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Abstract

We consider a non-ergodic multiple access Gaussian block-fading channel where
a fixed number of independent identically distributed fading coefficients affect each
codeword. Variable-rate coding with input power constraint enforced on a per-
codeword basis is examined. A centralized power and rate allocation policy is de-
termined as a function of the previous and present fading coefficients. The power
control policy that optimizes the expected rates is obtained through dynamic pro-
gramming and the average capacity region and the average capacity region per unit
energy are characterized. Moreover, we study the slope of spectral efficiency curve
vs. (Ep/No)dB, and we quantify the penalty incurred by TDMA over superposition

coding in the low power regime.

Keywords: Channel Capacity, Fading Channels, Multiple Access Channels, Power Con-

trol, Low Power Regime, Causal Channel State Information.

1 Introduction and motivations

In this paper we present results on fading multiple access systems employing variable-rate
coding. Our setting captures the characteristic, common to several real-time services,
of requiring reltable transmission in any channel conditions. Examples of this class of
applications are real-time video streaming, for which the reception of erroneous packets
may cause discontinuity in the service, and sensor networks, where measurements must
be delivered at regular time intervals at possibly different rates.

We assume the channel to be frequency non-selective and slowly varying (i.e., the

channel coherence bandwidth and the channel coherence time are larger than, respectively,



the bandwidth and time duration of the transmit signals). We use the popular block-fading
channel model [13] in which the time axis is divided into equal-length slots and each slot
is affected by one fading coefficient. The fading coefficient, or channel state, remains
constant over the whole slot and varies independently from slot to slot. In practical
systems, the independence assumption is motivated by time and/or by frequency hopping.
Moreover, we assume that each slot has large enough bandwidth time-duration product
so as to guarantee a certain desired level of reliability against the additive noise.

We also assume that codewords span a fixed number of slots. At the end of a block
of N slots, decoding must be performed. The system parameter N, common to all the

“useless” if

users, can be used to model the time-sensitivity of information that becomes
received after a given time since its generation. It can also be used to model the expansion
factor in degrees of freedom that the designer is willing to incur in order to combat fading
variations. Notice that since each slot of each user is affected by a single fading coefficient
the channel is non-ergodic: the fading statistics are not revealed within the span of each
codeword for any finite V.

The information-theoretic literature on fading channels has adopted various ways to

characterize power constraints, foremost among those:

A Power constraint on a per-symbol basis.

B Power constraint on a per-codeword basis.

C Power constraint on an arbitrarily long sequence of codewords.

In the above cases, power is typically averaged over of the codebook. Constraint B is
preferable over C in many practical systems in which the transmit power cannot fluctuate
arbitrarily from codeword to codeword whenever power cannot be amortized over a long
horizon.

Basic information theoretic results [19, 7] have shown that the constraints B and C
offer no advantage in either unfaded channels or in fading channels where the transmitter
does not know the channel. However, when the transmitter has instantaneous knowledge
of the channel fading coefficients, constraints B and C lead to strictly larger capacities
than A because they enable the use of “power control” which avoids wasting power at
symbols where the channel undergoes deep fades. In ergodic settings, constraints B and C
result in the same power control policy, e.g., in the single-user scalar (ergodic) Gaussian-
noise fading channels, the optimal power allocation strategy is water-filling in time [1].

Under A the optimal power policy is constant power allocation. Although the different



constraints lead to different optimum transmission strategies, in the high spectral effi-
ciency regime they achieve very similar single-user ergodic capacity. Only in conjunction
with multiaccess and multiuser detection do optimum power control strategies lead to no-
ticeable advantages in the high SNR (Signal to Noise Ratio) regime [14, 5]. On the other
hand, in the low spectral efficiency regime, constraint B enables (for fading distributions
with infinite support) reliable communication with energy per bit as small as desired [18].
This is in stark contrast to constraint A, which requires a minimum transmitted energy
per bit equal to -1.59 dB [18].

In non-ergodic channels, constraints B and C lead to different power allocation strate-
gies. In [16] the concept of “delay-limited” capacity region for multiaccess fading channels
is introduced. In this setting, each codeword spans a single fading state and the input
power constraint enforced is C. The reliable decoded rates are fixed while the transmit
power fluctuates from codeword to codeword. The delay-limited capacity region is the
set of rates which can be achieved for all fading states (up to a set of measure zero). In
the single-user scalar case, the optimal power policy is “channel inversion”, i.e., the SNR
at the receiver is maintained constant by appropriate compensation at the transmitter.
If, instead, the power constraint enforced were B, then only the rate corresponding to
the least-favorable fading state could be guaranteed. For example, for Rayleigh fading
no positive rate can be guaranteed with finite power under constraint C (and a fortiori
under B).

Another way to characterize the performance of non-ergodic channels is by means of
the e-capacity [3, 8]. This approach, also referred to as capacity vs. outage [13, 11, 12],
allows decoding failure with non-negligible probability. The power allocation policy has
the objective to maximize the transmission rate for a given outage probability e. As
in the delay-limited setting, the transmit power responds to the fading fluctuations but
the transmission rates remain constant. In the single-user scalar case with codewords
spanning a single fading state, the optimal policy under B is constant power allocation
while under C is truncated channel inversion, i.e., the fading is compensated for only if it
is not too severe [8].

In this paper we take a best-effort approach that complements the delay-limited and
outage approaches: we allow the transmit coding rates to vary according to the chan-
nel conditions while enforcing arbitrarily reliable communication. The goal of the en-
coder/decoder is to maximize the expected rate of reliable information transfer within
each codeword subject to an average power constraint on a per-codeword basis (constraint
B). A centralized controller that knows the previous and current fading realizations af-

fecting all users (e.g. the receiver) determines the rate and power to be used by each user



at each slot. The resulting transmission rates vary from codeword to codeword and are
function of the actual realization of N fading coefficients. The single-user version of this
problem has been considered in [15]. If the N fading coefficients were known non-causally
at the sender side, the best-effort variable-rate policy under constraint B would be the
allocation of the whole available power on the slot with largest gain. However, the causal
channel knowledge prevents this simple strategy.

Notice that the maximization of the average rate under constraint C, with or without
causal channel knowledge, results in the optimal ergodic power allocation policy derived
in [5].

As shown recently in [18], the minimum energy per bit, on which traditionally infor-
mation theoretic analysis of the low spectral efficiency regime has focused, fails to capture
the fundamental power-bandwidth tradeoff. To study that tradeoff it is necessary to an-
alyze not only the minimum energy per bit, but also the “slope” of spectral efficiency vs.
(Eb/Np) (expressed in b/s/Hz/3 dB) at the point of minimum energy per bit. Accord-
ingly, our analysis focuses on both fundamental limits: we make use of the framework
developed in [17] for the capacity-per-unit-cost region for multiaccess channels as well as
results on the wideband slope region, following the approach of [20].

