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Abstract

Annotating a video database requires an intensive, time consuming and error

prone human effort. However, this is a mandatory task to efficiently analyze multi-

media contents. We propose an new selection strategy for active learning methods

to minimize human effort in labeling a large database of video sequences. For-

mally, active learning is a process where new unlabeled samples are iteratively

selected, presented to users for annotation and added to the training set. The major

problem is then to find the best selection function to quickly reach high classifi-

cation accuracy. We will show that existing active learning approaches using se-

lective sampling do not maintain their performances when the number of selected

samples per iteration increases. The presented selection strategy attempt to pro-

vide a solution to this problem. In practice, selecting many samples offers many

advantages when dealing with a large amount of data; among them the possibility

to share the annotation effort between several users. Finally we attempt to tackle

the more realistic and challenging task of multiple label annotation. This would

reduce to greater extend the human effort for labeling.

Keywords: active learning, selective sampling, nearest neighbors classifier, video

database annotation.
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1 Introduction

The growth of numerical storage facilities allows for many documents to be archived

in huge databases or extensively shared over the Internet. The advantage of such mass

storage is undeniable. However the challenging tasks of multimedia content indexing

and retrieval remain unsolved without the expensive and necessary human intervention

to archive and annotate contents. Indeed annotation is mandatory to either index video

content through keywords or to build models for automatic content analysis. Many re-

searchers are now investigating methods to automatically analyze, organize, index and

retrieve video information [1, 2, 3, 4, 5]. This effort is further stressed by the emerg-

ing MPEG-7 standard that provides a rich and common description tool of multimedia

contents [6]. It is also encouraged by Video-TREC [7] which aims at developing and

evaluating video content analysis and retrieval methods on large scale databases.

Currently, one of the main challenges in the field is to bridge the gap from low-level

video features to the semantic content. Classical approaches build statistical models

from training samples. Unfortunately, given the complexity and diversity of semantic

contents, a great amount of annotated samples is necessary to build efficient models.

In June 2003, Video-TREC has launched a collaborative effort to annotate video se-

quences in order to build a reference database with its associated ground-truth. It is

composed of about 63 hours of news videos that are segmented into shots. These shots

were annotated with labels from a list of 133 items which root concepts are the event

taking place, the context of the scene and objects involved. Twenty one institutes and

laboratories worldwide participated to this huge collaborative annotation effort. We no-

ticed that the database is composed of many redundant shots like news anchor person,

weather maps, commercials, . . . In that case, it is very interesting to limit the annotation

effort by discarding this redundant information. In an attempt to ease the annotation

effort, we propose a new selection strategy for active learning approach to achieve this

task.

Active learning aims at training an efficient statistical model with the smallest train-

ing data set. To achieve this goal, it iteratively selects new samples to be annotated by



users. Samples are selected to optimize the knowledge gain at each iteration. Existing

active learning approaches concentrate on the selection or creation of a single element

to be annotated by a teacher at each round. We will show that active learning systems

based on a selective sampling strategy do not maintain good performances when more

than one sample is selected per iteration. We, then, propose a partition sampling ap-

proach to select a set of ambiguous samples that contain complementary information

to keep system performances at their maximum. This selection strategy also allows to

gain time during the annotation effort and to share this effort among several indepen-

dent users. Furthermore it reduces calls to machine learning algorithms that demand

important computational resources. Following the idea of reducing the annotation ef-

fort, we also apply partition sampling to the complex task of multiple label annotation

that is more relevant in a real world application.

In the following section, we first introduce active learning and related work in the

literature. Then, we present a common mathematical approach to uncertainty sam-

pling. Experiments will show the limits of this common approach when the number

of selected samples is increased. In section 5, we set up our mathematical framework

for partition sampling and detail the algorithm that allows to efficiently annotate many

samples in a single round. Then, we extend our approach to the multi-label case to con-

firm the behavior of partition sampling in this complex context. Finally we conclude

with a brief summary including future work.

2 Related Work

Annotating content is time consuming and subject to errors. However it is necessary

and compulsory in many applications to build statistical models based on training data.

Limiting the effort in constructing a ground truth has raised the interest of the machine

learning community. Two approaches were proposed to tackle this problem, semi-

supervised and active learning. On one hand, a semi-supervised learner combines a

small set of labeled samples with a large set of unlabeled samples [8]. The latter set

does not provide any direct information but the distribution of its samples is used to



boost the performance of the classifier. On the other hand, an active learner starts from

a very small number of labeled samples and then iteratively asks for new samples to

be labeled by a user. Thus it optimally updates the statistical model and increases

its performance and accuracy with few samples. Using few labeled training samples

also allows to better analyze the data and build more accurate models together with

better generalization capabilities. Recently a new learning technique was introduced in

[9], that combines active learning and unsupervised learning to take advantage of both

approaches. In this paper we focus our attention on active learning methods.

