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We present in this paper a brief introduction to biometrics which refers to the
problem of identifying a person based on his/her physical or behavioral character-
istics. We will also provide a short review of the literature on face recognition
with a special emphasis on frontal face recognition, which represents the bulk of
the published work in this field. While biometrics have mostly been studied sep-
arately, we also briefly introduce the notion of multimodality, a topic related to
decision fusion and which has recently gained interest in the biometric community.

1. Introduction to Biometrics

The ability to verify automatically and with great accuracy the identity
of a person has become crucial in our society. Even though we may not
notice it, our identity is challenged daily when we use our credit card or try
to gain access to a facility or a network for instance. The two traditional
approaches to automatic person identification, namely the knowledge-based
approach which relies on something that you know such as a password,
and the token-based approach which relies on something that you have such
as a badge, have obvious shortcomings: passwords might be forgotten or
guessed by a malicious person while badges might be lost or stolen *.
Biometrics person recognition, which deals with the problem of iden-
tifying a person based on his/her physical or behavioral characteristics, is
an alternative to these traditional approaches as a biometric attribute is
inherent to each person and thus cannot be forgotten or lost and might be
difficult to forge. The face, the fingerprint, the hand geometry, the iris,
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etc. are examples of physical characteristics while the signature, the gait,
the keystroke, etc. are examples of behavioral characteristics. It should be
underlined that a biometric such as the voice is both physical and behav-
ioral. Ideally a biometric should have the following properties: it should be
universal, unique, permanent and easily collectible 2.

In the next three sections of this introductory part, we will briefly de-
scribe the architecture of a typical biometric system, the measures to eval-
uate its performance and the possible applications of biometrics.

1.1. Architecture

A biometric system is a particular case of a pattern recognition system
3. Given a set of observations (captures of a given biometric) and a set
of possible classes (for instance the set of persons that can be possibly
identified) the goal is to associate to each observation one unique class.
Hence, the main task of pattern recognition is to distinguish between the
intra-class and inter-class variabilities. Face recognition, which is the main
focus of this article, is a very challenging problem as faces of the same
person are subject to variations due to facial expressions, pose, illumination
conditions, presence/absence of glasses and facial hair, aging, etc.

A biometric system is composed of at least two mandatory modules,
the enrollment and recognition modules, and an optional one, the adapta-
tion module. During enrollment, the biometric is first measured through
a sensing device. Generally, before the feature extraction step, a series of
pre-processing operations, such as detection, segmentation, etc. should be
applied. The extracted features should be a compact but accurate repre-
sentation of the biometric. Based on these features, a model is built and
stored, for instance in a database or on a smart card. During the recognition
phase, the biometric characteristic is measured and features are extracted
as done during the enrollment phase. These features are then compared
with one or many models stored in the database, depending on the op-
erational mode (see the next section on performance evaluation). During
the enrollment phase, a user friendly system generally captures only a few
instances of the biometric which may be insufficient to describe with great
accuracy the characteristics of this attribute. Moreover, this biometric can
vary over time in the case where it is non-permanent (e.g. face, voice).
Adaptation maintains or even improves the performance of the system over
time by updating the model after each access to the system.
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Figure 1. Architecture of a biometric system.

1.2. Performance Evaluation

Generally, a biometric system can work under two different operational
modes: identification or wverification. During identification, the system
should guess the identity of person among a set of N possible identities
(1:N problem). A close-set is generally assumed, which means that all the
trials will be from people which have a model in the database and the goal
is hence to find the most likely person. During verification, the user claims
an identity and the system should compare this identity with the stored
model (1:1 problem). This is referred as an open-set as persons which are
not in the database may try to fool the system. One can sometimes read
claims that identification is a more challenging problem than verification or
vice-versa. Actually, identification and verification are simply two different
problems.

As it may not be enough to know whether the top match is the correct
one for an identification system, one can measure its performance through
the cumulative match score which measures the percentage of correct an-
swers among the top N matches. Also one could use recall-precision curves
as is done for instance to measure the performance of database retrieval
systems. The FERET face database * is the most commonly used database
for assessing the performance of a system in the identification mode.