We show that a “one-shot” power allocation policy, that concentrates the whole trans-
mit energy over one out of N slots, yields both optimal minimum energy per bit and
optimal wideband slope. Since such slot must be chosen on the basis of causal feedback,
the transmitter cannot simply choose the most favorable slot in the codeword. Rather,
the solution obtained through dynamic programming has the structure of a comparison
of the instantaneous fading amplitude with a decreasing threshold function. The deter-
mination of the optimal power policy with causal channel knowledge requires the solution
of a dynamic program whose closed-form solution is not known for arbitrary SNR, even in
the single-user case [15].

Interestingly, we show that TDMA in conjunction with the one-shot power policy
suffices to achieve the capacity region per unit energy but is strictly suboptimal in terms of
wideband slope for any non-degenerate fading distribution. On the contrary, superposition
coding with successive interference cancellation at the receiver, in conjunction with the
one-shot power policy, achieves both the capacity region per unit energy and the optimal
wideband slope.

The paper is organized as follows: Section 2 gives a description of the system model
and defines the variable rate coding scheme; Section 3 characterizes the average capacity
region. As a byproduct of our results we show that by placing the additional constraint

that reliable decisions be made at the end of each slot there is no loss in maximal ex-



pected rate. Section 4 specifies the average capacity region per unit energy including the
asymptotic form of the dynamic programming power allocation strategy. The asymptotic
optimality (in terms of wideband slope) is proved in Section 5, which also considers the
performance of TDMA in the low-power regime. As a baseline of comparison a low-SNR
analysis of the optimal non-causal policy is given in Section 6. Section 7 particularizes
the results for the Rayleigh fading case.

2 System model and basic definitions

We consider a Gaussian Multiple Access Channel (MAC) where K transmitters must
deliver their message to a central receiver by spending a fixed maximum energy per
codeword. The propagation channel is modeled as frequency-flat block-fading. The fading
gain of each user remains constant for a time slot of duration 7" seconds and changes
independently in the next slot. The number of complex dimensions per slot is L = |WT |
where W is the channel bandwidth in Hz. For the block-fading assumption to be valid,
T and W must be smaller than, respectively, the fading coherence time and the fading

coherence bandwidth [10]. The baseband complex received vector in slot n is

K
Yy, = Z CknLin + z, (1)

k=1
where z,, is a proper complex Gaussian random vector of dimension L with i.i.d. (indepen-
dent and identically distributed) components of zero mean and unit variance, @y, is the
length-L complex vector of symbols sent by user & in slot n and ¢y, is the scalar complex
fading coefficient affecting the transmission of user % in slot n. The cdf (cumulative distri-
bution function) of the instantaneous fading powers ay 2 |Cknl?, FP(z) = Prlag, < 7]
is assumed to be a continuous function.

The codewords of all K users are synchronized and span a fixed number N of slots.

Each codeword of length N slots is subject to the input constraint

1 N
NI 2l
n=1

where 7, is the average transmit energy per coded symbol. Because of the noise variance

< (2)

normalization adopted here, v, has the meaning of average transmit Signal-to-Noise Ratio
(SNR). !

!Note that the actual transmitted SNR is equal to i /Ny as the noise power is P, = NoW [Watt] and



The receiver has perfect Channel State Information (CSI)? and determines the rate
and power allocated to each user at slot n on the basis of the history of the channel state

up to time n, F,, defined as
Fo2{critk=1,- K, i=1,---,n} (3)

. Due to the causality constraint, the instantaneous transmit SNR of user &k in slot n,
indicated by B p,

Al
Bl = T ||iL'kn||2, (4)

can depend only on JF,. Therefore, the input constraint in (2) can be re-written as

1 N
5 2 Ben(Fn) < % (5)

For finite N and L no positive rate is achievable with arbitrary reliability. However, we
can consider a sequence of channels indexed by the slot length L and study the achievable
rates in the limit for L — oo and fixed N. This is a standard mathematical abstraction
in the study of the limit performance of block-fading channels [13] and it is motivated by
the fact that, in many practical applications, the product L = WT is large and sufficient
to average out the additive noise. Note that for the power (joules/sec) and rate (bits/sec)
not to grow without bound as the number of degrees of freedom grows, T" must be allowed
to be sufficiently large.

Even in the limit of large L, the rate K-tuple at which reliable communication is
possible over a codeword of N slots is a random vector, because only a finite number N
of fading coefficients affects each codeword. This means that, for fading processes with
non-vanishing cdf in an interval around the origin, the counterpart of the delay-limited
capacity obtained enforcing (2) would be zero.

We assume that transmitters have infinite “bit-reservoirs” and transmit variable num-
bers of bits per codeword, which depend on the K'N fading coefficients affecting the K
codewords. Therefore, at the end of each transmission the number of bits delivered to the
receiver is a random variable. Because the transmission rates are chosen so that reliable
decoding is always possible, the system is never in outage.

The largest average rate region achievable with variable-rate coding when each code-

word is subject to the power constraint in (5) is the subject of the next section.

the user k signal power is P, = ~L2e [Watt], where Ny [Watt/Hz] is the power spectral density of the

additive noise, W [Hz]| is the channel bandwidth, N L~ [Joule] is total energy of the k-th user codeword

and T'N [seconds] is the total codeword duration.
2Because each slot contains a number of degrees of freedom that grows without bound, dropping this

assumption has no effect on the capacity [6].



3 The average capacity region

The average capacity region is the set of average achievable rates defined in Appendix A
and admits the following characterization.

Theorem 1. The average capacity region achieved with v = (71, ...,7vk) is given by

Cen(y) = | {ReRf :VAC{l- K}
Berkn (Y)
| N
keA n=1 keA

where the expectation is taken with respect to Fy and where 'k () denotes the set of
all power allocation policies satisfying the causality constraint in (5).
Proof. See Appendix B. O
The region Ck n(7) is convex in 7. By applying Jensen’s inequality it is straight-
forward to see that if R € Cgn(v) and R € Ckn(7) then, for every A € [0, 1]
AR + (1 = A)R™ € Ok n(). For this reason the convex hull operation is not needed
in (6).
The boundary surface of the region Ck n(7) is the convex closure of all K-tuples
R € RY that solve [5]

K
max 12273 Rk (7)

RECK,N('Y) ;
for some p = (p1,- -, px) € RE. It is easy to see that the set of average rates achievable

by any fixed power policy B8 € 'k n(7) is a polymatroid [5]. Hence, the optimization

in (7) is equivalent to the optimization over 8 € 'k x(7y) of the functional

K 1 N o ﬁ
fr, B | Y log |1+ (8)
; LN ; ( L4225 <k Onyon By

where 7 is the permutation of {1,2,--- , K} such that p;, > --- > p,, which corresponds
to the decoding order mg,mg 1,---,m. The optimization in (8) is a dynamic program
solved by:

Theorem 2. The boundary surface of C'k n(7) is the convex closure of the set

{ﬁN(u,v) : mERY, Zukzl} (9)



where the k-th component of the rate K-tuple ﬁN(p,, ~) is given by

N P
n=1 1+ Z]‘<7T*1(k;) Orin /Bﬂ'j,n(?n; M, "Y)

(10)

(m='(k) gives the position of index k in the permuted vector 7) and where Bk,n(ffn; ),
for all n and k, is given by the following dynamic programming recursion:

Let P = (P,..., Px) denote the users’ energy (per L-symbols) available at any given
slot. For n =1,..., N, define recursively the functions S, (P; u) by

K

aﬂ' pﬂ'

Su(P;p) = E| max ) prlog |1+ = + 51 (P —pip)
pRE o 142 <k O, Py

pr <P,V k

(11)

with So(P;p) = 0, where the expectation is with respect to a = (v, - ,ar). Let
(D1, Pyp), -+, prn(a, P;p)) be the vector p achieving the maximum in (11). Then,

the optimal power policy is given by

n—1
ﬁk,n(gjn; H, 7) - ﬁk,N7n+1 <an7 N7 - Z /8]' (?ja K, 7)1 p’) (12)
j=1
where a,, = (1, - - -, k) denotes the fading power vector in slot n.

