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Abstract

We present practical codes designed for the Gaussian
dirty paper (Costa) channel. We show that the dirty
paper decoding problem can be transformed into an
equivalent multiple-access problem, for which we apply
superposition coding. Our approach is a generalization
of the nested lattices approach of Zamir, Shamai and
Erez. We present simulation results which confirm the
effectiveness of our methods.

I. Introduction

The Gaussian dirty paper channel is given by Y =
X +S+Z. S is called the interference and constitutes
the channel state, which is known only to the encoder.
X is the channel input, subject to a power constraint
PX . Z is distributed as a zero-mean Gaussian variable
with variance PZ , and we make no assumptions on the
distribution of S. Costa [6] obtained the remarkable re-
sult that the interference, known only to the encoder,
incurs no loss of capacity in comparison with the stan-
dard interference-free channel1.

The achievability of the capacity of dirty paper
channels is proven by means of a random construction
of codes and a random partitioning of their codewords
into “bins”. This method typically produces unstruc-
tured codes, which are infeasible for practical imple-
mentation. Zamir, Shamai and Erez [16] suggested
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1Costa’s result was obtained for the case of Gaussian dis-
tributed interference. This was later extended in [9, 5] to arbi-
trarily distributed interference.

a framework for introducing structure into the above
“random binning” method. Their technique involves
nested codes (and nested lattices). That is, they use
a fine code C and a coarse code C0 such that C0 ⊂ C.
Their construction requires that the fine code C be de-
signed as a good channel-code, while the coarse code
C0 be designed as a good source-code.

LDPC codes are likely candidates for codes C and
C0. However, although LDPC codes are well suited for
channel coding, the problem of finding a good source-
coding algorithm for them remains open. Unless such
an algorithm is found, the codes in their current form
are unsuitable for selection as C0. We would like to
select C as an LDPC code, but the nested structure
of C and C0 means that the codes are entangled in a
way that restricts the independent selection of C. One
approach for challenging this problem, called syndrome
dilution, was considered by Philosof et al. [14].

In [3] we presented an alternative to the nested lat-
tices method of [16] using superposition of codes, that
enables independent selection of a quantization code
C0 and an auxiliary code C1. This construction was
designed for the binary dirty-paper channel. In this
work we extend this construction to the Gaussian dirty-
paper channel.

II. Insight

A precise definition of superposition coding is pro-
vided in section III. We begin, however, with an infor-
mal, intuitive derivation that provides insight into how
and why the approach works.

In this section we assume the interference S to
be spherically uniform (asymptotically) with arbitrary
large power PS (this can be approximated by adding a
large Gaussian distributed dither signal). The reason
for this will be clarified shortly.

Our encoder begins by encoding data into code-
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words of an auxiliary code C1. Our objective is to
achieve the no-interference channel capacity, and hence
we set the rate of the code at approximately R1 =
1
2

log (1 + PX/PZ). We select C1 to be a good Gaus-
sian channel code with components individually se-
lected according to a Gaussian distribution with vari-
ance Q = αPX . α is set at PX/(PX + PZ).

We select C0 as a good channel and quantization.
We require the code to be able to quantize the signal
−c1 + αs with a mean-square distortion of PX . We
achieve this by random i.i.d selection of the codewords’
components according to a Gaussian distribution with
power E(c20) = αPX +α2PS−PX (for large enough PS
we obtain E(c20) ≥ 0). The code rate R0 is accordingly

set at R0 =
1
2

log
(
(αPX + α2PS)/PX

)
.

Encoder: As mentioned above, the encoder first se-
lects a codeword c1 according to the message to be
transmitted. It then transmits x =

[
−c1 + αs

]
C0

, de-

fined as the difference between c0, the nearest codeword
of C0, and −c1 + αs. Thus, by our above selection of
C0, we are guaranteed with high probability to satisfy
the transmitter’s power constraint. Equivalently,

x = c0 − (−c1 + αs) = c0 + c1 − αs ,

The received signal is

y = c0 + c1 + (1− α)s + z

Decoder: The decoder constructs

ŷ = αy

= c0 + c1 − (1− α)x + αz

= c0 + c1 + ẑ (1)

where ẑ ∆=−(1−α)x+αz is the effective noise. The de-
coder seeks the pair (ĉ0, ĉ1) such that ĉ0 + ĉ1 is closest
to ŷ, and ĉ1 is announced as the decoded codeword.

The equivalence to the MAC decoder model is evi-
dent from (1). We now analyze the probability of de-
coding error assuming successive decoding.