The major task in active learning is to determine the optimal sample selection strat-

egy. New samples can either be selected from an unlabeled set or be created by the

system. In the latter case, samples might lack of coherence. Typically a digit recog-

nition system could create and ask to be labeled a non existing digit that results from

the combination of two digits. The former approach, called selective sampling, is the

most common and many researchers proposed selection methods, such as query by

committee [10, 11, 12] or uncertainty sampling [13, 14] applied to different classifiers

and problems. On one hand, query by committee algorithms aim at selecting samples

according to the principle of maximal disagreement between a committee of learning

systems. On the other hand, uncertainty sampling algorithms rely on one learning sys-

tem and its estimations.

Applications of active learning techniques are now emerging in the field of mul-

timedia database annotation [15, 16, 17]. In the following section we present a com-

mon active learning approach using uncertainty sampling. In section 5, we propose a

new uncertainty sampling strategy introduced in [18], called partition sampling. This

algorithm offers the possibility to select multiple samples as opposed to classical ap-

proaches.

3 Active Learning Principle

This section introduces active learning and the uncertainty sampling strategy. Then we

present the k-nearest neighbor classifier that is involved in the active learning process.



3.1 Notation and Terminology

We have a database of video sequences, denoted D, whose shots have to be annotated.

A shot is represented by a vector x taking values in X. Formally, the learning algorithm

takes a set of training examples L = {(x1,y1), ...,(xN ,yN)} as input where yi is the label

assigned to xi. It produces an hypothesis fL : X 7→ ℜ that minimizes the generalization

expected error:

EL =

�
X

EY |X [C( fL(x),y)]P(x)dx (1)

Where P(x) is the marginal distribution of x and C : ℜ,Y 7→ ℜ+ a predefined loss

function.

Active learning starts from an initial annotated set and lets the learner iteratively

update its training set while learning at each step from the new knowledge gain, i.e.

knowledge provided by new samples. There are two main components involved in

selective sampling: the classifier fL(.) trained on the labeled samples L; the selection

function s f (P). The goal of s f (P) is to select the most appropriate samples S of a

unlabeled pool P given the knowledge already acquired by the learner. The principle is

depicted in figure 1.

Training set (L)

(labeled samples)

{(xi,yi)} Pool (P)

(unlabeled samples)

{xi}

Classifier

fL(.)

Selection

sf(.)
Users

Labeled      samples

{xi}

{(xi,yi)}

Figure 1: Active learning principle:Iterative method to reduce the annotation effort
by selecting useful samples from an unlabeled set.

3.2 Active Learning

An active learner has to efficiently select a set of samples S in P to be labeled by users.

The optimal set, L+ = L∪S, is the one that will result in the maximal error reduction,

denoted RS.



RS = �
X
(EY |X [C( fL(x),y)]−EY |X [C( fL+(x),y)])P(X)dx (2)

S = s f (P) = argmax
S

RS (3)

There are two difficulties in the task. First it is intractable to compute all possible

combinations for S. Therefore, the common approach is to select one query sample

at each round. We call this method common sampling. Secondly, we can not exactly

determine the error because the target distributions P(X) and P(Y |X) are not known.

Several assumptions have to be made leading to different selection strategies.

A classical approach consists in approximating the integral in equation 1 with a

sum over the pool. P is build from a large number of unlabeled samples. Thus we can

assume that its size is large enough to approximate the true distribution. Hence, the

expected error reduction can be expressed as:

R̂S = ∑
P

EY |X [C( fL(x),y)]−EY |X [C( fL+(x),y)] (4)

The major problem is now to learn the hypothesis fL+(.) of equation 2 for each

possible query sample S in order to compute the estimated error reduction. In [17], the

authors first assume that all losses for any x ∈ P \L have an equal influence. Hence,

the sum over P is reduced over S. Then, they can neglect C( fL+(x),y) over C( fL(x),y)

since the new learner is expected to have a very small loss error over S, if not null,

compared to the current learner. A worst case model is, then, used to approximate

EY |X [C( fL(x),y)]. Let ŷ be the estimated label of x, the best approximated error reduc-

tion is finally obtained for:

s f (P) = argmax
x∈S

C( fL(x), ŷ) (5)

The idea behind this formulation is to select the most ambiguous sample at each

iteration.