Proof. The recursion in (11) and the optimal power policy in (12) follow easily from the
general theory of dynamic programming [4] when the cost function to be maximized is
given by (8) and the system state, in the presence of a command p,,, evolves from time n
to time n + 1 according to (o, P) — (41, P — p,,). O

It follows that the maximum of the rate weighted sum (8) is given by

K
- 1
>t R () = = Sv(Nv: ) (13)
k=1

Numerical results for the recursion in (11) in the case of Rayleigh fading and K = 1 are
provided in [15].

Interestingly, in contrast with [5], the convex hull operation in the boundary char-
acterization of Theorem 2 is needed since the rates ﬁN([J,,‘)/) might not be continuous
functions of p. Consider, as an example, the case for N = 1. The region Cx 1 () coincides
with the ergodic capacity region of a fading channel without CSI at the transmitters, the
dominant face of which is an hyperplane in K dimensions. Due to the polymatroid struc-

ture of Ck 1(7), the solution in (10) is one of the (at most) K! vertices of the dominant

8



face. Hence, as p varies in Rf, the set of ﬁN([,l,, ~) contains at most K! points. It is clear
that the convex hull operation is needed here.

Although for finite N a closed form solution of (11) seems infeasible, for large N we
can prove:

Theorem 3. In the limit for large N, the average capacity region C v () tends to
the ergodic capacity region [5]

C¥¥(y) = |J {ReRY:vAC{l,- K}
Berie™ ()

ZRkSE

keA

log (1 + Zakﬂk(a))] } (14)
keA
where the expectation is taken with respect to the instantaneous channel state a =

(aq,---,ak)and F(;rg) (7) is the set of feasible memoryless and stationary power allocation
policies B3 ={f, : k=1,---, K} defined by

Mo (y) £ {8 € RY : E[fi(@)] < )} (15)

Proof. See Appendix C. O

Theorem 3 shows that for large N the penalty incurred by the use of a causal power
allocation policy with respect to the ergodic power allocation policy vanishes. In other
words, as N increases, the past information becomes irrelevant and the power policy
becomes time-invariant and memoryless. An interesting open question is the character-
ization of the rate of convergence of the average capacity region C'x () to the ergodic

capacity region C'&™ (v).

4 The average capacity region per unit energy

For multiaccess channels the fundamental limit that determines the optimum use of the
energy is the capacity region per unit energy [17]. In the variable-rate coding setting the
average capacity region per unit energy is defined in Appendix A and admits the following
characterization.

Theorem 4. The average capacity region per unit energy is

Uk n = U {"“ € Rf (T, Yk TR) € CK,N(‘Y)} (16)
YeRE



Proof. The proof follows immediately from [17, Theorem 5]. O
In analogy with [17], we also have:

Theorem 5. The average capacity region per unit energy is the hyper-rectangle
UK,N:{’I“ERfITkSS(Nk)} (17)

where S(Nk), given by

N
1 1
O i L sup E[Nzakmmnw (1)
) n=1

0 Yk Beri x(n

is the k-th user single-user average capacity per unit energy.
Proof. See Appendix D. O
The explicit solution of (18) was found originally in [15] for the single-user case. We
report it here in our notation for later use:
Theorem 6. The k-th user single-user average capacity per unit energy SS\I;) is given

by the dynamic programming recursion

st = Elmax{s?,, ay}] (19)
for n =1,..., N with initial condition s(()k) = 0 and where the expectation is taken with

respect to ay, ~ Fo(ék)(x) Furthermore, Ss\k;) is achieved by the “one-shot” power allocation

policy defined by

N~ if n=nj
Bim = - (20)
0 otherwise
where the random variable nj, function of (ay1,- -, agn), is defined as
nZ:min{nE{l,...,N}:ak,nnglgln} (21)
Proof. See the proof given in [15]. O

We refer to the optimal policy $* as “one-shot” because the whole available energy
N7 is spent in a single slot. In fact, in each slot n € {1,---, N}, the transmitter
compares the instantaneous fading gain oy, with the threshold s%“)_n If app, > s(Nk)_n,
then all the available energy is transmitted in slot n. Since the threshold for n = N is
7ero (s(()k) = 0), the available energy is used with probability 1 within the codeword of

N slots. The intuitive explanation of why the optimal power policy is decentralized in

10
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Figure 1: Rayleigh fading realization over a codeword of N = 10 slots and the corre-

sponding thresholds for the “one-shot” policy.

the low power regime comes from the observation that, when the transmit powers are
very small compared to the power of the additive noise, the presence of competing, and
potentially interfering, users is not the primarily cause of performance degradation. In
this case, the power allocation policy solely depends on the user fading process, however
the rate allocation policy must be centralized. In fact, the users must coordinate their
transmit rates so that reliably joint decoding at the central receiver is possible.

Fig. 1 shows a snapshot of a Rayleigh fading realization over a window of N = 10 slots
and the corresponding thresholds for the “one-shot” policy. In this case transmission
takes place in slot n* = 6. Notice that the optimal non-causal power policy, would have
chosen for transmission the slot (n = 8) with largest fading gain.

The threshold sequence {sglk)}ffzo is non-decreasing and depends only on the fading
distribution Fo(ék)() and not on the actual fading realization. Hence, it can be precomputed
and stored in memory. When varying the delay requirements from N; to Ns for the same
fading statistics, the threshold sequence needs not be re-computed from scratch: only an
extended segment {sglk) Mo b, instead of {s;’“)}ﬁ;gl, has to be used. Notice also that the
number of active users K does not affect the value of the thresholds.

The behavior of s(Nk) when N grows to infinity is given by:

Theorem 7. For large N, the k-th user single-user average capacity per unit energy

11



SS\I;) tends to the k-th user single-user ergodic capacity per unit energy, given explicitly by

lim s%) = sup{oy} 2 inf{z >0 : FW(z) =1} (22)
— 00
Proof. See Appendix E. O

Notice that sup{a;} = oo for fading distribution with infinite support.

