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ABSTRACT We consider mobile radio communications
with one user of interest and possibly interfering users and
noise, over several discrete-time channels obtained either by
oversampling or from multiple antennas. The optimal re-
ceiver structure for one signal of interest plus spatially and
temporally correlated noise is MLSE equalization with an
appropriately weighted metric for vector signals. We show
however that we can alternatively pass the vector received
signal through both a MISO (multi-input single output)
matched �lter and a MIMO blocking equalizer. The block-
ing equalizer output is independent of the signal of interest
and is used as the input to a MISO Wiener �lter that re-
duces the noise in the matched �lter ouput. The resulting
structure is called the Interference Cancelling Matched Fil-
ter (ICMF). The training sequence of the signal of interest
can be used to estimate the corresponding channel, from
which matched �lter and blocking equalizer can be deter-
mined. The remaining quantities can be adapted from the
available signals. The performance of the ICMF is analyzed
in a number of scenarios. The extension to the case of non-
circular noise and interference is developed and is shown to
be particularly of interest in the case of 1D constellations.

1 Multiple Channels

The multiple FIR channels we consider here are due to over-
sampling of a single received signal and/or the availability of
multiple received signals from an array of antennas (in the
context of mobile digital communications). To further de-
velop the case of oversampling, consider linear digital mod-
ulation over a linear channel with additive noise so that the
cyclostationary received signal can be written as

y(t) =
X
k

h(t � kT )ak + v(t) (1)

where the ak are the transmitted symbols, T is the symbol
period and h(t) is the channel impulse response. The channel
is assumed to be FIR with duration NT (approximately).
If the received signal is oversampled at the rate m

T (or if
m di�erent samples of the received signal are captured by
m sensors every T seconds, or a combination of both), the

discrete input-output relationship can be written as:

yk =
N�1X
i=0

hiak�i + vk = HNAN (k) + vk ;

yk =

264 y1;k
...

ym;k

375 ;vk =
264 v1;k

...
vm;k

375 ;hk =
264 h1;k

...
hm;k

375
HN = [h0 � � �hN�1] ; AN (k) =

�
aHk � � �aHk�N+1

�H
(2)

where the �rst subscript i denotes the ith channel and su-
perscript H denotes Hermitian transpose. yi;k ; i = 1; : : : ;m
represent the m phases of the polyphase representation of
the oversampled signal: yi;k = y(t0 + (k + i

m
)T ). In the

polyphase representation of the oversampled signals, we get
a discrete-time circuit in which the sampling rate is the sym-
bol rate. Its output is a vector signal corresponding to a
SIMO or vector channel consisting of m SISO discrete-time
channels where m is the sum of the oversampling factors
used for the possibly multiple antenna signals, see Fig. 1.

2 Previous Work

It is well-known that the thus available frequential or spatial
diversity can be exploited to cancel or diminish multi-user
interference. A decision feedback equalizer (DFE) consisting
of m feedforward �lters and a feedback �lter can be used to
achieve this. In TDMA mobile communications, the channel
can vary fairly rapidly. Therefore the data is sent in fairly
short time-slots over which the channel can be considered
time-invariant. A midamble of training sequence symbols is
provided in the slot to allow for receiver adaptation. From
a design point of view, the number of parameters in the
multichannel DFE to be estimated though increases with
m since there are m feedforward �lters. Hence, a training
sequence that is designed for m = 1 will not allow a reliable
design of the spatio-temporal feedforward �lter.
We shall consider optimal and suboptimal receiver struc-

tures for the case when the additive zero mean noise is both
spatially and temporally correlated. Strict optimality will
only hold when the noise is considered Gaussian. When the
noise actually consists of multiuser interference plus Gaus-
sian noise, the optimal receiver performs joint detection of all
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Figure 1: ICMF optimal receiver structure for one user received through multiple channels in colored additive Gaussian
noise.