In order to evaluate the improvement provided by active learning approaches, a



comparison with a random selection approach is usually performed. In this case, sam-

ples are randomly selected and annotated at each iteration. This is obviously the worst

selection strategy. It is also interesting to have an idea of the best selection sequence

that can be obtained. An approximation of the optimal selection sequence is given by

a greedy maximization of the error reduction RS, see equation 2, knowing the ground-

truth of the database. At each iteration, we compute the improvement provided by the

insertion of each sample of the pool knowing all labels. The sample that reduces the

most the classification error is then selected. This is an approximation of the optimal

solution since the maximization of the error reduction is done iteratively without alter-

ing previous decisions. However this optimal solution is already very time consuming

and already provides a very good idea of the best performances that can be expected.

The active learning process relies on a classifier to learn models from training sam-

ples. The next section presents the classifier used in our system.

3.3 Classifier

In this paper, we focus our attention on the k-nearest neighbors classifier. This memory

based method does not require any assumption about the data distribution which is very

convenient for Video-TREC data set that is going to be used.

Let Ns be the neighborhood of a shot s in L, i.e. k-nearest neighbors in the training

set, and yi ∈ {−1,1} the semantic value of the neighbor ni. The hypothesis fL is defined

as:

fL(s) =
∑Ns sim(s,ni)∗ yni

∑Ns sim(s,ni)

where sim(s,ni) = cosine(s,ni)

The estimated label of s is then:

ŷs = argmin
y

C( fL(s),y)

C(u,v) = ‖u− v‖



Another advantage of this classifier comes from the simple updating scheme that

is used in our implementation. Thus time requirements remain satisfying with current

data set sizes. The neighborhood of each point is updated only if it changes.

The next section presents preliminary experiments to illustrate the limits of the

common approach.

4 Preliminary experiments

We evaluate active learning performances on both synthetic data and on the Video-

TREC 2003 annotated database. First we present both data sets, then the evaluation

framework and finally preliminary results.

4.1 Synthetic data sets

The synthetic data sets were generated in a space of dimension 2. The sets are com-

posed of 200 clusters at random positions and with random labels in {0,1}. Each

cluster has a random number of elements between 20 and 400 that are normally dis-

tributed around the centroid. Sets are composed of a 10,000 samples. In the first one,

clusters are constructed such that the overlapping of classes remains reasonably small

(figure 2(a)). The second one have more interlaced classes (figure 2(b)) and it is there-

fore more difficult to model.

4.2 Video-TREC database

The Video-TREC database is composed of 20,000 annotated shots from ABC and CNN

news sequences [19]. We propose a region-based system to efficiently index visual

features of video shots. Contrasting to traditional approaches that compute global fea-

tures, the region-based methods extract features of the segmented frames and perform

comparisons at the granularity of the region. The main objective is to keep the local

information in a way that reflects the human perception of the content [20, 21]. In order

to keep both computational complexity and storage requirements at a reasonable level,

region features are usually quantized, thus allowing a compact frame representation as



(a) First synthetic data set. Small overlapping of
classes.

(b) Second synthetic data set. Accentuated over-
lapping of classes.

Figure 2: Illustration of synthetic datasets

a count vector. From previous experiments [22], 2,000 quantification values for each

feature, i.e. color and texture, provide the best performances for retrieval tasks. Unfor-

tunately, region-based methods are sensitive to the content, the segmentation and the

quantization. We thus introduce latent semantic indexing (LSA), as described in [23]

and [24], to reduce the side effects of the segmentation and quantization.

LSA is a method borrowed from the information retrieval community that aims at

discovering synonyms and the polysemy of words to identify similar text documents

[25]. It describes the semantic content of a context by projecting words (within this

context) onto a latent space. In our case, a context is a shot and words composing

the context are quantification values that we call visual words. LSA analyzes the oc-

currence of visual words into shots thanks to the singular value decomposition (SVD)

that is used to compute the projection parameters to the latent space. The number of

singular values kept for the projection drives the LSA performance. On one hand if too

many factors are kept, the noise will remain and the detection of synonyms and the pol-

ysemy of visual terms will fail. On the other hand if too few factors are kept, important

information will be lost degrading performances. Unfortunately no solution has yet

been found and only experiments allow to find the appropriate factor number. From

previous experiments [22], reducing the size by 10% allows to achieve good retrieval



performances on Video-TREC data.