5 Performance in the low power regime

In Section 3 we gave a characterization of the boundary surface of the average capacity
region for arbitrary numbers of users K and slots N. In Section 4 we proved that the
average capacity region per unit energy is achieved by letting all users transmit at van-
ishing SNR. In this section we characterize the average capacity region in the regime of
small (but non-zero) SNR, by comparing the average performance of the “one shot” policy,

optimal for vanishing SNR, with the average performance of the optimal policy in (12).

5.1 The single-user case: background

The optimality of a coding scheme in the low power regime is defined and studied for
several input-constrained additive noise channels in [18]. Let C(snr) be the capacity
expressed in nat/s/Hz as a function of the (transmit) SNR, and let C(E}/Ny) denote the
corresponding spectral efficiency in bit/s/Hz as a function of the energy per bit vs. noise

power spectral density, E,/Ny, given implicitly by the parametric equation

E s
{ Ne = C(SNNRR) log 2
B _ 1
C (_NS) = C'(sNR)

log2

(23)

The value (Ey/Ny)min for which C(Ey/Ny) > 0 < Ey/Ny > (Ep/No)min, is given by [18]

E, ) SNR log 2
— =1 —log2 = —— 24
(N())mm suklo C(snR) -~ C(0) (24)

where C/(0) is the derivative of the capacity function at sxk = 0. From [17] and from the
proof of Theorem 5, we see immediately that the reciprocal of (Ej/Ng)min is the capacity
per unit energy (expressed in bit/joule) of the channel.

In the low power regime, the behavior of spectral efficiency for energy per bit close to
its minimum value is of great importance, as it is able to quantify, for example, the band-

width requirement for a given desired data rate (see the detailed discussion in [18]). This

12



behavior is captured by the slope of spectral efficiency in bit/s/Hz/(3 dB), at (Ey/Ng)min,
given by (see [18, Theorem 6])

2 (¢(0))
-C0)

where C(O) denotes the second derivative of the capacity function at sN\r = 0. A signaling

(25)

0:

strategy is said to be first-order optimalif it achieves (Ey/Ny)min and second-order optimal
if it achieves both (E}/Ny)min and Sp.

5.2 First and second-order optimality of §* in the single user

case

We deal first with the single user case, i.e., K = 1. For simplicity of the notation we drop
the user index, we indicate the single-user average capacity given in Theorem 2 (with a

slight abuse of notation) as

Cin(y) = ) (26)

and we re-write the recursion in (11) for p =1 as

S.(P) = E|max {log(l1+ap)+ S,—1(P—p)} (27)
pE[U,P}
forn =1,---, N with initial condition So(P) = 0. It is understood that, when considering

user k, the mean value in (27) is computed with respect to o ~ Fék)(x) and the SNR
in (26) is v = .

Even if we cannot give a closed form expression for Sy(P) and for B, the low power
characterization of the single-user average capacity and the second-order optimality of the
“one-shot” policy 4* are given by:

Theorem 8. (E,/Ny)min and 8, for the single-user block-fading channel with causal
transmitter CSI and frame length N are given by

<%>m - ;Ng((?) 28)
s, _ 2(50) 20
N Ex(0)

where Sy(0) and Sy(0) are, respectively, the first and the second derivative of Sy (P)
in (27) at P = 0. The first derivative is given by

SN(O) = SN (30)

13



where sy is given by recursion (19), and the second derivative is given by the recursion
~35,(0)=F [0®|a > sp_1] Pr(a > sp_1) — Sp_1(0) Pr(e < s,_1) (31)

forn=1,...,N, with S,(0) = 0.

Furthermore, the one-shot power allocation policy 3* achieves (Ej/Ng)min and slope
8o, i.e., it is first and second-order optimal.
Proof. The expressions in (28) and in (29) follow by using (26) in (24) and (25). The
statement in (30) follows immediately by noticing that Sy(0) = Cy x(0), from (26), and
that Cy x(0) = sy, from the proof of Theorem 5. The proof of (31) and of the second-order
optimality of 3% are given in Appendix F. O

5.3 The multiuser case: background

In a multiaccess channel, the individual user energy per bit over N, are defined by
Ex/Ny 2 log 2 v/ Ry, where 7y is the transmit SNR (energy/symbol) and Ry is the rate
(in nat/s/Hz) of user k. We indicate by SSk) the k-th user single-user slope and by 8 the
slope of user k in the multiuser case. Note that Sgk) is given by (29), where the superscript
“(k)” stresses the fact that the mean values are computed using FP (x). In general, Ry is
the k-th component of an achievable rate K-tuple R. Without loss of generality we can
consider only points on the boundary surface of the capacity region defined by the input
constraints 7y, ...,vk. To stress the fact that these points are functions of vy, ..., vk, we
shall write Ry = Rg(71,. .., 7K)-

In order to make use of the theory developed for the single user case, we fix a vector
0 = (0, ---,0k) € RE and we let the user SNRs vanish with fixed ratio v/v; = 6/0;,
for all i,7 € {1,---, K}. The fact that, from Theorem 5, the average capacity region per
unit energy is an hyper-rectangle implies that for vanishing rates Ry ~ sslvﬁ)vk. Hence, in

the low power regime, imposing SNR ratios is equivalent to fix rate ratios

0 R. s%0
Tk _ Tk _’“:SJ(Y)’“ (32)
v b R’ s,
The user k rate can be expressed solely as function of v as
0 0
k k
and, by applying (29), we obtain
K 2
2 (Zj:l 9]- ’ a]Rk(Oa e 70)>
Sk (34)

= ZJK:I 25:1 0,0, - 8j,mRk(O, --,0)

14



where we define the shorthand notations

A ORg(v, )
and
O’R .
Oy 0, -+ ,0) 2 lim 2k 710) (36)

Y—0 aij a’Ym

Notice that the user k slope is completely characterized by the gradient and the Hessian
matrix of the rate function R computed for v = 0.
In [20], the slope region for the standard two-user Gaussian MAC is studied and its

boundary is explicitly parameterized with respect to the ratio 8 = v /7».

5.4 Slope region achieved by TDMA

Before carrying on the characterization of the slope region for the general multiuser case,
we investigate the slope region achievable by TDMA. In this case, every slot is divided
into K sub-slots each of which is assigned to a different user. Each user sees a single-user
channel on its sub-slot, and applies a suitable (single-user) causal power policy satisfying
its individual power constraint.

In Section 4 we have shown that the one-shot power allocation 8* (in conjunction with
Gaussian variable-rate coding) is optimal in the sense of achieving the average capacity
region per unit energy, i.e., achieves (Ej/Ny)min for all users. Then, we conclude that
the one-shot policy is first-order optimal for any number of users K. From the proof of
Theorem 5 it follows that first-order optimality can be obtained either by using superpo-
sition coding or by using TDMA inside each slot. As an immediate consequence of the
second-order optimality of 3” in the single-user case, stated by Theorem 8, we have:

Theorem 9. For any arbitrary SNR ratios 7/7;, the slope region achievable by
TDMA is given by

K
Sk scima
{sk,tdmazo Vh=1,--, K ) ’;ﬁi) §1} (37)
k=1 0

Furthermore, this is achieved by applying the one-shot power policy 8*.