A verification system can make two kinds of mistakes: it can reject a
rightful user, often called client, or accept an impostor. Hence, the perfor-
mance of a verification system is measured in terms of its false rejection
rate (FRR) and false acceptance rate (FAR). A threshold is set to the scores
obtained during the verification phase and one can vary this threshold to
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obtain the best possible compromise for a particular application depending
on the required security level. By varying this threshold, one obtains the
receiver operating curve (ROC), i.e. the FRR as a function of the FAR. To
summarize the performance of the system with one unique figure, one often
uses the equal error rate (EER) which corresponds to the point FAR=FRR.
The M2VTS database and its extension, the XM2VTSDB ®, are the most
commonly used databases for assessing the performance of a system in the
verification mode.

The interested reader can also refer to ® for an introduction to evaluating
biometric systems.

1.3. Applications

There are mainly four areas of applications for biometrics: access control,
transaction authentication, law enforcement and personalization.

Access control can be subdivided into two categories: physical and vir-
tual access control !. The former controls the access to a secured location.
An example is the Immigration and Naturalization Service’s Passenger Ac-
celerated Service System (INSPASS) deployed in major US airports which
enables frequent travelers to use an automated immigration system that
authenticates their identity through their hand geometry. The latter one
enables the access to a resource or a service such as a computer or a net-
work. An example of such a system is the voice recognition system used in
the MAC OS 9.

Transaction authentication represents a huge market as it includes
transactions at an automatic teller machine (ATM), electronic fund trans-
fers, credit card and smart card transactions, transactions on the phone or
on the Internet, etc. Mastercard estimates that a smart credit card incor-
porating finger verification could eliminate 80% of fraudulent charges &. For
transactions on the phone, biometric systems have already been deployed.
For instance, the speaker recognition technology of Nuance ? is used by the
clients of the Home Shopping Network or Charles Schwab.

Law enforcement has been one of the first applications of biometrics.
Fingerprint recognition has been accepted for more than a century as a
means of identifying a person. Automatic face recognition can also be very
useful for searching through large mugshot databases.

Finally, personalization through person authentication is very appealing
in the consumer product area. For instance, Siemens allows to personalize
one’s vehicle accessories, such as mirrors, radio station selections, seating
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positions, etc. through fingerprint recognition 1°.

In the following subsections, we will provide to the reader a brief review
of the literature on face recognition. This review will be split into two parts:
we will devote the next section to frontal face recognition which represents
the bulk of the literature on and the “other modalities”, corresponding to
different acquisition scenarios such as profile, range images, facial thermo-
gram or video, will be discussed in section 3. The interested reader can
refer to 11 for a full review of the literature on face recognition before 1995.
We should underline that specific parts of the face (or the head) such as
the eyes, the ears, the lips, etc. contain a lot of relevant information for
identifying people. However, this is out of the scope of this paper and the
interested reader can refer to 2 for iris recognition, to '3 for ear recogni-
tion and * for lips dynamics recognition. Also we will not review a very
important part of any face recognition system: the face detection. For a
recent review on the topic, the reader can refer to 3.

2. Frontal Face Recognition

It should be underlined that the expression “frontal face recognition” is used
in opposition to “profile recognition”. A face recognition system that would
work only under perfect frontal conditions would be of limited interest
and even “frontal” algorithms should have some view tolerance. As a full
review, even of the restricted topic of frontal face recognition, is out of
the scope of this paper, we will focus our attention on two very successful
classes of algorithms: the projection-based approaches, i.e. the Eigenfaces
and its related approaches, and the ones based on deformable models such
as Elastic Graph Matching. It should be underlined that the three top
performers at the 96 FERET performance evaluation belong to one of these
two classes 4.

2.1. Eigenfaces and Related Approaches

In this section, we will first review the basic eigenface algorithm and then
consider its extensions: multiple spaces, eigenfeatures, linear discriminant
analysis and probabilistic matching.

2.1.1. FEigenfaces

Eigenfaces are based on the notion of dimensionality reduction. € first
outlined that the dimensionality of the face space, i.e. the space of variation
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between images of human faces, is much smaller than the dimensionality of a
single face considered as an arbitrary image. As a useful approximation, one
may consider an individual face image to be a linear combination of a small
number of face components or eigenfaces derived from a set of reference
face images. The idea of the Principal Component Analysis (PCA) 17, also
known as the Karhunen-Loeve Transform (KLT), is to find the subspace
which best accounts for the distribution of face images within the whole
space.

