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Abstract

Building upon Slepian-Wolf coding, sparse-graph codes,
belief propagation, and closed-loop iterative doping, we
propose new schemes for interactive data exchange between
two agents who want to communicate losslessly their re-
spective information via several rounds of communication.

1. INTRODUCTION

We consider a communication setting where remote
usersA andB have local data with identical length and al-
phabet (A hasx ∈ Qn, andB hasy ∈ Qn). After running
a suitable interactive data exchange protocol including mul-
tiple rounds of bidirectional information exchange, the goal
is for usersA andB to obtainy andx, respectively. To min-
imize the number of exchanged bits, the encoding/decoding
protocols we propose in this paper exploit statistical depen-
dencies between the sources that generatex andy even if
those dependencies are unknown.

One motivation for this problem can be found incon-
tent distribution networks. Consider a network consisting
of a maingatewayand several remotefile serverswhose
content is periodically updated via a high-throughput for-
ward (broadcast) noisy link (e.g., a satellite link). For ex-
ample, the content might consist of large MPEG-encoded
video files that local users access after some delay.

Since the forward link is noisy, an option consists of im-
posing a stringent constraint on the performance of channel
coding, such that post-decoding errors occur with negligible
block error probability. Nevertheless, due to the size of the
files involved and since the errors might have catastrophic
effects on source-encoded data, the requirements of chan-
nel coding might be too constraining and eventually require
too large complexity or limit the effective rate of the for-
ward link. On the other hand, practical channel codes with
very large blocklength, achieving bit-error probability of the
order of10−6–10−7 at rates very close to the channel ca-
pacity limit are practically implementable with complexity
that grows linearly with the blocklength. Suppose that we

Partially supported by the European Network of Excellence
Newcom†‡, and by the US National Science Foundation Grant CCR-
0312879§.

make use of such “not fully reliable” channel coding in the
forward link, and that the file servers are connected to the
gateway by a low-rate error-free link. (For example, they
are connected via a modem to the internet.) Then, the error-
free link can be exploited to correct the residual errors of
the forward link by some data exchange protocol that each
file server can run in conjunction with the gateway.

Another motivation for the data exchange protocol is
provided by the need for maintaining consistency of re-
motely located files with minimal amount of data exchanged
betweenA andB. For example, this is the goal of the pop-
ular algorithm known as RSYNC [13]. RSYNC is designed
to handle “editing” operations including insertion, deletion
and replication of segments of the files, as well as errors
(i.e., symbol changes). In a first pass of the RSYNC algo-
rithm,B sends toA parity-check sums generated fromy and
A determines segments of the filex that match segments of
the filey. Consequently,A identifies also segments ofx that
do not match any segment iny. In a second pass,A sends
to B the pointers corresponding to the matching segments
and the symbols of the unmatched segments. Notice that, at
the end of the first pass,A andB have agreed on a subset of
segments intervals of the filesx andy. Sending these seg-
ments in their entirety without taking into account their cor-
relation with the data already available atB is not efficient.
Hence, our data exchange algorithms can be used to make
the transmission of nonidentical but synchronized segments
more efficient. We limit ourselves to handle differences be-
tween the files that are produced by the action of a standard
noisy channel (not including deletions and insertions). This
is in contrast to algorithms such as [13, 11, 8, 10] which are
designed to handle editing operations such as deletions and
insertions that destroy the synchronism between the files.

The celebratedSlepian-Wolf theorem[12] provides the
basis for efficient schemes to perform data exchange of de-
pendent sources of information. A conceptually straightfor-
ward (nonuniversal) principle for data exchange at the min-
imum possible rate is given as follows:A encodesx at rate
H(X|Y )1 and sends the compressed data toB which de-
codesx by exploiting the received compressed data fromA

1H(X|Y ) stands for the conditional entropy rate of the process
{X1, X2, . . .} given{Y1, Y2, . . .}
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and the knowledge ofy. Knowingx and the joint distribu-
tion of the sources,B encodesy at rateH(Y |X) by using
arithmetic coding and sends the compressed data back to
A, which can recovery from the knowledge ofx and the
joint distribution of the sources. The complexity bottleneck
of this protocol lies in the Slepian-Wolf decoder. Slepian-
Wolf compression can be implemented by linear encoders:
This was shown for memoryless sources that can be written
as the sum (in a finite field) of the side information and an
independent process in [16]2; general memoryless sources
were encompassed in [4]; stationary ergodic sources were
allowed in [14], and the optimality of linear compressors for
general (nonstationary/ergodic) sources follows as a simple
corollary of [2, Thm. 2.1].3 Slepian-Wolf linear encod-
ing reduces to computing the syndromez = Hx of the
source wordx with respect to a given parity-check ma-
trix H. Slepian-Wolf maximum-a-posteriori decoding cor-
responds to computing

x̂ = arg max
x∈Qn:Hx=z

PX|Y (x|y) (1)

Recent works such as [9, 6, 7] have considered pragmatic
suboptimum decoders for linear Slepian-Wolf codes.