The successive decoding process is composed of two
steps. The decoder first decodes ĉ0, treating c1+ẑ as an
unknown random noise vector z0. Assuming PS � 1, it
can be claimed that z0, which contains elements of cor-
related self-noise, acts as an independent factor2. Using
this approximation, the power PZ0 of z0 is shown [1] to
be exactly PX . The code C0, whose parameters were

2In Section III we will use a dithered signal to ensure decor-
relation.

designed for quantization with a mean-square distor-
tion of PX , is shown [1] to be also capable of decoding
with a noise variance of PX .

The decoder next removes the interference caused
by c0 in order to compute ĉ1. It now decodes c1 from
the signal ŷ − c0, which is equal to c1 + ẑ.

The power of C1 is Q = αPX = P 2
X/(PX + PZ),

while the power of the effective noise PẐ =
PXPZ/(PX + PZ). We therefore obtain [1] that the

achievable rate is exactly
1
2

log (1+PX/PZ) as desired.
Hence C1 is decodable with high probability, yielding
the no-interference capacity rate.

Important insight provided by this formulation in-
volves the practical selection of codes C0 and C1. C0
operates always in extremely good SNR conditions (as
PS is taken to be large). This is why in practice it is
important to choose C0 as an efficient trellis based cod-
ing/quantization code a la Forney’s coset trellis codes
[11] and relevant references therein. The code C1 fre-
quently operates at low SNR and hence could be se-
lected as a binary LDPC code.

III. Formal Definition

We again consider two codes, a quantization code
C0 and an auxiliary code C1. The superposition code
is defined as C = C0 + C1 mod A, where the operation
mod A is applied componentwise as follows: Given a
scalar x, x modA ∆= x−QA(x) such that QA(x) is the
nearest multiple of A to x. The dynamic range of x is
thus reduced to [−A/2, A/2].

The modulo-A operation is borrowed from the con-
struction A approach to generating lattices from linear
codes. Its effect can be equivalently modelled as the
tessellation of the entire space Rn with replicas of the
n-dimensional cube [−A/2, A/2]n. Note that it must
not be confused with the modulo-lattice operation of
the nested lattices scheme of [16], which serves a dif-
ferent purpose.

Encoder: The encoder selects a codeword c1 ∈ C1, and
sends the sequence x = [αs + d− c1 modA]C0 modA.

A and α are arbitrary constants. d is a randomly
selected dither signal, borrowed from the nested lattices
approach of [16]. However, unlike [16], the elements of
the dither are defined to be uniformly i.i.d in the range
[−A/2, A/2].[

ξ
]
C0

∆=QC0(ξ)−ξmodA, QC0(ξ) being the codeword
of C0 that is closest to ξ assuming a modulo A distance
metric. The mod A distance between two vectors x and
y is given by ‖y−x‖2A

∆=
∑n
i=1(yi−ximodA)2. A and

α are parameters that may be optimized to obtain best
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performance. We obtain,

x = [QC0(αs + d− c1 modA)− (αs + d− c1)] modA
= c0 + c1 − αs− d modA

where c0
∆=QC0(αs + d− c1 modA).

We select C0 to be capable of quantization with a
mean square distortion PX , assuming modA distance.
Thus x is guaranteed to satisfy the power constraint,
1/n·

∑n
i=1 x

2
i ≤ PX . The received signal is y = x+s+z.

Decoder: The decoder computes

ŷ ∆= αy + d modA
= c0 + c1 − (1− α)x + αz modA
= c0 + c1 + ẑ modA (2)

where ẑ ∆= − (1 − α)x + αz is the effective noise. The
decoder evaluates the pair (ĉ0, ĉ1) such that ĉ0 + ĉ1 is
closest to ŷ, assuming modA distance. ĉ1 is announced
as the decoded codeword.

From the above construction, it is clear that c0 and
c1 are independent, implying the analogy to the MAC
channel. However, the effective noise ẑ contains a “self-
noise” element x that, for particular choices of C0 and
C1, is not independent of c0 and c1, undermining an
assumption of the Gaussian MAC model. Nonetheless,
in Section IV we show that under a random-coding
assumption, the MAC model is valid and a decoder
designed for the MAC channel is capable of achieving
the Costa capacity.

IV. Random Coding Analysis

We now provide a rigorous proof of the validity of
the MAC model, assuming the formulation provided in
Section III. For this purpose, we consider the following
channel model:

Y = X + S + Z modA/α (3)

Y in this model corresponds to the channel output
as in (2) after the modulo operation was performed,
but without multiplication by α. Hence the argument
to the modulo operation is A/α instead of A. For
simplicity of our model, we encapsulate the random
known dither into the interference S, and assume that
the interference is uniformly distributed in the range
[−A/(2α), A/(2α)].