Proof. For 7 = (71, -+ ,7x) € RY such that S 7k = 1 the maximum achievable rates
under TDMA are Ry = (74/N) - Sy (yx N/71). By straightforward application of (34), we
have S tdma = Tk Sgk) hence, by considering the union over all possible choice of 7, we
get (37). O
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5.5 Second-order optimality of §* in the multiuser case

The optimal slope region under the causal power constraint is given by:
Theorem 10. For any arbitrary SNR ratios v;/v; = 60x/0; (with 6, > 0 for all
k=1,..., K) the optimal slope region is given by

USse>0 Ve=1,--- K : 8§ < S’ — k=1,---,K »(38)
A L+ m A 2y 5o K
where
X, = 250 E[a;;v,nl{nz = n}] Elajnl{n} = n}] (59)
Yont E [ai,nl{nz = n}]
where ) .- denotes the sum over all permutations of {1,..., K} and where A = {Ar} are

K! non-negative “time-sharing” coefficients (indexed by the permutations 7r) such that
> Ar = 1. Furthermore, the one-shot policy 3* achieves the optimal slope region, i.e.,
it is second-order optimal in the multiuser case.

Proof. See Appendix G. O

6 The optimal non-causal policy achieving the aver-

age capacity per unit energy

Before proceeding with numerical examples in which we compare the performance of the
optimal power policy with the one-shot power policy in the low SNR regime and the
performance of the (second order optimal) one-shot power policy with the (first order
optimal) TDMA strategy, we briefly report the power policy that maximizes the average
capacity region per unit energy with non-causal feedback, i.e., where the whole fading
realization JFy is revealed to the transmitters at the beginning of each codeword. We
limit ourselves to the single user case, since we saw that in the multiuser case the aver-
age capacity region per unit energy is the Cartesian product of the single-user average
capacities per unit energy. If we allow the input to depend on the whole CSI Fy in a
non-causal way, it is immediate to show that the optimal policy maximizing the average

capacity per unit energy is “uniform maximum selection”

- (ne N ifne M,
B (Fy) = { M4 ’ (40)

0 otherwise
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where

M, = {n Qg = maX{ak,la T ;ak,N}} (41)

The power policy in (40) allocates uniformly the available energy to the slots whose
fading is equal to the maximum. Notice that with a continuous fading distribution
Pr[|My| > 1] = 0, therefore the whole available energy is concentrated in one slot al-
most surely. However, the selected slot might be different from the slot selected by the
causal one-shot policy 4* in (20). For example, in the snapshot realization of Fig. 1 g* ()
would select slot 8 instead of slot 6 selected by *.

The following results are straightforward extensions of the theory developed for the
case of causal CSI.

Theorem 11. (E,/Ng)" and 8{" for the single-user block fading channel with

non-causal transmitter CSI and frame length of NV slots are given by

@)m - o (42)

No / min Elmax{ay,---,an}]
moy _ 2(Emax{a,---,an}])?
S N E[(max{ah cee aN})Z] (43)

Furthermore, the uniform maximum-selection power policy 3* (" achieves both (Ej/ No)glﬁz

and 8{". O
With TDMA, because of the second-order optimality of 5* () in the single-user case,
we have:
Theorem 12. For any arbitrary SNR ratios 7;/7;, the slope region achievable by
TDMA is given by

K (nc)
S
{Slﬁi‘f&mazo Vh=1,00 K ;Y —kadma 51} (44)
=1 S0
]

Finally, the optimal slope region is given by:
Theorem 13. The optimal slope region with non-causal CSI is given by (38) with
the coefficients Xy, ; given by

o, . 2 Blmax{op, -, axn}] Bmax{ay, -, a5} (45)
kg N E[(max{ak,l, Tty Oék,N})Z]

Furthermore, 3* (" is first and second-order optimal for any number of users K and any
delay N. 0
Proof. See Appendix H.

17



7 Example: the Rayleigh fading case

In order to illustrate the results of previous sections we consider the case of i.i.d. Rayleigh

fading, where the channel gain law is F,(x) =1 —e™* for x > 0 for all users.

Comparison between causal and non-causal power policy. The one-shot policy
(B* is completely determined by the thresholds given by the recursion in (19) and explicitly

computable as
Sp = Sp_1 +e "t (46)

forn =1,2, -+ with sg = 0. The first and second-order derivatives of the average capacity
region Cy y(7) are given by Cy x(0) = sy and by C; x(0) = NSy (0) where S,(0) is given
by the recursion in (31), that can be written explicitly as

—S,(0) = e 1 (2425, 1+ 52 ) — Sp_1(0)(1 —e~*n-1); (47)

for n =1,2,--- with Sy(0) = 0.
For the case of non-causal CSI, the minimum energy per bit and the slope are given
by (42) and (43) respectively, with

E[max{ay,---,ay}] = Z (N> (—1)7”rll (48)

(N 2!
E[(max{a, - - ,aN})Z] = Z ( )(—1)”“—' (49)

n=1
Figs. 2 and 3 show (E}/Ny)min and 8y versus the frame length N and for both the causal
and the non-causal knowledge of the channel state.

For a given delay N, the curves of spectral efficiency vs. Ej,/N, for the causal system
and for the non-causal system start at different (Ej/Np)min, smaller for the non-causal
system, with almost equal slope. The gain due to causal vs. non-causal transmit CSI
is large, and increasing with N, as far as (Ep/Ng)min is concerned. On the contrary, the
slopes in the two cases are very similar. Notice that, in general, the slope with causal CSI

need not be smaller than the slope with non-causal CSI since the corresponding values of
(Ey/Ny)min are different.

Comparison between TDMA and superposition coding. For a desired user rate

Ry (in bit/s) common to all users, and assuming that all users transmit with equal power,
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i.e., they have the same E,/N; such that (E,/No)ag — ((Ep/No)min)ap = €, the system
bandwidth is given approximately by [18]

R,
Wa (50)

miny, 8 '€

We quantify the bandwidth expansion incurred by TDMA with respect to superposition
coding for a given delay N.

Since (50) is determined by the minimum slope, in order to minimize the system
bandwidth we have to maximize the minimum slope. From Theorems 9 and 10 we can
find the max-min slope of an equal-rate system. For equal rates, 6;/6, = 1 for all &, j,

and the denominator of (38) becomes

L+Xo) A > 1 = 145 ) (Aer' (k) — 1)

j<m=1(k) T

= 1- KU"‘KQZ)\ﬂﬂ-il(k) (51)

where, for i.i.d. fading, Ky ; in (39) are all equal to X, given by

g{o — QZiLV:l (E [an]‘{n* = n}])2 (52)
Yner Bla21{n = n}]
As 7 varies over all K! permutations, 7 !(k) takes on each value 1, ..., K exactly (K —1)!

times. Because of symmetry, the max-min slope is achieved by letting Sgk) = const., i.e.,
A = 1/K! for all . This yields

So
in8; = 53
IR T TG (K — 1)/2 (53)
For TDMA, the max-min slope is obtained by letting 7, = 1/K, which yields
mMax min 8 tama = S/ K (54)
T k&

Therefore, the bandwidth expansion factor of TDMA with respect to superposition coding

is given by

B K L2
TI+ K (K —1)/2 %,

n (55)

From (52) we have immediately that K, < 2, which means that TDMA is strictly sub-

optimal for any non-degenerate fading distribution. Notice also that the case of equal
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E}/Ny for all users is the most favorable for TDMA [20]. For a very imbalanced system
the bandwidth expansion factor can be much larger than (55).