Clearly, the above protocol requires that the block-error
probability of Slepian-Wolf decoding be arbitrarily small.
Getting back to the example of the content distribution net-
work, in this way we have just moved the requirement for
small decoding error probability from the forward link to
the data exchange protocol, which is not an easier task in
general.

In this paper we propose practical low-complexity em-
bodiments of Slepian-Wolf compression and decompression
which capitalize on the interactive and bidirectional nature
of the communication betweenA andB. Our first protocol
involves multiple rounds, has variable length, achieves ar-
bitrarily low probability that the files reproduced atA and
B are not identical to the actual files, and achieves rates
slightly aboveH(X − Y ) in both directions (fromA to B
and viceversa). In the case where the files have no redun-
dancy this algorithm is almost optimal. We also offer two
other alternatives which can achieve better efficiency if the
sources have high redundancy.

2. DATA COMPRESSION WITH LINEAR CODES

In [2] we have presented a variable-length scheme for
universal data compression of sources with memory. Com-
pression is achieved by three main components

• Block Sorting

2This fact played a key role in the inception of the Slepian-Wolf result
(J. K. Wolf, private communication)

3This is in contrast to channel coding, where linear codes are optimal
in the domain of additive-noise discrete memoryless channels.

• Syndrome calculation

• Closed Loop Iterative Doping

For the purposes of the present paper, we will focus on syn-
drome calculation and closed loop iterative doping. To com-
pute the syndrome, the string to be compressed is multiplied
by a rectangular matrix which is the parity-check matrix of
an error control code designed for an additive-noise discrete
channel whose noise has the same statistics as the data to be
compressed.

Since the complexity of maximum-a-posteriori decod-
ing is in general not feasible, it is natural, as proposed in
[2] to use low-density parity-check matrices in conjunction
with belief propagation decoding. However, the state of the
art in code design does not yield low block error rate when
the compression rate is only slightly above capacity.

To overcome this shortcoming, [3, 2] came up with the
closed-loop iterative doping(CLID) algorithm which works
in conjunction with the belief propagation decoder. After
the syndrome has been transmitted, the encoder runs an ex-
act copy of the belief propagation algorithm that is run at
the decoder and therefore, at each iteration, is able to moni-
tor the reliability of all the source symbols at each iteration
in the belief propagation algorithm. By supplying to the de-
compressor the lowest-reliability symbol (uncompressed) at
certain preagreed iterations, the CLID is able to supply the
decoder with information which is maximally useful for the
belief propagation decoder to converge. This is done effi-
ciently since, conditioned on the data received so far, the
supplied symbol has essentially maximum entropy.

3. BIDIRECTIONAL S-W SCHEMES

3.1. Algorithm A

We present the nonuniversal version of our data ex-
change algorithm which assumes knowledge of the first-
order entropy of the difference between both sources of in-
formation, namely

H = H(Xi − Yi).

where the entropy is measured inlog|Q| units. Note that in
a universal setting in which the statistics of the difference
process are a priori unknown, both encoders can learn the
first-order statistics ofXi − Yi and thus agree on a value
of H at the expense of a negligible rate increase in bidirec-
tional communication.

Let ε > 0 be a design parameter. Suppose that a parity-
check matrixH whose ratio of rows to columns is equal
to H + ε, is designed for an additive-noise discrete chan-
nel whose noise is memoryless with distribution identical to
that ofXi − Yi.
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The first step in the information exchange is forA to
communicate the “syndrome” vectorHx to B and forB to
communicateHy to A.

Each location then subtracts the received vector from the
syndrome vector it had computed to obtain identical copies
of the vectorH(x− y).

In the second step,H(x − y) is used at both locations
to run identical copies of belief propagation on the Tanner
graph ofH where the check nodes have values given by
H(x−y) and the variable nodes start with the a priori values
given by the a priori distribution ofXi − Yi.

At each iterationi (or at a preselected subsequence of
iterations) both identical copies of the belief propagation al-
gorithm determine the location,`i, of the lowest-reliability
symbol and they exchange the value ofx`i andy`i . Both lo-
cations then computex`i −y`i and henceforth fix the relia-
bility of the `i symbol to∞. Thus, as in the scheme outlined
in Section 2, even though raw symbols are exchanged, they
have almost no redundancy conditioned on the information
available up to that point.