Let {O;}icp,n] be the set of reference or training faces, O be the average
face and O,- =0,;-0. O, is sometimes called a caricature image. Finally,
if O = [Ol, 0-, ...ON], the scatter matrix S is defined as:

N
S=> 0,0 =007 1)
i=1

The optimal subspace Ppc 4 is chosen to maximize the scatter of the pro-
jected faces:

Ppca = arg max |PSPT| (2)

where |.| is the determinant operator. The solution to problem (2) is the
subspace spanned by the eigenvectors [e1, es, ...ek], also called eigenfaces,
corresponding to the K largest eigenvalues of the scatter matrix S. It
should be underlined that eigenfaces are not themselves usually plausible
faces but only directions of variation between face images (see Figure 2).
Each face image is represented by a point Ppca x O; = [w},w?,..wX] in

e (8] NP

(2) (b) () (d) (e) ()

Figure 2. (a) Eigenface 0 (average face) and (b)-(f) eigenfaces 1 to 5 as estimated on a
subset of the FERET face database.

the K-dimensional space. The weights w¥’s are the projection of the face
image on the k—th eigenface e, and thus represent the contribution of each
eigenface to the input face image.
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To find the best match for an image of a person’s face in a set of stored
facial images, one may calculate the Euclidean distances between the vector
representing the new face and each of the vectors representing the stored
faces, and then choose the image yielding the smallest distance 8.

2.1.2. Multiple Spaces Approaches

When one has a large amount of training data, one can either pool all
the data to train one unique eigenspace, which is known as the parametric
approach or split the data into multiple training sets and train multiple
eigenspaces which is known as the view-based approach. The latter approach
has been designed especially to compensate for different head poses.

One of the first attempts to train multiple eigenspaces was made in '°.
This method, consists in building a separate eigenspace for each possible
view 1%, For each new target image, its orientation is first estimated by pro-
jecting it on each eigenspace and choosing the one that yields the smallest
distance from face to space. The performance of the parametric and view-
based approaches were compared in ° and the latter one seems to perform
better. The problem with the view-based approach is that it requires large
amounts of labeled training data to train each separate eigenspace.

More recently Mixtures of Principal Components (MPC) were proposed
to extend the traditional PCA 2021, An iterative procedure based on the
FEzxpectation-Mazimization algorithm was derived in both cases to train au-
tomatically the MPC. However, while 20 represents a face by the best set of
features corresponding to the closest set of eigenfaces, in 2! a face image is
projected on each component eigenspace and these individual projections
are then linearly combined. Hence, compared to the former approach, a
face image is not assigned in a hard manner to one eigenspace component
but in a soft manner to all the eigenspace components. 2! tested MPC on
a database of face images that exhibit large variabilities in poses and illu-
mination conditions. Each eigenspace converges automatically to varying
poses and the first few eigenvectors of each component eigenspace seem to
capture lightning variations.

2.1.3. FEigenfeatures

An eigenface-based recognition system can be easily fooled by gross varia-
tions of the image such as the presence or absence of facial hair '°. This
shortcoming is inherent to the eigenface approach which encodes a global
representation of the face. To address this issue, 1 proposed a modular or
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layered approach where the global representation of the face is augmented
by local prominent features such as the eyes, the nose or the mouth. Such
an approach is of particular interest when a part of the face is occluded and
only a subset of the facial features can be used for recognition. A similar
approach was also developed in 22. The main difference is in the encoding
of the features: the notion of eigenface is extended to eigeneyes, eigen-
nose and eigenmouth as was done for instance in 2? for image coding. For
a small number of eigenvectors, the eigenfeatures approach outperformed
the eigenface approach and the combination of eigenfaces and eigenfeatures
outperformed each algorithm taken separately.

2.1.4. Linear Discriminant Approaches

While PCA is optimal with respect to data compression '8, in general it is

sub-optimal for a recognition task. Actually, PCA confounds intra-personal
and extra-personal sources of variability in the total scatter matrix S. Thus
eigenfaces can be contaminated by non-pertinent information.