Fig. 4 shows the asymptotic expansion factor 2/X for large number of users (K — o)
versus the delay N for different fading statistics. Fig. 5 shows the bandwidth expansion
factor n versus the number of users K and different values of NV for the Rayleigh fading
case. For example, at N = 2 and K = 4, the TDMA requires more than twice the
bandwidth required by a system with superposition coding (Fig. 5) and, asymptotically
for a large K, the TDMA requires more than three times the bandwidth required by a
system with superposition coding (Fig. 4).

By increasing either the frame length N and/or the number of users K, TDMA be-

comes increasingly suboptimal.

Slope region for the two user case. We study in more detail the case K = 2. For
superposition coding, by letting 8 = 6, /6,, we have

So
{ 8 < 14+Ko(1-)) 5 (56)
8
Sy < 1+9<0er
By eliminating the time-sharing parameter \ we obtain explicitly the slope region bound-
ary as
So So 1
——1/6 ——1)]-=X 0<8 <8 o7
(Sl ) +(32 )9 o (57)

With TDMA we obtain the boundary 8; tama + 82,tdma = So-

Fig. 6 shows the two-user slope region for different rate ratios. The slope region
achievable by TDMA is shown for comparison. This figure clearly illustrates that even
though TDMA achieves the capacity per unit energy, it is actually suboptimal in the low

power regime, especially in a fading scenario.

8 Conclusions

In this paper we have analyzed an idealized slotted multiaccess Gaussian channel char-
acterized by block-fading, where each codeword must be transmitted and decoded within
N slots and undergoes N independently drawn fading states. At each slot, the rate and
power allocated to each user is computed on the basis of the history of all the fading
coefficients encountered up to and including that slot.

Much of our analysis has focused in the low spectral efficiency regime, which is where

the major benefits of transmitter feedback occurs. We have analyzed not only the rates
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Figure 5: Bandwidth expansion factor of TDMA over superposition coding vs. the number

of users K for the Rayleigh fading case.
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Figure 6: Slope region for K = 2 for the Rayleigh fading case.

achievable in the vanishing SNR regime (capacity region per unit energy, or equivalently
the minimum value of E},/Ny), but also the slopes of the users individual spectral efficien-
cies at the point (Ey/No)min-
In particular, we have shown that the optimal transmission scheme in the low power
regime is based on Gaussian variable-rate coding whose power (and rate) is allocated
according to a one-shot policy, that concentrates all transmitter available energy in the
first slot whose fading power is above a time-varying threshold function. The threshold
function can be explicitly computed by a simple recursive formula and depends only on
the fading statistics. Interestingly, the power allocation policy of user k£ depends only on
the k-th fading state sequence. However, even for the one-shot power allocation policy,
the rate allocation is, in general, centralized. A notable exception is when the one-shot
power policy is used in conjunction with TDMA inside each slot. This is a simple and
decentralized scheme where each user allocates its power and rate based on the (causal)
observation of its own fading only. This scheme is first-order optimal, in the sense that it
achieves the capacity region per unit energy (equivalently, it achieves (Ej,/Ngy)min for all
users). However, this scheme is not second-order optimal, i.e., its slope region is strictly
inside the optimal slope region, for any non-degenerate fading distribution. The penalty
incurred by TDMA is rather substantial and depends on the fading statistics and grows
with both the number of fading states N and the number of users K.
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We have shown that the optimal slope region is achieved by the same one-shot policy
in conjunction with superposition coding (and successive interference cancellation de-
coding at the receiver). Fully decentralized schemes (with uncoordinated rates) cannot
achieve the optimal slope region, since superposition coding requires the users to coordi-
nate their transmission rates. The investigation of the achievable performance in the low
power regime under fully decentralized schemes is left as an interesting problem for future

research.
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Appendix

A Definitions

We model the variable rate coding scenario by letting the message set size depend on the
fading state. For user k, let Wy, = {Wi,(F,) : F. € C"F} be a collection of message
sets indexed by the channel state F,, each with cardinality |Wy ,,(F,)| = My n(Fy)-

Definition 1. A variable-rate coding system is defined by:
a) An assignment Wy ,, of message sets to the fading states;
b) KN encoding functions ¢r, : Win(F,) x C** — CF for n = 1,..., N such that
Gkp(w, Fp) = @, where w € Wy ,(F,), and such that the resulting codewords satisfy (2);

c¢) For each channel state sequence Fy, a decoding function

Yy cNE Wii(3F1) x - x Wgn(Fn)

such that ¢5,({y, :n=1,---,N}) = (w11, - ,wg,n) where wy, € Win(Fp). O
For given Fy, the coding rate of user k is given by
T
Ru(T) =y 22108 (Mo () (58)
and the error probability is given by
1
Pe(Fn) = : (59)

Hlf:l Hyjjzl Mkn(‘rfn)
Z Pr (Yo, ({y,}) # (Wi, ..., wr )| (wig, ..., wgN))

W11, WK, N

Definition 2. A variable-rate coding scheme for frame length N, slot length L, with

average rate K-tuple
R: (Rl,...,RK),

where
Ry = E[R,(TN)],

with power constraint defined by the K-tuple 4 = (1, ...,7k), and attaining error prob-
ability
Pe(ng) S € vng

is said to be an (N, L, R, v, €)-code.
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The operative definitions of average capacity region and of average capacity region
per unit-energy mimic, the standard definitions for input constrained channels in [19] and

[17], respectively.

Definition 3. A rate K-tuple R* € Rf is average e-achievable if for all A > 0 there exist
L such that for L > L variable-rate (N, L, R, ~, €)-codes can be found with Rj, > Rf — )
for k=1,---, K. A rate K-tuple is achievable if it is e-achievable for all 0 < ¢ < 1. The
average capacity region Ck n(7) is the closure of the convex hull of all achievable rate
K-tuples. O

Definition 4. A K-tuple r* € RY is a average e-achievable rate per unit energy if for
all A > 0 there exist an energy vector v = (7, - - - , Vg ) such that for v > v 3 variable-rate
(N,L,R,v/(NL),e)-codes can be found with (LNRy)/vy >r; —Afork=1,--- | K. A
rate K-tuple is achievable if it is e-achievable for all 0 < ¢ < 1. The average capacity

region per unit-energy Uk y is the set of all achievable rate K-tuples per unit-energy. ¢

B Proof of Theorem 1

Achievability is easily obtained by considering a particular variable-rate coding system
that encodes and decodes independently over the N slots. For each channel state * Fy,
the users construct a sequence of Gaussian codebooks of length L with i.i.d. entries of

zero mean and unit variance and sizes My, ,(F,), satisfying the set of inequalities