Since this is not the scope of this paper to deal with fusion methods, color and

texture features are first projected in their respective latent spaces and then fused by

concatenation. Shots are thus described by a vector of size 400 including color and

texture information. We focus our effort on the detection of shots presenting weather

news, studio settings, vegetation, face or physical violence concepts. These features

have the particularity to have different a priori properties. Weather news and studio

features are frame level concept. They characterize the complete frame. The former

occurs rarely in our data set: 128 positive samples and the latter occurs often: 1287

positive samples. Other features have various a priori probabilities and will be used for

the problem of multi-label classification.

4.3 Evaluation framework

The evaluation consists in comparing system performances, in terms of error rate, when

the training set grows. For each system, the error rate with respect to the training size

is plotted. In that case, a good system quickly reaches a small error rate after few

iterations. Next, depending on the selection strategy the number of iterations differs.

For example, if one sample is selected at each iteration, the number of iteration is equal

to the size of the training set. But if two hundred samples are selected at each iteration

then the number of iteration is two hundred times smaller than the size of the training

set. In that case, at a given error rate and training size, a system that involves a small

number of iterations is better.

Two reference experiments can be plotted to have a global idea of system perfor-

mances. The random sampling strategy, i.e. when samples are randomly selected in the

pool P, provides the worst performance while the greedy approach provides the best

performance that we can expect from evaluated systems.

In order to plot error rate curves, we need the ground-truth that is available with

proposed data sets. The user intervention is then not required for the active learning

and the evaluation. Systems start with a initial set of training samples and their known

labels. Then at each iteration new samples from the pool P are selected with respect to



a selection strategy. A virtual user, i.e. the system itself, annotated samples, next they

are added with their known labels to the training set L. In a real application, a user will

have to annotate selected samples in order to teach the system.

4.4 Preliminary Results

Preliminary experiments presented here have two objectives. The first is to confirm

the benefits of the described active learning approach: the hypothesis can be learned

thanks to a reduced training set. The second is to analyze its limits when increasing the

number of selected samples: the error rate decreases slower.

Figures 3 and 4 show the classification error rate with respect to the size of the

training set. They are composed of three plots depending on the selection strategy

used. The first plot correspond to the random approach, i.e. the worst case. The second

plot correspond to the selective sampling approach when one sample is selected at

each iteration. The third plot correspond to the selective sampling approach when

many samples are selected at each iteration (The number of selected samples depends

on available data). Finally on synthetic datasets, figure 3, the fourth plot is the optimal

solution. Note that on real data, it is not possible to compute the optimal selection

sequence due to necessary time requirements.

When one sample is selected at each iteration, the advantage of active learning is

significant on both synthetic and real data (figures 3 and 4). It allows better perfor-

mances for a given number of samples or same performances for much less samples.

As expected, the presented approach does not perform as well when we increase

the number of samples selected at each round (as shown on figures 3 and 4). This

phenomenon was already observed in the article [17]. Intuitively, when more than one

sample is selected, it is quite likely that they have are very close one from each other.

Their similarity implies redundancy of information which slows down the evolution of

the active learning system. This explains why performances can be lower than perfor-

mances obtained with the random approach on the figure 3. And why we observe a

very high error rate at the second and third iterations on the figure 4(a).

Classical selection strategies are not well suited to select many samples per itera-



tion. In the next section, we propose a novel selection strategy, called partition sam-

pling, to efficiently select multiple samples without altering system performances.
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Figure 3: Active learning on synthetic data. Evaluation of active learning. The error
rate decreases slower when the number of samples selected per iteration increases.
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Figure 4: Active learning on Video-TREC data. Evaluation of active learning. The
error rate decreases slower when the number of samples selected per iteration increases.

5 Partition Sampling

This section presents our approach to efficiently select a set of samples at each round.

First we detail the mathematical model then its implementation will be exposed.



5.1 Theory

We propose a new selection strategy to efficiently select a set of samples at each round.

Learning algorithms make the assumption that similar elements belong to the same

class. Thus the knowledge of one sample should induce the knowledge of its similar

neighbors. This is implicitly used in common active learning approaches and it is

emphasized in [16], where they proposed to weight the selection function value of a

sample with an estimation of its probability density function to increase learning speed.

However, most ambiguous points are likely to be neighbors. Thus a strategy that would

select the n most ambiguous samples would mostly ask the teacher to annotate similar

contents; resulting in sub-optimal selections.