users. However, the estimation of the matrix transfer func-
tion from all users to all antennas (and/or sampling phases)
is a formidable and often prohibitive task. Furthermore,
the complexity of MLSE can be enormous in this case. We
will accept the suboptimality induced by the Gaussian as-
sumption. We will �nd that the suboptimality disappears
in certain cases. We shall assume (short-term) stationar-
ity of the vector received process. For that, we assume the
transmitted symbol sequence to be stationary, the channel
to be time-invariant and the additive noise to be a combi-
nation of stationary and cyclostationary components with
period T (co-channel interference). In a �rst instance, we
shall assume that the additive noise is circular (for the noise
component corresponding to interfering users, most 2D con-
stellations are circular). Extensions to the non-circular case
will be discussed in the last section. References to more pre-
vious work can be found in [1], in which the circular case
was developed.

3 ICMF Derivation

Assume we receive M samples:

YM = TM(HN )AM+N�1(M ) +VM (3)

where YM = [yHM � � �yH1 ]
H and similarly for VM , and

TM(HN ) is a block Toepliz matrix with M block rows and
[HN 0m�(M�1)] as �rst block row. With RvM = EVMV

H
M ,

the proper distance function to be used with the Viterbi
algorithm is

(YM �TM (HN )AM+N�1)
HR�vM (YM �TM(HN )AM+N�1)

(4)
where AM+N�1 = AM+N�1(M ). When vk is (modeled as)
a multivariate AR process, R�vM is banded and can be easily
expressed recursively. Making abstraction of �nite length
e�ects, we can say that we need to pass the received signal

yk through a noise whitening �lter S
� 1

2

v (z) where Sv(z) is the

power spectral density matrix of the noise vk and S
1

2

v(z) is
a (minimum-phase) spectral factor. Alternatively, consider
the transformation

xk = A(z)yk =

�
x1;k
x2;k

�
=

�
Hy(z)H(z) ak + w1;k

w2;k

�
(5)

where

A(z) =

�
Hy(z)
P(z)

�
; wk =

�
w1;k

w2;k

�
= A(z)vk : (6)

H(z) =
PN�1

i=0 hiz
�i = [HH

1 (z) � � �HH
m (z)]H is the SIMO

channel transfer function and Hy(z) = HH (1=z�) is its
matched �lter. P(z) is an (m�1)�m transfer function such
that P(z)H(z) = 0 and is therefore also called a set of m�1
blocking equalizers. One possible choice is

P(z) =

264 �H2(z) H1(z) � � � 0
...

...
. . .

...
�Hm(z) 0 � � � H1(z)

375 (7)

which is FIR. A better (lower order) choice is based on
the multivariate forward prediction error �lter P(z) for the
noiseless received signal. One can show ([2] and refer-
ences therein) that P(z)H(z) = h0. Hence, if h?0 is a
m � (m�1) matrix such that h?H

0 h0 = 0, then we can
take P(z) = h?H

0 P(z). A(z) is an invertible transformation
in general. Note that w2;k contains no signal of interest but
only �ltered noise. However, since w2;k is correlated with
w1;k, we can use w2;k to lower the noise level on x1;k. Hence
consider the transformation

uk = B(z)xk =

�
u1;k
u2;k

�
=

�
Hy(z)H(z) ak + ew1;k

w2;k

�
(8)

where

B(z) =

�
1 �W (z)
0 Im�1

�
; ewk =

� ew1;k

w2;k

�
= B(z)wk

(9)
and W (z) = Sw1w2

S�1w2w2
is the Wiener �lter for estimat-

ing w1;k from w2;k. Note that W (z) = Sx1x2
S�1x2x2

also.
For Gaussian noise, w2;k is independent of u1;k and ak.
Hence the u1;k constitute a set of su�cient statistics for
the detection of the ak. The cascade B(z)A(z) leads to
the Interference Cancelling Matched Filter (ICMF) struc-
ture depicted in Fig. 1. It will be convenient to process u1;k
further by a whitening �lter 1=g(z) (see Fig. 1) (this �l-
ter can be combined with any other �lter that may follow):

g(z) = (Hy(z)H(z))
1

2 . We get for the resulting signal sk:

sk = gy(z) ak + nk (10)