% Z log (M, (F,)) < log (1 + Z ak,nﬁk,n(gn)> (60)
keA keA
for all A C {1,---,K}, where B8 € 'k x(7). Each transmitter k, during slot n, after
observing F,, selects a message uniformly on Wy, ,(F,) = {1,..., My ,(F,)} and indepen-
dently of the other transmitters, and sends the corresponding codeword amplified by the
transmit power level 3y ,(F,). The receiver perform decoding on a slot-by-slot basis (even
though it is allowed to wait until the end of the frame of N slots). From the standard
Gaussian MAC [19], any rate K-tuple satisfying the set of inequalities (60) is achievable,

3For two vectors a and b, the notation @ > b means that the difference a — b has non-negative

components.
4For a rigorous treatment in the case where the fading is a continuous random vector we should use

the argument of [5] based on the discretization of the fading state. For the sake of brevity, we cut short

and we assume that we can define a codebook for each channel state.
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i.e., the conditional decoding error probability given the channel state F, vanishes as

L — oo. By summing over NN slots we get

% Z log (H Mk,n(rfn)) < % Z log (1 + Z Oék,nﬂk,n(rfn)> (61)

keA keA

with conditional (w.r.t. Fy) error probability not larger than N times the maximum of
the conditional error probabilities over the IV slots. Finally, by taking expectation with
respect to the channel state of both sides in (61) we get that the set of rates defined in (6)
is achievable.

For the converse part, we consider the N-slot extension of our channel, with input
Xy ={xgn :n=1---,N} and output Y = {y,, : n = 1,--- N}, where the input
constraint is given “frame-wise” by (2). 5 One frame of the original channel corresponds
to a channel use of the new channel. Moreover, we relax the definition of achievable rates
by constraining the average error probability.

The new channel is block-wise memoryless and its input constraint is imposed on a
per-symbol basis (averaged over the codebook). We consider a sequence of such channels
indexed by increasing L, and define the capacity region of the N-slot extension channel
as the closure of the union of all regions for L = 1,2,---.. The ergodic capacity region of
the N-slot extension channel provides an outer bound to the average capacity region of
the original channel.

Let X = {X;,: k=1,...,K} and, for any A C {1,..., K}, let X(A) 2 {X,: k € A}
and R(A) 2 > kea Bi- From standard results on memoryless MAC [19], the capacity

region of the N-slot extension channel is given by

U {ReRf : R(A) < %1 (X(A); YX(A),Fn, V) VACA{L,--- ,K}} (62)
Pr(X,V,9n)

where the joint probability of (X, V, Fy) satisfies

K N
Pr(X,V,Fy) = (H H Pr(zg,|Fn, V, @k 1, - ,mk,nl)) Pr(V|Fy) Pr(Fn) (63)

k=1n=1

and each factor J[

ne1 Pr(@pp|Fn, V, @1, -+, 1) puts zero probability outside the

sphere SN |®knl> < 7% The input probability in the form (63) expresses the fact
that encoding is independent for all transmitters, when conditioned with respect to the

common CSI Fy and the time-sharing variable V', and that the common CSI is causal,

®Similar “blocking” techniques have been used to prove coding theorems for channels with ISI [2, 9].
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i.e., that x;, depends only on J, and not on the whole Fy. Notice that we allow the
time-sharing variable V' to depend on the whole CSI Fy, even if the CSI is only revealed
causally to the transmitters (again, this can only increase the capacity region).

Fix an input probability distribution P(X,V,JFy) in the form (63) with conditional

componentwise second-order moments

B (T, V) = El|z) 21T, V] (64)

where x,(le denotes the /-th component of @ ,. Since the channel is additive and the input

second-order moment is constrained, the boundary of the region (62) is clearly achieved
only if P(X,V,JFy) satisfies E[X|Fy, V] = 0. Then, we shall restrict to this case. Let
P(Y,X, Fn, V) be the joint input-output probability corresponding to P(X, V, Fy) and to
the transition probability of the channel. Let ®(Y,X,Fy, V) be the joint input-output
probability for input X conditionally Gaussian with independent components of zero
conditional mean and conditional variance as in (64). Notice that such input distribution
is valid, in the sense that it is in the form (63).

For every subset A we have

I(X(A);Y|X(A),Fy, V)
= D (Pr(YX,Fn, V)| ®(Y|X(A),Fn, V)| Pr(X, Ty, V))
—D (Pr(Y[|X(A), Fn, V)| 2(Y[X(A), Fn, V)| Pr(X, Fn, V)

INZ

D (Pr(Y X, Fn, V)||®(Y|X(A), Fy, V)| Pr(X,Fy, V))
D Ne(p, D|INe (v, A)|Pr(X, Iy, V) (65)

where (a) follows from the non-negativity of divergence [19] and where we defined the

conditional mean vectors of dimension NL x 1 as

bt Ok T D kg A Ck1 Tk 1
p= : , v= : (66)
Z;le Ck,NTk,N Zkg_,q Ck,NTk,N
and the conditional covariance matrix of dimension NL x NL as
A = diag (1 +3 B TLY), 1Y B (T, V)) (67)
keA keA

By applying the general formula for the divergence of two Gaussian complex circularly
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symmetric distributions [18] we obtain

D (Ne(p, DIINe (v, A)[Pr(X, Ty, V)

= E [logH H <1 + Zak;ﬂ&(%, V))

n=1/¢=1 keA

+XN:Z ‘Zkeﬂ Ck nxgcn = DkeA Ok ”ﬁkn(?”’ V)
ne1 f—1 1 + Zkeﬂ ak,lﬁk,n(gjna V)
T [N L
@ E |E ZZlog <1 + Zak,lﬂ]g?b(gjm V)) Fn
L Ln=1¢=1 keA
w |
S E|E ZL]Og (14—20%151671 EFn;vv)> EFN
i keA
(c)
< E ZLlog <1+Zak 1Bren (T ) (68)
keA

where (a) follows by taking conditional expectation with respect to X, given Fy and V,
and by using the fact that, from (63) the Xk are mutually independent given Fy and V', (b)
follows by defining G ,,(Fy, V) L é L ﬁk n(ff"n, V') and from Jensen’s 1nequal1ty applied
to the concave function log(1+z), and (c) follows by defining Gy, ( n) = E[Bin(Fn, V)| Fn)
and again from Jensen’s inequality.

From (65) and (68) we have that

7 (XA YIX(A), 5, V [ Zlog(HZamﬂkn )

keA

(69)

and that the LHS of (69) is achieved by degenerate V' (i e., a constant) and P(X|Fn, V)
Gaussian with conditionally independent elements xk ~ Nc(0, Ben(Fn)). Since this
holds for arbitrary A and input distribution P(X, Fy, V'), we conclude that (62) coincides

with (6), thus proving the converse.

C Proof of Theorem 3

In order to fix ideas, we treat first the single-user case (K = 1). The proof of Theorem 3
follows by applying the same technique in the slightly more involved multiuser case.