We define the following set of auxiliary variables:
X is Gaussian with variance PX . U1 is distributed
as a Gaussian variable with variance Q (which will be
determined later) The variables S, X and U1 are inde-
pendent. We also define U0 to satisfy the equation:

U0 = αS +X − U1 modA (4)

Hence, U0 is uniformly distributed in the range
[−A/2, A/2] and is dependent on S, X and U1. Note
that X is identical to a similar definition by Costa [6].
U0 and U1 replace Costa’s auxiliary U .

We construct codes C0 and C1 by random i.i.d selec-
tion according to the distribution U0 and U1, respec-
tively, at rates R0 and R1. The code C = C0 +C1 modA
is the dirty paper code. For each c1, the set c1 + C0 is
equivalent to a bin of the theoretical analysis of Costa.

To simplify our analysis, we consider an en-
coder/decoder pair that employ joint-typicality rather
than minimum-distance metrics.

Encoder: The encoder selects a codeword c1 ∈ C1, and
seeks a word c0 ∈ C0 such that the pair c0 and (αs −
c1 modA) are jointly strongly ε-typical with respect to
the distribution of the random variables U0 and (αS −
U1 mod A) (ε will be determined later). If no such c0

is found, the encoder declares an error. Otherwise, it
transmits the sequence x = c0 + c1 − αs modA.

Note that the encoder requires strong typicality.
The justification for this is similar to the one in the
theoretical analysis of Gel’fand and Pinsker [12] and is
clarified later, in the proof of Lemma 2, which is pro-
vided in [1]. Lemma 1 examines the probability of an
encoder error.

Lemma 1 Let δ > 0 be an arbitrary number and as-
sume R0 satisfies

R0 > logA− 1
2

log(2πePX) + δ (5)

Then for A large enough, there exists a constant ε0 > 0
such that if ε < ε0, (ε having been defined above) then
the average probability of an encoder error approaches
zero with the block length n.

The proof of the lemma is provided in [1]. We now
define Ŷ = αY and combine (3) and (4) to obtain,

Ŷ = U0 + U1 − (1− α)X + αZ modA
= U0 + U1 + Ẑ modA (6)

where Ẑ ∆= − (1−α)X+αZ. X and Z are independent
of U0 and U1, and hence Ẑ is also independent of U0

and U1. Ẑ is distributed as a Gaussian variable with
variance PẐ

∆= (1− α)2PX + α2PZ .
The effective noise element Ẑ in (6) is independent

of U0 and U1, thus overcoming the obstacle in (2). Since
C0 and C1 were constructed according to U0 and U1, we
would expect the probability of error to approach zero
if (R0, R1) lie within the capacity region of the MAC
channel as defined in Lemma 14.3.1 of [7].
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The proof, however, is slightly more involved than
the proof of [7]. This is because the channel output ŷ
was not generated according to the true MAC channel
model (6). Specifically, the self-noise element x of ẑ
was not generated by random selection according to X.
This obstacle is overcome in the proof of Lemma 2 [1].
We begin by replacing the decoder of [7] with a decoder
that requires strong (rather than weak) typicality.

Decoder: The decoder seeks ĉ0 ∈ C0 and ĉ1 ∈ C1 such
that the triplet (ĉ0, ĉ1,y) are jointly strongly ε-typical
with respect to the distribution of (U0, U1, Y ).

We now examine the probability of a decoder error.

Lemma 2 Let δ > 0 be an arbitrary number and as-
sume R0 and R1 satisfy

R0 +R1 < logA− 1
2

log(2πePẐ)− δ (7)

R1 <
1
2

log
(

1 +
Q

PẐ

)
− δ (8)

Then for A large enough, there exists a constant ε0 > 0
such that if ε < ε0, then the average probability of a
decoder error approaches zero with the block length n.

The proof of this lemma is provided in [1]. Finally, we
combine Lemmas 1 and 2 to obtain:

Theorem 1 Let δ > 0 be an arbitrary number and
assume the above defined superposition coding scheme.
Let ε be the argument to the strong typicality tests of
the above described encoder and decoder. Assume R0

and R1 satisfy (5), (7) and (8). Then if A is large
enough, there exists ε0 > 0 such that if ε < ε0, the
average probability of error approaches zero with the
block length n.

Achievable
Region

logA− 1
2 log(2πePX)

logA− 1
2 log(2πePẐ)

R1

R0

R1 = 1
2 log(PXPẐ

)

1
2 log(1 + Q

PẐ
)

Figure 1: Capacity region of the equivalent AWGN
MAC channel.