N . The power spectral density of the additive noise can be
shown to be

Snn(z) =
HySvvH�HySvvP

y
�
PSvvP

y
��1

PSvvH

HyH
(11)

If the colored noise vk consists of d � m�1 interfering users
(that also have symbol period T ) plus temporally and spa-
tially white noise then

Svv(z) = G(z)Gy(z) + �2vIm (12)

where G(z) (m� d) regroups the channel transfer functions
of the d interferers. In this case we have

Snn(z) = �2v

�
1 + tr

�
GyPHG

�
GyP

P
yG+ �2vId

��1��
(13)

where PH(z) = H(z)
�
Hy(z)H(z)

��1
Hy(z). Note that

when G(z) = 0, Snn(z) = �2v and W (z) = 0. The result-
ing structure with MLSE from sk is optimal and consists
simply of the multichannel whitened matched �lter. When
G(z) 6= 0 but �2v = 0 (Svv(z) singular), then Snn(z) = 0:
the resulting structure is again optimal even though the ad-
ditive noise is not Gaussian because up to m�1 interfering
users can be eliminated in the noise-free case!

4 Conservation of MFB

Considering the interferers as colored noise and the transmit-
ted symbols to be uncorrelated (Saa(z) = �2a), the Matched
Filter Bound (MFB) using the received signal yk is

MFB =
�2a
2�j

I
dz

z
Hy(z)S�1vv(z)H(z) : (14)

At the output of the ICMF, the MFB is (see (10))

MFB =
�2a
2�j

I
dz

z

HyH

Snn
: (15)

For the ICMF to be optimal, these two expressions should
be identical which we now show. We introduce a lossless
transfer function �(z) (�y� = Im)

�(z) = D�1A =
h
H g�y P

y
(PP

y
)�y=2

iy
(16)

with D(z) some obvious block diagonal transfer matrix.
Then we get

HyS�1vvH = Hy�y�S�1vv�
y�H

= [g 0]
�
�Svv�y

��1
[g 0]y = [g 0]DyS�1wwD [g 0]y

= (HyH)2[1 0] S�1ww[1 0]H = (HyH)2[1 0]ByS�1ewewB[1 0]H
= (HyH)2[1 0] S�1ew ew[1 0]H = (HyH)2S�1ew1ew1

= HyH S�1nn :

(17)

When the channels for all users are memoryless, then the
ICMF corresponds to the (narrowband) generalized sidelobe
canceller (GSW) [3]. The ICMF can therefore be consid-
ered as a particular instance of the broadband GSC beam-
former. The GSW is itself a particular implementation of
the linearly-constrained minimum variance (LCMV) beam-
former. We shall now elucidate which constrained optimiza-
tion problem the ICMF is the solution of. Consider obtain-
ing sk as the output of a MISO �lter F(z): sk = F(z)yk.
The unit-energy �lter F (

H
dz
z FF

y = 1) that maximizes
the variance of the signal part of sk (�2s if vk � 0) is
Fo =

f
g
Hy where f is any unit-energy scalar transfer func-

tion (in the previous development we considered the speci�c
choice f(z) = 1) . All �lters F that have the same in
uence
on the signal part of sk as Fo satisfy the constraint

FH =
f

g
HyH : (18)

An arbitrary parameterization of F(z) is

F = F�y� = [f1 F2]�

= f1
g H

y + F2(PP
y
)�1=2P = f1

g

�
Hy �W P

� (19)

where we can alternatively take f1 and F2 or f1 and W
as free parameters (1 � 1 and 1� (m�1) transfer functions
resp.). We shall consider the second parameterization. In
order to satisfy the constraint (18), we require f1(z) = f(z).
Hence W (z) represents the free parameters. We shall choose
these parameters to minimize the variance �2s =

H
dz
z
Sss(z).

We �nd

Sss = fyf
�
gyg �2a + Snn

�
; Snn =

1

gyg
[1 �W ]Sww[1 �W ]y:

(20)
Minimization of Sss at every frequency leads to minimization
of �2s and hence the optimal solution is obtained for W (z) =
Sw1w2

S�1w2w2
as before.