It is therefore important to select ambiguous points spread over the distribution of

X. We have to ensure that most of selected points are far from each other and also as

ambiguous as possible. Let assume that we constructed a partition of P, i.e. P = ∪Ui

and Ui ∩U j = /0 for i 6= j, such that Ui are connex and that given ε ∈ ℜ then:

∀(x1,x2) ∈Ui ×Ui

‖x1 − x2‖ < ε

Consider a representative element of each set selected with a selection function mi =

ṡ f (Ui), for example mean element, maximum ambiguity, maximum density. Let M =

{mi}, then we approximate equation 4 with:

R̂S = ∑
M

(EY |X [C( fL(xi),yi)]−EY |X [C( fL+(xi),yi)])Ni (6)

Where Ni is the cardinal of Ui. This approximation relies on the assumption that neigh-

bors have the same behavior with respect to learners, i.e. similar loss value for a given

learner. Let

∆L,L+(xi,yi) = EY |X [C( fL(xi),yi)]−EY |X [C( fL+ (xi),yi)]



We are looking for S such that:

s′f (P) = argmax
S

[∑
S

∆L,L+(xi,yi))Ni + ∑
M\S

∆L,L+(xi,yi)Ni] (7)

We now further assume that for x ∈ M \ S, ∆L,L+(xi,yi) is small. Indeed, given the

partition we do not expect L+ to improve classification of elements of M \S. Hence,

s′f (P) = argmax
S

∑
S

∆L,L+(xi,yi)Ni (8)

Moreover the new learner is expected to have a very small loss error on S,

∀S, ∑
S

∆L,L+(xi,yi))Ni ≈∑
S

EY |X [C( fL(xi),yi)]Ni (9)

Finally,

s′f (P) = argmax
S⊂M

∑
S

EY |X [C( fL(xi),yi)]Ni (10)

The idea behind this formulation is to select the most ambiguous samples spread

over the distribution of x.
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UM
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Figure 5: Partition sampling strategy principle. Before the selection, the pool is
partitioned to select useful samples spread over the data set.

5.2 How to create partitions?

In practice, we propose to create a partition of the pool thanks to clustering techniques.

The partition can either be created once at the beginning or at each iteration. In the



experimental section, we will have a look at these two possibilities as well as the parti-

tion size that is required. We propose to use the well-known k-means algorithm for its

simplicity and efficiency to create necessary partitions.

Once a partition is computed on the pool, equation 10 is used to select representa-

tive elements of each set of the partition, i.e we select the most ambiguous element per

cluster. Finally the set S of samples to be labeled is composed of the n most relevant

representatives.

6 Experimental results

Here, experimental results are presented. The first section deals with the partition

sampling selection strategy methods and their parameters. Both approaches presented

in section 5.2 to create the partition will be investigated. The second section compares

the partition sampling selection strategy to the basic approach

6.1 Evaluation of partitions

The proposed approach to create partitions is based on the k-means algorithm. As

most algorithms for partitioning, it requires the number of desired clusters on input

parameter. In following experiments we consider that partition sizes are relative to the

number of samples to be selected. Thus, we define the partitioning factor f such that:

(the size of the partition) = f × (the number of selected samples)

Figure 6 shows the effect of this factor on the first synthetic data set and the Video-

TREC set on the weather feature. The value of the partitioning factor has an impact

on performances. However, we note that performance variations are small and thus the

partitioning factor can be empirically selected. For next experiments, the partitioning

factor is set to 10.

Figure 7 shows the performance differences when the partition is create once at

the beginning or at each iteration. Partitioning at each iteration provides slightly better
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Figure 6: How to select the number of partitions? Experiments to illustrate the
impact of the partition size on performances.

error rates. However, the gain is not worth the computation requirements. In the current

system, the partition can thus be created once at the beginning without altering the error

rate evolution. In systems that need very accurate classification, a compromise is to

compute the partition every N iterations of the active learning.
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Figure 7: When are partitions created? Once at the beginning or at each iteration?

6.2 Evaluation

Figure 8 compares the different approaches when increasing the number of selected

samples per iteration on both synthetic data sets introduced in section 4.1. As ex-

pected, uncertainty sampling has its performances drastically decreased, as explained

in section 4.4, if many samples are selected at each iteration. The partition sampling



strategy is then a good method to greatly reduce this side-effect of traditional active

learning algorithm. Furthermore its performance are close to the objective, i.e. the

performance of active learning with a selection of one sample per iteration. The math-

ematical framework presented in section 5.1 is then well adapted to the problem and

provides a good solution.

Partition sampling provides more advantages than traditional active learning with

similar performances. First of all, users are involved in less iterations and annotations.