For a classification task, a dimension reduction technique such as Linear
Discriminant Analysis (LDA) should be preferred to PCA 24:25:26 The idea
of LDA is to select a subspace that maximizes the ratio of the inter-class
variability and the intra-class variability. Whereas PCA is an unsupervised
feature extraction method, discriminant analysis uses the category infor-
mation associated with each training observation and is thus categorized as
supervised.

Let O; ) be the k-th picture of training person i, N; be the number
of training images for person i and O; be the average of person i. Then
Sp and S, respectively the between- and within-class scatter matrices, are

given by:
Sp = ZNi(O_z’ - 0)(0; - 0)" ®3)
i=1
c N; B B
Sw =YY (Oik — 0:)(Oir — 0:)" (4)
i=1 k=1

The optimal subspace Prpa is chosen to maximize the between-scatter
of the projected face images while minimizing the within-scatter of the
projected faces:

|PSpPT|

Prpa = arg max W (5)
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The solution to equation (5) is the sub-space spanned by [eq,es,...ex],
the generalized eigenvectors corresponding to the largest eigenvalues of the
generalized eigenvalue problem:

SBek = )\kSWek k= 1, ... K (6)

However, due to the high dimensionality of the feature space, Sy is gen-
erally singular and this principle cannot be applied in a straightforward
manner. To overcome this issue, generally one first applies PCA to reduce
the dimension of the feature space and then performs the standard LDA
24,26 The eigenvectors that form the discriminant subspace are often re-
ferred as Fisherfaces ?*. In 2%, the space spanned by the first few Fisherfaces
are called the most discriminant features (MDF) classification space while
PCA features are referred as most expressive features (MEF). It should be

(2) (b) () (d) (e) (f)

Figure 3. (a) Fisherface 0 (average face) and (b)-(f) Fisherfaces 1 to 5 as estimated on
a subset of the FERET face database.

underlined that LDA induces non-orthogonal projection axes, a property
which has great relevance in biological sensory systems 27.
Other solutions to equation 5 were suggested 27-28:29,

2.1.5. Probabilistic Matching

While most face recognition algorithms, especially those based on eigen-
faces, generally use simple metrics such as the Euclidean distance, 3¢ sug-
gests a probabilistic similarity based on a discriminative Bayesian analysis of
image differences. One considers the two mutually exclusives classes of vari-
ation between two facial images: the intra-personal and extra-personal vari-
ations, whose associated spaces are noted respectively (2 and Qg. Given
two face images O; and O, and the image difference A = O; — O, the
similarity measure is given by P(Qr|A). Using Baye’s rule, it can be trans-
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formed into:

P(A|IQ)P(Qr)
P(A|QI)P(QI) + P(A|QE)P(QE)

P(y]A) = (7)
The high-dimensionality probability functions P(A|Q;) and P(A|Qg) are
estimated using an eigenspace density estimation technique 3'. It was ob-
served that the denominator in equation (7) had a limited impact on the
performance of the system and that the similarity measure could be reduced
to P(A|€Qr) with little loss in performance, thus reducing the computational
requirements of the algorithm by a factor two.

2.2. Deformable Models

As noted in 32, since most face recognition algorithms are minimum distance
pattern classifiers, a special attention should be paid to the definition of
distance. The distance which is generally used is the FEuclidean distance.
While it is easy to compute, it may not be optimal as, for instance, it
does not compensate for the deformations incurred from different facial
expressions. Face recognition algorithms based on deformable models can
cop with this kind of variation.

2.2.1. Elastic Graph Matching

Elastic Graph Matching algorithm (EGM) has roots in the neural network
community 33.

Given a template image Fr, one first derives a face model from this
image. A grid is placed on the face image and the face model is a vector
field O = {o0;,;} where o, ; is the feature vector extracted at position (4, j)
of the grid which summarizes local properties of the face (c.f. Figure 4(a).
Gabor coefficients are generally used but other features, like morphological
feature vectors, have also been considered and successfully applied to the
EGM problem 34. Given a query image JFg, one also derives a vector field
X = {z; ;} but on a coarser grid than the template face (c.f. Figure 4(b)).
In the EGM approach, the distance between the template and query images
is defined as a best mapping M* among the set of all possible mappings
{M} between the two vector fields O and X. The optimal mapping depends
on the definition of the cost function C. Such a function should keep a
proper balance between the local matching of features and the requirement
to preserve spatial distance. Therefore, a proper cost function should be of
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(a) (b) (c)

Figure 4. (a) Template image and (b) query image with their associated grids. (c) Grid
after deformation using the probabilistic deformable model of face mapping (c.f. section
2.2.3). Images extracted from the FERET face database.

the form:
C(M) =Co(M) + pCe(M) (8)

where C, is the cost of local matchings, C. the cost of local deformations
and p is a parameter which controls the rigidity of the elastic matching and
has to be hand-tuned.