Fig. 1 presents the capacity region prescribed by
Theorem 1. A dashed line marks the constraint im-
posed by equation (5) of Lemma 1. Transmission is
possible at any point that is within the MAC capacity
region and is above the dashed line.

The MAC capacity region is a function not only
of the power constraint PX and the noise variance PZ
but also of parameters α and Q. A selection of α =
PX/(PX + PZ) and Q ≥ P 2

X/(PX + PZ) produces a
capacity region where the Costa capacity is achieved at
the point R1 = 1/2 log(1 + PX/PZ) and R0 = logA−
1/2 log(2πePX) (note that R1 is the effective rate of
the coding scheme).

This result is valid for any selection of Q that
satisfies Q ≥ P 2

X/(PX + PZ). A selection of Q =
P 2
X/(PX +PZ) produces a MAC capacity region where

the Costa capacity is achieved at a vertex point. This
point is interesting from a practical implementation
viewpoint. At this point, successive decoding of C0 and
C1 is possible. The vertex point is also preferred by
joint iterative belief-propagation decoding.

V. Comparison with Nested Lattices

We now compare superposition coding as defined in
Section III with the nested lattices approach of [16]. We
assume lattices produced by construction-A, as used by
Philosof et al. [13, 14] and by Erez and ten Brink [10].

Assume a pair of nested lattices Λ and Λ0 (Λ0 a
coarse lattice nested in a fine lattice Λ) constructed
from a pair of nested codes C and C0. We can construct
an equivalent pair C0 and C1 for superposition cod-
ing by leaving C0 unchanged and setting C1 to contain
the codewords of C that fall within the basic Voronoi
cell of C0. We select A to be the argument to the
construction-A of lattices Λ0 and Λ from C0 and C (i.e.
Λ = C +A · Zn). α remains unaltered from the nested
lattices construction. The obtained superposition en-
coding and decoding operations become identical to the
equivalent nested lattices operations. Thus, superposi-
tion coding is a generalization of nested lattices. Never-
theless, superposition coding focuses on settings where
C0 and C1 are designed differently.

One difference between the two approaches lies in
the selection C0 and C. For construction-A to produce
a lattice, both codes need to be linear under modulo-q
arithmetic (q being some positive integer). With su-
perposition coding, the equivalent codes C0 and C are
allowed to be nonlinear.

The use of a random dither is common to both
methods. The dither of [16] is uniformly distributed
over the basic Voronoi cell of the coarse lattice Λ0,
rather than as defined in Section III. However,
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Philosof [13] has shown that assuming construction-
A, the dither may equivalently be defined in the range
[−A/2, A/2], thus simplifying its random generation.
This is identical to the dither used in superposition
coding.

The theoretical results of Section IV are valid for A
approaching infinity. This requirement appears to be
common also to nested lattices, where A is the argu-
ment for construction-A as defined above. For nested
lattices coding to achieve capacity, the lattices need
to be “good” for both source and channel coding [16].
Good nested lattices were presented in [8]. The lat-
tices were generated using construction-A, and exhibit
values of A that approach infinity3. However, further
research is necessary in order to establish if this require-
ment is indeed inherent to any method that produces
good lattices.

An important difference between the two ap-
proaches is in their preferred variance Q for the code
C1. Nested lattices coding is equivalent to a selection of
C1 that is uniformly distributed in the Voronoi cell of
C0. This roughly corresponds to a selection of Q = PX .
Superposition coding, as noted in Section IV, prefers a
smaller value of Q which corresponds to a vertex of the
MAC capacity region.

Lastly, a small advantage of superposition coding
over syndrome dilution is a simpler encoder design.
With syndrome dilution, encoding involves selection of
a coset leader to represent the transmitted codeword.
This step is not required by superposition coding.

VI. Simulation Results

We experimented at a rate of 0.25 bits per real di-
mension (which is equivalent to the 0.5 bits per complex
dimension as used by Erez and ten Brink [10]), at an
SNR of -2.5dB. The dirty paper Costa (and Shannon)
limit at this rate is -3.82 dB.

For the quantization code C0, we selected a Trel-
lis code borrowed from Ungerboeck [15] of memory 9.
The feedback polynomials are given by the octal dig-
its (1072, 0342), the output alphabet consisted of the
4-PAM signals [-0.75 -0.25 0.25 0.75]. Simulation re-
sults indicate that the code is capable of quantization
with a mean square distortion of PX = 0.061. The
random-coding achievable distortion for rate 1 bit per
channel use is approximately 0.0585, and hence C0 op-

3The construction of [8] examines lattices with a constant
A = 1. However, it is assumed that the lattices are to be scaled

to fit any practical problem setting. The effective radius reffec
Λ

of the lattices is held (approximately) constant while the block
length n is taken to infinity. This implies that the effective power
approaches zero, requiring a scaling factor that approaches infin-
ity.

erates close to the limit. The noise variance was thus
set to PZ = 0.108, in accordance with the above se-
lected SNR of -2.5dB.