The iterations terminate when the most likely vector of
differenceŝe computed by the belief propagation algorithm
satisfiesH(x− y) = Hê.

It can be seen that

max{H(X|Y ),H(Y |X)} ≤ H(Xi − Yi) (2)

with equality if both sources have no redundancy, and the
differencesXi − Yi are iid. Thus, in that case, as the
blocklength increases the scheme achieves the Slepian-Wolf
limit. Otherwise it suffers a penalty in efficiency. Note
that for the relevant case of the satellite content distribu-
tion network the scheme is indeed almost optimal, as in that
case the MPEG files have almost no redundancy and after
the forward link decoding, errors are almost independent
if long-blocklength codes are used, as for example in the
DVB-S2 next-generation satellite video broadcasting, based
on an LDPC code of length 64800.

The intimate relation between the Slepian-Wolf concept
governing efficient interactive data exchange and crypto-
graphic key generation in the presence on an eavesdropper
that monitors the public channel, is by now very well rec-
ognized [1]. In fact the specific interactive data exchange
model we examine here whereA observesx andB observes
a correlated versiony, and both exchange data over a public
channel, is a classical model to generate a secret key. In this
case the eavesdropper monitoring the communication over
the public channel must remain completely ignorant of the
content of the secret key. This describes exactly the Model
S (source-type model) in the terminology of [1], where it is
established that the secret key capacity is equal to the mu-
tual information between the sources generatingx andy.
Algorithm A may be used to approach this ultimate limit,
as is demonstrated, for example, by the case where both

sources generate correlated fair coin flipsy = x + e, ande
is Bernoulli with parameterp. An eavesdropper monitoring
the communications over the public channel has access to
Hx, Hy and thed doped bits generated by CLID in each
direction. Assuming thatx is used to generate the secret
key, the secret key rate generated by the scheme (private rate
of information not available to the eavesdropper) is equal to
(n− (H + ε)n− d)/n which is approximately equal to the
ultimate limit 1 − h(p). Note that the eavesdropper gets
(H + δ)n bits aboutx, but since the entropy ofx is n, it is
able to generate the secret key with very small probability.

Algorithm A can be modified to broadcast scenarios
where a server containing the ”true” information updates a
plurality of sites each containing corrupted information. If
the server sends the same information to all sites, it is conve-
nient to replace the LDPC code by a fountain code, so that
sites that have less corrupted versions can terminate their
protocol faster. Then, private rounds of CLID with each site
can be conducted as explained above.

3.2. Algorithm B

The symmetric nature of Algorithm A may be dictated
in some applications in which communication in both di-
rections takes place simultaneously; however, in those ap-
plications in which the rounds of communications happen
sequentially, it is possible to increase efficiency by means of
the following three stage process. (Throughout this descrip-
tion, the role ofA andB, and in particular, which agent ini-
tiates the communication, is at the disposal of the designer.)
In the first stage, the data transfer occurs fromB to A using
a linear code with rate high enough to enableA to recover
(even in the absence of CLID),̂y, a noisy version ofy. In
many cases, a good model for the difference betweenŷ and
y is

ŷ = y + ê (3)

whereê is independent ofy. In the second stage, Algorithm
A is applied withŷ taking the role ofx. Note that if indeed
the bit error rate in the first decoding step (atA) was low,
H(ê) is small, and the communication requirements fromA
to B in the second stage can be made to be quite low in order
for A to reach a perfect copy ofy. Further communication
savings can be realized by noticing that since there has al-
ready been communication fromB to A in the first stage,
the parity check equations chosen in the embodiment of Al-
gorithm A can be simply a subset of those chosen at the first
stage, thereby obviating any further traffic fromB to A ex-
cept for doped bits generated by CLID. In the third stage, all
that remains is forA to communicatex to B but since both
encoder and decoder knowy exactly as well as the joint
distribution this can be done efficiently using slightly more
than rateH(X|Y ) (e.g., by using standard arithmetic cod-
ing). Note that a further source of asymmetricity in some
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content distribution applications is the fact that onlyA must
be informed ofB but not viceversa, in which case the third
stage can be obviated.

An interesting design issue arises in this protocol, as
frequentlyP [ê = 0] is close to 1. In this case, in sit-
uations where several independent blocks of data are en-
coded in separate blocks fromB to A, it is advantageous
to encode the corresponding information fromA to B not
on a codeword-per-codeword basis but taking into account
the concatenation of several consecutive blocks (with inter-
leaved bits across the blocks) In this way, we can approach
the ergodic behavior of the channel (3).

