
ture saliency is very high, that means that there is no significant
difference with the classical GMM model without any saliency (in
other words if =�)�� I there is no more 0	1�5 and the model reduces

to a traditional GMM). On the other hand in the case of music
or background noise the saliency is definitely lower that means a
bigger difference from the classical GMM model. Looking at hte
error rate, the gain is considerable for background noise, music and
speech+music that actually corresponds to those models where the
saliency is less significant and models differs from the traditional
GMM models.

GMM inter-type FS intra-type FS
Speech lost 2.6 % 2.2% 1.9%

Missed non speech 1.9% 1.7% 1.6%

Table 3. Speech lost and missed non speech using the three differ-
ent techniques

6. CONCLUSION

In this paper we investigated the use of Variational Bayesian fea-
ture saliency in an audio type classification framework in two dif-
ferent fashions (inter-type and intra-type). Results show that the
two methods perform better than classical GMM on the Broad-
cast news 1996-Hub4 database. Gain is particularly interesting on
those audio types that are difficult to model because of high vari-
ability and that are processed using standard speech recognition
features.
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