The annotation can also be shared among many users. Finally, we can reserve more

computational power between rounds to find optimal elements since we do expect users

to have a rest between labeling rounds.

Figure 9 presents results on the Video-TREC database introduced in section 4.2.

We draw the same conclusion: the partition sampling strategy allows to select many

samples at each iteration without a major impact on the error rate evolution.
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Figure 8: Active learning and partition sampling on synthetic data. Comparison of
the partition sampling and uncertainty sampling strategies.

7 Multi-labeling Case

Focusing the effort on reducing the number of samples to annotate is a first step to

reduce the annotation effort. Another important issue is the annotation of samples with

multiple labels. In most situations, users are required to attribute many labels to a given

multimedia content. For example, 133 items were selected to annotate video shots of
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Figure 9: Active learning and partition sampling on Video-TREC data. Compari-
son of the partition sampling and uncertainty sampling strategies.

Video-TREC database. Therefore it is becoming important for active learning systems

to deal with such requirements.

In the literature, few systems propose to learn multiple labels simultaneously [17,

16]. The basic solution is to compute the mean utility over binary classifiers. Un-

fortunately, these systems also loose their efficiency when many samples are selected

per iteration. We, then, propose to study the effect of the novel partition sampling

strategy on performances. We expect that this selection strategy will help to maintain

performances at their maximum.

The k-nearest neighbors classifier presented in section 3.3 is easily extended to

multi-class problems. Furthermore the complexity of the classification is not changed

since the neighborhood does not depend on sample classes. Let K be the number of

classes and y = {yk},k = 1, ..,K ∈ Y K .

For the label k, the hypothesis f k
L is defined as:

f k
L(s) =

∑Ns sim(s,ni)∗ yk
ni

∑Ns sim(s,ni)

where sim(s,ni) = cosine(s,ni)

The estimated label of s is then:

ŷk
s = argmin

y
C( f k

L (s),yk)



C(u,v) = ‖u− v‖

From equation 5, we define a new selection function when many labels are involved

in active learning:

s f (P) = argmax
x∈S

∑
yk

C( f k
L(x), ŷk) (11)

And for partition sampling equation 10 becomes:

s f (P) = argmax
S⊂M

∑
S

∑
yk

C( f k
L (xi), ŷk)Ni (12)

Finally, virtual users are asked to label selected samples at each iterations.

Figure 10 shows the behavior of described systems when dealing with multiple la-

bels in a synthetic environment. Active learning allows to efficiently annotate samples

with multiple labels. The problem which arises when selecting more samples per sin-

gle round still remains: performances drastically decrease. Partition sampling strategy

is a new solution to keep good performances even when selecting hundreds of samples

per round.

Figure 11 which show system performances on real data, illustrates the problem

that arises when labels are uncorrelated. In that case different samples are required to

train all classes resulting in a selection sequence close to random. With weather news

and studio settings concepts, active learning still allows to save a lot annotation effort

(see figure 11(a)). While training five concepts simultaneously ( vegetation, studio

settings, weather news, face and physical violence) reduces consequently the benefits

of active leaning (see figure 11(b)). This behavior can be explained by the fact that the

correlation between labels is less strong when more labels are introduced.

8 Conclusion

We proposed a new selection strategy, named partition sampling, that allows to build

a set of optimal query samples to be annotated. The set may then be shared among

users in a collaborative work to efficiently annotate complex and numerous contents
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Figure 10: Active learning for the annotation with multiple labels: synthetic data.
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Figure 11: Active learning for the annotation with multiple labels: Video-TREC
data.

that require many examples. In the context of a single user, it simply reduces the time

spend by the annotator. An initial mathematical framework was set up to introduce

active learning. Then, we proposed a new mathematical framework for the partition

sampling strategy. We presented experimental results on both synthetic data and the

real problem of video database annotation. First results illustrated the problem of clas-

sical approaches when selecting many samples per iteration: the error rate decreases

slowly. Secondly, we presented the performances of the partition sampling strategy that

allows to efficiently select more samples per iteration. These experiments allowed to

validate our mathematical framework. The partition sampling approach outperformed

random sampling and almost reached its optimal learning sequence. Finally we tackled

the more realistic and challenging task of multiple label annotation and raised an issue



concerning the correlation between classes on active learning performances.

Future work will involve the improvement of selection strategies and the partition-

ing to achieve better performances, i.e. closer to the optimal selection strategy. Then,

we will concentrate on the annotation task of multiple labels.
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