3.3. Algorithm C

When the files are very redundant due to memory, the
sides in (2) can be quite different. In that case, it is of in-
terest to consider a more efficient algorithm. We can fol-
low the same first step as before encoding with LDPCs of
rate slightly larger thanH(Xi − Yi|Y n

1 ) from A to B and
H(Xi−Yi|Xn

1 ) from B to A. Then decode with belief prop-
agation run to obtain the difference(x − y). The decoders
require knowledge of the conditional distributionsPXi|Y n

1

andPYi|Xn
1

. Unless these are identical, it is no longer feasi-
ble to run identical copies of belief propagation at both loca-
tions, and thus CLID is infeasible. (However, low reliability
symbols can still be interchanged at the expense of having
to identify their locations.) Furthermore, since in most cases
the conditional distributions are unavailable or infeasible to
compute, an attractive implementation uses the DUDE+ al-
gorithm [15] in order to estimatePXi|y atB andPYi|x atA,
by running DUDE+ with the data present at each site as the
noisy output of a discrete memoryless channel whose transi-
tion probability matrix is given by the conditional marginals
PXi|Yi

atA andPYi|Xi
atB.

3.4. Algorithm D

With the algorithm in the preceding paragraph there is
still a penalty relative to the Slepian-Wolf-Cover rate equal
to the limit of

1
n

n∑

i=1

H(Xi − Yi|Y n
1 )− 1

n
H(Xn

1 |Y n
1 )

=
1
n

n∑

i=1

I(Xi;Xi−1
1 |Y n

1 ) (4)

from A to B, and analogously, interchanging the roles ofX
andY , from B to A. Based on the equivalence of Slepian-
Wolf decoding and joint source-channel decoding we can
overcome the penalty in (4) ifXi is Markov and the chan-
nel is memoryless (or more generally when(Xi, Yi) is
Markov), both with known statistics.
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Figure 1: Empirical cdf of Algorithm A rate for different
values of the CLID blocklengthd.

In Algorithm D an LDPC with matrixH of rate slightly
larger thanH(X|Y ) is used to communicate the syndrome
vectorHx from A to B. Then, a graphical model in which
the variable nodes correspond toXn

1 is set up incorporat-
ing both the Tanner graph ofH and the Markov structure of
Xn

1 . To obtainx with high probability a belief propagation
algorithm is run on the combined graph incorporating effi-
cient forward-backward dynamic programming recursions
and message passing on the Tanner graph. A parallel, but
noninteracting, scheme is run in the reverse direction.

3.5. Algorithm E

Another scheme to deal with sources with memory can
be obtained using Huffman codes. In this scheme, it is ben-
eficial to group letters into equal-length blocks which are re-
garded as ‘supersymbols.’ Henceforth, those supersymbols
take the role of the symbols of the vectorsx andy. Suppose
thatPXi|Xi−1

1 ,Y i−1
1

andPYi|Xi
1,Y i−1

1
are available at bothA

andB. Assume also that at stagei A hasy1....y(i−1) andB
hasx1...x(i−1). A encodesxi using a Huffman code with
distributionPXi|Xi−1

1 ,Y i−1
1

and sends it toB. Upon receipt
of this information fromA, B uses the Huffman decoder for
the code thatA just used to decodexi. With that value and
the existingx1...x(i−1), B usesPYi|Xi

1,Y i−1
1

to construct a
Huffman code to encodeyi. It then sends this encoded value
to A, which decodesyi. Now A hasy1....yi, B hasx1....xi

and the process repeats. The required communication is

A → B :
n∑

i=1

H(Xi|Xi−1
1 , Y i−1

1 ) + ai (5)

B → A :
n∑

i=1

H(Yi|Xi
1, Y

i−1
1 ) + bi (6)
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Figure 2: Histogram of the number of bidirectional data ex-
changes for Algorithm A,d = 1, in the setting of Fig.1.

where0 ≤ ai ≤ 1 bits, 0 ≤ bi ≤ 1 bits. Thus fromB to
A there is a loss of efficiency ofI(Xn

i+1; Yi|Y i−1
1 , Xi

1) + bi

bits at each stage, while fromA to B the loss of efficiency is:
I(Y n

i ; Xi|Xi−1
1 , Y i−1

1 )+ ai bits at each stage. Note that an
interesting problem is to determine the length of the super-
symbol that will be be most efficient. In order to make the
scheme universal, we can run a context modeler like the one
required in arithmetic coding to estimatePXi,Yi|Xi−1

1 ,Y i−1
1

from the decoded data.