We selected a binary LDPC code for C1.
We mapped the code bits to the BPSK signals
±0.1482, approximately corresponding to an en-
ergy of Q = P 2

X/(PX + PZ) = 0.0219. The
code’s edge distribution is given by λ(2, 3, 4, 5, 7, 35) =
(0.531357, 0.147539, 0.249499, 0.0525727, 0.00601187,
0.0130199), and ρ(3, 4) = (0.501, 0.499). The rate of
C1 is 0.25.

We used a joint iterative belief-propagation decoder
to decode C0 and C1, using a BCJR decoder for C0 and
a belief-propagation decoder for C1. The decoders ex-
changed soft data in accordance with the concepts of
Boutros and Caire [2]. The decoders alternated at a
rate of at least 10 LDPC iterations per BCJR itera-
tion (the ratio was changed throughout the decoding
process).

We obtained the edge distribution for C1 using a
method that is based on Chung et al. [4]. The method
requires “singleton” error probabilities, which in [4] are
produced by density evolution. In our work we have
instead used the output of simulations.

An additional improvement was obtained by apply-
ing a non-random ordering on the bits in the code C1.
i.e. bits corresponding to same-degree variable-nodes
were grouped together in consecutive indices, rather
that spread randomly. Since the edges of the LDPC
graph were selected by random permutation, this had
no effect on the performance of the LDPC code. How-
ever, this produced a partitioning of the LDPC code-
word into segments of equal-degree variable-nodes and
inferred a similar partitioning on the bits of C0. Seg-
ments of the C0 code bits that were connected to differ-
ent segments of C1 enjoyed an unequal degree of reliabil-
ity of information transferred from the LDPC decoder.
This resulted in irregularity in the BCJR decoder (a
desirable quality in iterative soft-decoders), thus signif-
icantly improving the performance of the joint decoder.

Simulation results for the above dirty paper scheme
of rate 0.25 indicate a bit error rate of approximately
4.8 · 10−5 at a block length of 2 · 105 (50 simula-
tions). As noted above, these results were obtained
at an SNR approximately 1.3 dB away from the Shan-
non limit. These results are similar to results reported
using nested lattices. In [10], reliable transmission was
reported within 1.8dB of the Shannon limit, and im-
provement to approximately 1.3dB was reported later.

VII. Comparison with Dirty Tape

It is worth while to compare these results to the
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dirty tape case of S known causally. Dirty tape schemes
can be used as low-complexity solutions for dirty paper
problems, by simply ignoring the noncausal portion of
the known interference. Ignoring part of the known
data is clearly suboptimal, but nonetheless provides an
important benchmark for the performance of the more
complex dirty paper schemes. For a dirty paper scheme
to be interesting, it must surpass the performance of
schemes for the equivalent dirty tape channel.

The Gaussian dirty tape channel was examined by
Erez, Shamai and Zamir [9]. They derived expressions
for the capacity at the asymptotic case of strong inter-
ference. Furthermore, they suggested an efficient cod-
ing scheme capable of approaching the computed ca-
pacity. Erez and ten Brink [10] applied this scheme to
achieve reliable transmission within 0.4dB of the dirty
tape Shannon limit, at a rate of 0.667 bits per complex
dimension.

The gap between the Shannon limits for the Gaus-
sian dirty tape and dirty paper problems is greatest
at low SNR, and approaches approximately 4dB. This
was the motivation for the preference of low SNR for
the dirty paper simulations of [13] and in this paper,
because this is the point where there is the most po-
tential for gain by exploiting the non-causally known
data. The dirty tape Shannon limit at rate 0.25 bits
per real dimension is -0.6 dB (SNR) (see [10]). This
limit is thus surpassed by the above described dirty
paper scheme at SNR -2.5dB.

VIII. Conclusion

Superposition coding can be viewed as a general-
ization of the nested lattices approach of [16]. An ad-
vantage of our approach over nested lattices is that our
codes are not required to be components of a lattice,
and hence are allowed to be nonlinear, adding an extra
degree of freedom to their design.

In [1], we suggested a framework for extending
superposition coding to the general Gel’fand-Pinsker
problem.
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