We can give one more interpretation of the ICMF in terms
of SNR maximization. We can write as before any F as
F = f1

g (H
y �W P). We have for Sss

Sss = fy1f1 g
yg �2a + fy1f1 Snn = Sass + Svss (21)

which we have decomposed into signal and noise contribu-
tions. The SNR in Sss is

Sass
Svss

=
gyg �2a
Snn

(22)

which is again maximized for the same W (z) and f1(z) is
arbitrary (as before). Remark that we consider the SNR
in Sss and not in �2s because the further processing of sk
is not limited to instantaneous detection, arbitrary �ltering
(by f(z)) in sk is possible.



As far as the design of the various �lters is concerned, the
channel transfer function H(z) can be estimated with the
training sequence for the user of interest. From H(z), one
can determine the whitened matched �lter and the block-
ing equalizers. The theoretical expression for W (z) =
Sw1w2

S�1w2w2
using (12) is

W (z) = HyG
�
GyP

P
yG+ �2vId

��1
GyP

y
�
PP

y
��1

:

(23)
If �2v = 0, then W (z) satis�es

W (z)P(z)G(z) = HyG(z) : (24)

This system of equations allows an FIR solution for W (z) if
the number of interferers is limited to d � m�2. In general,
W (z) is IIR and will be approximated by an FIR �lter. The
1 � (m�1) Wiener �lter W (z) can be estimated from the
signals xk. Even though W (z) can contain quite a few co-
e�cients, the samples of xk over the whole time slot can be
used for the estimation ofW (z). Alternatively,W (z) can be
adapted to track changes in the interference scenario during
the time slot.

For implementing an actual receiver, we need to estimate
Sss(z) which can be done from the signal sk observed over
the time slot. For a MLSE receiver, we can estimate the psd
of the colored noise as Snn(z) = Sss(z)� �2aH

y(z)H(z). For
MMSE equalizers, we consider the transfer function (Wiener
�lter)

Sas(z)S
�1
ss (z) = �2a g(z) S

� y

2

ss (z)S
�1

2

ss (z) : (25)

This is the transfer function of the MMSE linear equalizer
(LE). For the MMSE DFE, we consider the last expression
in which the �rst two factors correspond to the feedforward
�lter while the last factor, the feedback �lter, gets imple-

mented in decision feedback form. Note that S
� 1

2

ss (z) is pro-
portional to the prediction �lter for the psd Sss(z).

The proposed receiver structure is appropriate for the
downlink at the mobile unit (where only the training se-
quence for the user is assumed known). For instance in the
GSM system, using multiple antennas at the mobile unit
may not be realistic, but oversamplingwith a factor ofm = 2
can be applied in a meaningful fashion. This would imply
that if only one (dominant) interferer is present, it could be
perfectly canceled with the ICMF, whose implementation
requires no changes to the GSM standard. The ICMF could
also be used as a suboptimal receiver structure for treating
the users separately in the uplink at the basestation.

7 IC Performance Investigation

If the noise consists of d interferers plus white noise as in
(12), then the MFB is obtained by combining the expressions

MFB =
�2a

2�j�2v

I
dz

z

HyH

1 + tr

�
GyPHG

�
GyP

P
yG+ �2vId

��1�
(26)

Considering the orientation ofG w.r.t.H, we can distinguish
two extreme cases:

(i) G ?H: GyPHG = 0, GyP
P

yG = GyG

MFB = MFBJD =
�2a

2�j�2v

I
dz

z
HyH (27)

the Joint Detection MFB: assuming the interferers get
detected correctly, then their contribution can be sub-
tracted exactly.

(ii) G kH: GyPHG = GyG, GyP
P

yG = 0

MFB = MFBk =
�2a

2�j�2v

I
dz

z

HyH

1 + 1
�2
v

tr
n
GyG

o (28)

which is the integrated frequency-dependent SINR.