As the number of possible mappings is extremely large, even for lattices
of moderate size, an exhaustive search is out of the question and an approx-
imate solution has to be found. Toward this end, a two steps procedure
was designed:

e rigid matching: the whole template graph is shifted around the
query graph. This corresponds to p — oo. We obtain an initial
mapping My.

o deformable matching: the nodes of the template lattice are then
stretched through random local perturbations to reduce further
the cost function until the process converges to a locally optimal
mapping M*, i.e. once a predefined number of trials have failed to
improve the mapping cost.

The previous matching algorithm was later improved. For instance,
in 3* the authors argue that the two-stage coarse-to-fine optimization is
sub-optimal as the deformable matching relies too much on the success
of the rigid matching. The two stage optimization procedure is replaced
with a probabilistic hill-climbing algorithm which attempts to find at each
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iteration both the optimal global translation and the set of optimal local
perturbations. In 3%, the same authors further drop the C, term in equation
(8). However, to avoid unreasonable deformations, local translations are
restricted to a neighborhood.

2.2.2. Elastic Bunch Graph Matching

36 elaborated on the basic idea of EGM with the Elastic Bunch Graph
Matching (EBGM) through three major extensions:

e While the cost of local matchings in C, only makes use of the mag-
nitude of the complex Gabor coefficients in the EGM approach, the
phase information is used to disambiguate features which have a
similar magnitude, but also to estimate local distortions.

e The features are no longer extracted on a rectangular graph but
they now refer to specific facial landmarks called fiducial points.

e A new data structure called bunch graph which serves as a gen-
eral representation of the face is introduced. Such a structure is
obtained by combining the graphs of a set of reference individuals.

It should be noted that the idea of extracting features at positions which
correspond to facial landmarks appeared in earlier work. In 37 feature
points are detected using a Gabor wavelet decomposition. Typically, 35 to
50 points are obtained in this manner and form the face graph. To compare
two face graphs, a two-stage matching similar to the one suggested in 33
is developed. One first compensates for a global translation of the graphs
and then performs local deformations for further optimization. However,
another difference with 32 is that the cost of local deformations (also called
topology cost) is only computed after the features are matched which results
in a very fast algorithm. One advantage of 3¢ over 37 is in the use of the
bunch graph which provides a supervised way to extract salient features.

An obvious shortcoming of EGM and EBGM is that C,, the cost of local
matchings, is simply a sum of all local matchings. This contradicts the fact
that certain parts of the face contain more discriminant information and
that this distribution of the information across the face may vary from one
person to another. Hence, the cost of local matchings at each node should
be weighted according to their discriminatory power 38:39:34,35,
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2.2.3. Probabilistic Deformable Model of Face Mapping

A novel probabilistic deformable model of face mapping “°, whose philoso-
phy is similar to EGM 33, was recently introduced. Given a template face
Fr, a query face Fo and a deformable model of the face M, for a face
identification task the goal is to estimate P(Fr|Fg, M). The two major
differences between EGM and the approach presented in 40 are:

e In the use of the HMM framework which provides efficient formulas
to compute P(Fr|Fg, M) and train automatically all the parame-
ters of M. This enables for instance to model the elastic properties
of the different parts of the face.

e In the use of a shared deformable model of the face M for all
individuals, which is particularly useful when little enrollment data
is available.

3. Other “Modalities” for Face Recognition

In this section we will very briefly review what we called the “other modali-
ties” and which basically encompass the remaining of the literature on face
recognition: profile recognition, recognition based on range data, thermal
imagery and finally video-based face recognition.