4. EXPERIMENTS

We consider first Algorithm A. Letx consist of fair coin
flips andy = x + e, with e Bernoulli-pe = 0.005, yielding
H(Xi − Yi) = 0.0454 bit/symbol. An irregular LDPC en-
semble with blocklengthn = 60000 and degree sequences
λ(x) = 0.3479x3 + 0.3178x10 + 0.0386x31 + 0.2957x32,
ρ(x) = 0.5x108 + 0.5x109 is generated without any effort
to select individual good instances. The compression cod-
ing rate is 0.0583, corresponding to a 28% relative gap from
the the Slepian-Wolf limit0.0454. Naturally, a careful code
optimization can narrow this gap. However, since this is
equivalent to the problem of designing codes for the BSC,
we choose to focus our simulation effort in illustrating the
behavior of the CLID. At each bidirectional data exchange
round, a block ofd CLID bits are sent. We considered the
casesd = 1, 10, 50 and 100. Fig.1 shows the protocol ag-
gregate rate cdf over 4000 trials, for the different values of
d. The BP decoder was run for 100 initial iterations, and
then a CLID data block is exchanged every 20 iterations,
until convergence is reached. We assumed that the termi-
nals agree on convergence if all parity-check equations are
satisfied. The event that the parity-check equations are sat-
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Figure 3: Histogram of the number of bidirectional data ex-
changes for Algorithm A,d = 100, in the setting of Fig.1.

isfied but the reconstructed sequence is wrong never oc-
curred in any of our experiments.4 Figs. 2 – 3 show the
empirical distribution of the number of bidirectional data
exchange rounds for the different values ofd used. We
notice that there is a very interesting tradeoff between the
communication rate in terms of bit/source symbol and the
number of protocol rounds. Largerd yields a more wide
rate distribution (and a larger average rate), but fewer bidi-
rectional rounds. In practical networking applications, the
option of larged might be preferred. For example, we no-
tice here that withd = 100 the protocol normally requires
between 1 and 3 rounds. Moreover, in certain applications
exchanging one bit or a packet ofd bits takes essentially the
same effort because of the various protocol layers overhead.
Hence, reasonably large values ofd are to be preferred. In
our second example, we experiment with Algorithm B. In
this case,y is Bernoulli-py = 0.05. Terminal A has a
noisy versionx = y + e of the desired source sequence,
wheree is Bernoulli-pe = 0.1 independent ofy. We have
px = pepy + (1− pe)(1− py) and

H(Y |X) = (1− px)h
(

pepy

1− px

)
+ pxh

(
(1− pe)py

px

)

yields H(Y |X) = 0.1712. Notice that with straightfor-
ward application of Algorithm A only the much higher
rate H(X − Y ) = h(pe) = 0.469 can be achieved.
(Note that this is the optimal rate to conveyx to B.)
We have designed an irregular LDPC ensemble with
compression rateR = 0.2, blocklength n = 60000
and degree sequencesλ(x) = 0.0967x2 + 0.1778x3 +

4If needed, a CRC might be inserted as in standard Internet protocols
in order to improve the probability of the error event.
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Figure 4: Histogram of the bit-error rate per block for step
1 of Algorithm B.

0.1709x7+0.0132x8+0.0674x9+0.0373x21+0.0683x22+
0.1060x28 + 0.0674x29 + 0.1102x95 + 0.0848x96, ρ(x) =
0.5x33 + 0.5x34. Using this code in step 1 of Algorithm B
(i.e.,B sendsHy to A andA decodeŝy using the full knowl-
edge ofx), yields an average residual bit-error probability
p̂ = 5 · 10−4.

Fig. 4 shows the histogram of the block-by-block bit-
error probability (number of erroneous bits divided by the
blocklength) after step 1 decoding. We notice that the bit-
error probability is very small (around 410−6) with high
probability, but for a small number (around 1%) ofoutliers
yielding bit-error probability lightly less than0.05. In any
case, even assuming block-by-block decoding, the scheme
of the previous example can be used for step 2 of Algorithm
B (working withpe = 0.05). The total rate achieved fromB
to A (aggregate of steps 1 and 2) is then0.2583 bits/symbol.
If interleaving among blocks is used, the rate due to step 2
can be reduced further. The rate in the reverse direction is
only about 0.0583 bit/symbol.
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compression with low density parity check codes. In
P. Gupta and G. Kramer, editors,DIMACS Series in
Discrete Mathematics and Theoretical Computer Sci-
ence. American Mathematical Society, 2004.

[3] G. Caire, S. Shamai, and S. Verdú. A new data com-
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