For a high INR, MFBk can be much smaller than MFBJD.
In order to get a feeling for the MFB in an average situa-
tion, we shall compute the expected MFB for the following
scenario. Let

G = G(GyG)y=2 ; H = H(HyH)y=2 (29)

where the normalized versions G and H constitute together
d+1 vectors spanning a (d+1)-dimensional subspace. We
shall take these d+1 vectors to be uniformly distributed and
i.i.d. at any frequency. The normalizing factors (GyG)y=2

and (HyH)y=2 are still deterministic. It can be shown that
(26) can also be written as

MFB =

I
dz

z

�2aH
yH

2�j�2v

�
1�tr

��
GyG+�2vId

��1
GyPHG

��
(30)

and as a result of our random model that

EG
y
HH

y
G =

1

d+ 1
Id : (31)

Using some work, (30) and(31) lead to

EMFB =
d

d+ 1
MFBJD +

1

d+ 1
MFBk : (32)

This shows that, depending on the number of interferers,
the average MFB can be close to the one for the case of no
interferers.

8 Non-circular Noise

When the additive noise consists of interfering users, the
noise may be non-circular. This occurs if the symbol con-
stellations for the interferers are not circular. Indeed, it can



ak H(z)

Hy(z)

P(z)

1

g(z)

vk
x1;k

yk

+

�
MLSE
DFE

sk

{

;

(:)�

W1(z)

W2(z)

x2;k

Figure 2: ICMF optimal receiver structure when the colored additive Gaussian noise is non-circular.

be shown that the output of the LTI channel is circular i� its
input is circular. A major case of non-circular constellations
are 1D constellations (e.g. BPSK). Paralleling the previous
developments, one can show the optimality of the receiver
structure shown in Fig. 2. We shall use the following nota-
tion:

xk =

�
xk
x�k

�
(33)

and similarly for other signals. Then

W (z) = [W1(z) W2(z)] = Sw1w2
S�1w

2
w

2

= Sx1x2
S�1x

2
x
2

(34)
is the Wiener �lter for estimating w1;k from w2;k. Again,
because of Gaussianity, w2;k is independent of u1;k and ak.
Hence the u1;k constitute a set of su�cient statistics for the
detection of the ak. After noise whitening, we get again the
signal sk as in (10) but this time the non-circular noise nk
is characterized by

Snn(z) =
HySvvH�HySvvP

y
�
PSvvP

y
��1

PSvvH

HyH
(35)

where

H =

�
H 0
0 H?

�
(36)

with H?(z) = H�(z�) and P is similarly de�ned. Consider
now the case in which vk consists of d1 interferers with 1D
constellations and d2 interferers with 2D constellations such
that d1+2d2 � 2m�2, plus temporally and spatially white
circular noise:

Svv = G1Sb
1
b
1

G
y
1 +G2Sb

2
b
2

G
y
2 + �2vI2m (37)

where b�1;k = b1;k and Gi are de�ned like H. As before, we
have that Snn = 0 when �2v = 0 and d1+2d2 � 2m�2 (to
show this, it is advantageous to work with real and imaginary
parts of signals instead of with the signal and its complex
conjugate). This means that for 1D constellations the num-
ber of interferers that can be cancelled doubles compared to
2D constellations, at least if the "widely linear" estimation
�lter W (z) = [W1(z) W2(z)] of Fig. 2 is used.

To �nd the MFB for the non-circular case, consider the
derivation of the matched �lter F (z) = [F1 F2] that �lters
y
k
. The matched �lter is found as the solution to the fol-

lowing problem:

min
1

2�j

I
dz

z
FH = [1 0]

I
dz

z
FSvvF

y (38)

the solution of which is

F = [1 0]
�
HyS�1vvH

��1
HyS�1vv : (39)

We �nd for the MFB:

MFB = �2a

 "�
1

2�j

I
dz

z
HyS�1vvH

��1#
11

!�1
: (40)

This expression reduces to (14) in the circular noise case.
Due to the correlation of vk and v�k, the MFB increases
in the non-circular case. As in the circular noise case, the
conservation of MFB after the ICMF can be shown, namely

MFB = �2a

 "�
1

2�j

I
dz

z
gyS�1nng

��1#
11

!�1
: (41)

The investigation of the relation to beamformers leads to
conclusions that are similar to the circular case.
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