3.1. Profile Recognition

The research on profile face recognition has been mainly motivated by
requirements of law enforcement agencies with their so-called mug shot
databases 1. However, it has been the focus of a relatively restricted num-
ber of papers. It should be underlined that frontal and profile face recog-
nition are complementary as they do not provide the same information.
A typical profile recognition algorithm first locates on the contour image
points of interest such as the nose tip, the mouth, chin, etc. also called
fiducial points and then extracts information such as the distances, angles,
etc. for the matching (see *! for an example of an automatic system based
on this principle). An obvious problem with such an approach is the fact
that it relies on an accurate feature extraction. Alternative approaches
which alleviate this problem include (but are not limited to) the use of
Fourier descriptors for the description of closed curves 42, the application
of Eigenfaces to profiles 12 and, more recently, an algorithm based on string
matching 4.
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3.2. Range Data

While a 2-D intensity image does not have direct access to the 3-D structure
of an object, a range image contains the depth information and is not
sensitive to lightning conditions (it can even work in the dark) which makes
range data appealing for a face recognition system. The sensing device can
be a rotating laser scanner which provides a very accurate and complete
representation of the face as used for instance in *4*%. However, such a
scanner is highly expensive and the scanning process is very slow. In 46
the authors suggested the use the coded light approach for acquiring range
images. A sequence of stripe patterns is projected onto the face and for
each projection an image is taken with a camera. However, for shadow
regions as well as regions that do not reflect the projected light, no 3-D
data can be estimated which results in range images with a lot of missing
data. Therefore, the authors decided to switch to a multi-sensor system
with two range sensors acquiring the face under two different views. These
two sets of range data are then merged. Although these sensing approaches
reduce both the acquisition time and cost, the user of such a system should
be cooperative which restricts its use. This may explain the fact that little
literature is available on this topic.

In 44, the authors present a face recognition system based on range data
template matching. The range data is segmented into four surface regions
which are then normalized using the location of the eyes, nose and mouth.
The volume between two surfaces is used as distance measure. In 4° the face
recognition system uses features extracted from range and curvature data.
Examples of features are the left and right eye width, the head width, etc.
but also the maximum Gaussian curvature on the nose ridge, the average
minimum curvature on the nose ridge, etc. In %%, the authors apply and
extend traditional 2-D face recognition algorithms (Eigenfaces and HMM-
based face recognition 47) to range data. More recently, *® point signatures
are used as features for 3-D face recognition. These feature points are
projected into a subspace using PCA.

3.3. Facial Thermogram

The facial heat emission patterns can be used to characterize a person.
These patterns depend on nine factors including the location of major blood
vessels, the skeleton thickness, the amount of tissue, muscle, and fat 4°. IR
face images have the potential for a good biometric as this signatures is
unique (even identical twins do not share the same facial thermogram)
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and it is supposed to be relatively stable over time. Moreover, it cannot
be altered through plastic surgery. The acquisition is done with an infra-
red (IR) camera. Hence, it does not depend on the lightning conditions,
which is a great advantage over traditional facial recognition. However, IR
imagery is dependent on the temperature and IR is opaque to glass. A pre-
liminary study 3° compared the performance of visible and IR imagery for
face recognition and it was shown that there was little difference in perfor-
mance. However, the authors in ®° did not address the issue of significant
variations in illumination for visible images and changes in temperature for
IR images.

3.4. Video-Based Recognition

Although it has not been a very active research topic (at least compared
to frontal face recognition), video-based face recognition can offer many
advantages compared to recognition based on still images:

e Abundant data is available at both enrollment and test time. Ac-
tually one could use video at enrollment time and still images at
test time or vice versa (although the latter scenario would perhaps
make less sense). However, it might not be necessary to process
all this data and one of the tasks of the recognition system will be
the selection of an optimal subset of the whole set of images which
contains the maximum amount of information.

e With sequences of images, the recognition system has access to dy-
namic features which provides valuable information on the behavior
of the user. For instance, the BioID system !4 makes use of the lip
movement for the purpose of person identification (in conjunction
with face and voice recognition). Also dynamic features are gen-
erally more secure against fraud than static features as they are
harder to replicate.

e Finally the system can try to build a model of the face by estimating
th 3-D depth of points on objects from a sequence of 2-D images

which is known as structure from motion 1.

Video-based recognition might be extremely useful for covert surveillance,
for instance in airports. However, this is a highly challenging problem as
the system should work in a non-cooperative scenario and the quality of
surveillance video is generally poor and the resolution is low.
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4. Multimodality

Reliable biometric-based person authentication systems, based for instance
on iris or retina recognition already exist but the user acceptance for such
systems is generally low and they should be used only in high security
scenarios. Systems based on voice or face recognition generally have a high
user acceptance but their performance is not satisfying enough.
Multimodality is a way to improve the performance of a system by com-
bining different biometrics. However, one should be extremely careful about
which modalities should be combined (especially, it might not be useful to
combine systems which have radically different performances) and how to
combine them. In the following, we will briefly describe the possible multi-
modality scenarios and the different ways to fuse the information.

4.1. Different Multimodality Scenarios

We use here the exhaustive classification introduced in 31:

(1) multiple biometric systems: consists in using different biometric at-
tributes, such as the face, voice and lip movement 4. This is the
most commonly used sense of the term multimodality.

(2) multiple sensors: e.g. a camera and an infrared camera for face
recognition.

(3) multiple units of the same biometric: e.g. fusing the result of the
recognition of both irises.

(4) multiple instances of the same biometric: e.g. in video-based face
recognition, fusing the recognition results of each image.

(5) multiple algorithms on the same biometric capture.

We can compare these scenarios in terms of the expected increase of
performance of the system over the monomodal systems versus the increase
of the cost of the system, which can be split into additional software and
hardware costs.

In terms of the additional amount of information and thus in the ex-
pected increase of the performance of the system, the first scenario is the
richest and scenarios (4) and (5) are the poorest ones. The amount of
information brought by scenario (2) is highly dependent on the difference
between the two sensors. Scenario (3) can bring a large amount of infor-
mation as, for instance, the two irises or the ten fingerprints of the same
person are different. However, if the quality of a fingerprint is low for a
person, e.g. because of a manual activity, then the quality of the other



May 2, 2003 17:4 WSPC/Trim Size: 9in x 6in for Proceedings face-review

17

fingerprints is likely to be low.

The first two scenarios clearly introduce an additional cost as many
sensors are necessary to perform the acquisitions. For scenario (3) there is
no need for an extra sensor if captures are done sequentially. However, this
lengthens the acquisition time which makes the system less user-friendly.
Finally, scenarios (1) and (5) induce an additional software cost as different
algorithm are necessary for the different systems.

4.2. Information Fusion

As stated at the beginning of this section, multimodality improves the
performance of a biometric system. The word performance includes both
accuracy and efficiency.

The assumption which is made is that different biometric systems make
different types of errors and thus, that it is possible to use the comple-
mentary nature of these systems. This is a traditional problem of decision
fusion 53. Fusion can be done at three different levels 52 (by increasing
order of available information):

e At the abstract level, the output of each classifier is a label such
as the ID of the most likely person in the identification case or a
binary answer such as accept/reject in the verification case.

e At the rank level the output labels are sorted by confidence.

o At the measurement level, a confidence measure is associated to
each label.

Commonly used classification schemes such as the product rule, sum
rule, min rule, max rule and median rule, are derived from a common the-
oretical framework using different approximations 4. In 5%, the authors
evaluated different classification schemes, namely support vector machine
(SVM), multi layer perceptron (MLP), decision tree, Fisher’s linear dis-
criminant (FLD) and Bayesian classifier and showed that the SVM- and
Bayesian-based classifiers had a similar performance and outperformed the
other classifiers when fusing face and voice biometrics.

In the identification mode, one can use the complementary nature of
different biometrics to speed-up the search process. Identification is gener-
ally performed in a sequential mode. For instance, in ¢ identification is a
two-step process: face recognition, which is fast but unreliable is used to
obtain an N-best list of the most likely persons and fingerprint recognition,
which is slower but more accurate, is then performed on this subset.
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5. Summary

We introduced in this paper biometrics, which deals with the problem of
identifying a person based on his/her physical and behavioral character-
istics. Face recognition, which is one of the most actively research topic
in biometrics, was briefly reviewed. Although huge progresses have been
made in this field for the past twenty years, research has mainly focused
on frontal face recognition from still images. We also introduced the no-
tion of multimodality as a way of exploiting the complementary nature of
monomodal biometric systems.
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