For notation simplicity we drop the user index k. The single-user ergodic capacity is
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given by
C " () = max E [log (1 + a(a))]
B (70)
st. fla) >0 and E[B(a)] <%

The single-user average capacity with causal CSI, delay N and per-codeword power con-

straint is given by

(71)

1 N
n=1

st Bu(Fa) >0 and Y0 Ba(Fa) < Ny

Cin(y) =maxE
B

while the single-user average capacity with non-causal CSI, delay N and “long-term”

power constraint is given by

N
—ne 1
C’EL; )(7) = mlng [N Z log (1 + an8,(Fn))
n=1

st BTN 20 and B[V, 8.(Tx)] < Mo

(72)
When user k is considered, the mean values in (70), (71) and (72) are computed with
respect to «,, i.i.d. ~ Fo(ék)(x) and for v = ;.

Problem (70) has solution [1]

C’ferg) (v) =E [log (1 + af® (q; )] =E {log (%)Jr] (73)

where 3" (q; ) is the ergodic waterfilling power allocation

gy = [L- 1] (1)
’ A«
and the Lagrange multiplier A satisfies
E[8€®(e;7)] =~ (75)
It is immediate to see that, for every N,
Cin() < Oy () = G () (76)

where the inequality in (76) follows since the set of feasible causal power allocations is a

subset of the set of feasible “long-term” non-causal power allocations, and the equality

30



in (76) follows straightforwardly. It is also easy to see that, since C’Eerg) () is a non-

decreasing continuous function of v, for every € > 0 it exists § > 0 such that
Ci™(7) + €= CI™ (7 +9) (77)

Next, we find a lower bound on C x(7v) by choosing a particular causal power allo-
cation policy, and we show that, in the limit for N — oo, the lower bound can be made
arbitrarily close to the upper bound C} (ere) (7). For every N and for 6 € [0,7], consider
the (suboptimal) power allocation 3 € [’y n(7) defined by

0 otherwise

Bu(F) = { B (i y —6) if ST Bi(Si) < Ny .

Hence, the desired lower bound is given by

( Zlog (1 + B8 (cvsy — 5)) { Zﬁerg sy — 5)<7}

Notice that {log (14 a,B8©® (ay;y — )}, and {8 (an;y — 6)}., are iid. se-
quences. Since E[3™® (ay,;y—6)] = v—0d by definition (75) and because of the law of large

E < Cin(7)(79)

numbers, the indicator function 14+ SN B (s — 6) < fy} tends to the constant

value 1 almost surely, for N — oo. For the same reasons, + >_,_; 1og (1 + a8 (c,; 7 — 6))
tends to B[log (1 + o, 38 (a7 — 9))] = L8 (4 —5) almost surely, for N — oo. Hence,
because of (77), we have that the RHS of (79) converges almost surely to C (erg) () — € for

some € > (. Finally, since
C(erg) —e< L C < C(erg) 80
((7) = ¢ < Jim Ci(y) < CF() (50)
holds for every € > 0, we have that

lim Cin(7) = C™ () (81)

In order to extend this result to the multiuser case and prove the statement of Theorem
3, we consider the explicit characterization of the boundary of C™® (v) given in [5]. A
rate K-tuple R = (Ry,..., Rk) is on the boundary surface of C} (ere) (7) if it is the solution
of

K
max i Ry, (82)
Recii®(y) ;
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for some p = (1, -+, ux) € RE. A point (R (p,5),---, R® (1, 7)) is solution of

the above problem if it exists a vector of Lagrangian multipliers A = (A, -+, Ag) € RE
such that
Ew(“g’m )] = s (83)
Blre™ (e )] = RE™ () (84)
where the average is with respect to a = (ay, -+ , ak) and

A
uk(z)—lljfz 3_'2 for zeRy

(85)

Note that r,&erg)(a; w,~y) and ﬁ,gerg)(a; i, ) are, respectively, the instantaneous rate and
instantaneous power allocated to user k in fading state . It is clear that if v, < 7, then
C8) (y,) C €& (,) and for any p € RX

max pr R < max i Ry, (86)
RECKN 71 Z ECKN 72 ;

Conversely, if (86) holds for any direction vector g, then C'\7®(y,) C C\&(~,) and

Y1 < Yo

With arguments analogous to the single-user case, we can show that the upper bound
Crn(y) C C’%}V_nc) (v) = C® () holds for every delay N. For an arbitrary direction
p € RE, an inner bound to C n(7) is obtained by fixing the allocation policy 8 as
follows: for given & € RE such that v — & > 0, we define

Bi(Fa) = { Ofierg’(an; oy —8) 0 Biy(8) < Ny -

otherwise
The inner bound implies that
B (S e S0 ™ (s oy = ) THS, L { % 00 7 (i oy = 8) < i
< S kR (1, ) (88)

where Ry, ~(,7y) are the rates on the boundary surface of Cx n(7), given in (10). Now,

since both {35 e 1 (e g,y — 6)}Y, and {8 (an; m, v — 6)}2, are iid. se-
quences, the indicator functions in the RHS of (88) tend to the constant value 1 almost
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surely and the sum of instantaneous rates tends to Z,ﬁil [bk R,(cerg) (e, v — &) almost surely,

as N — oco. Again, the RHS of (88) converges almost surely to Z,ﬁil ukR,(Cerg)(pj, v — 9d)

and hence
K K K
; R (p,y — 8) < lim. ;ukRk,N(u, ) < ; R () (89)

Since § is arbitrary and (89) holds for any w, we conclude that

lim Cr () = C (v) (90)

N—o00

D Proof of Theorem 5

In the following we indicate with C’fka,(y) the single-user average capacity for user k as
defined in (71), where the extra superscript “(k)” stresses the fact that the mean value
is computed using cdf Fék)(x) Note that C’fklz,(fy) = Ek,N(lk,'y) for I/%k,N(p,,'y) defined
in (10) and where 1; is the vector of length K of all zeros but a “1” in position k.

Consider the following inner and outer bounds for C'x n(7)
1
{R ERN R, < ?Cfﬁ)\;(K%)} C Crn(y) C {R eERN Ry < CE%(%)} (91)

where the inner bound is clearly achievable by TDMA, i.e., by letting each user transmit
for a fraction 1/K of the slot time, and the outer bound is the Cartesian product of the
single user average capacity regions. Theorem 4 implies the following inner and outer
bounds for Uk n

1 1
{r eRY i < sugmcgﬁj)v(l@yk)} CUgn C {r eRY i, < su>p0 %Cfﬁ)\,(%)} (92)
Tk Tk

Define the feasible power allocation policy

N
1
(Btaoee Bin) =arg sup B> apalfin(Tn) (93)
/3€F1,N(’Yk) n=1
and indicate with (Bk,l, e ,B,%N) the k-th user single-user average capacity achieving
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policy. The boundary surface of the outer region in (92) is given by

N
1 N
E [N ; log (1 + ak,nﬁk,n)]

1
sup —C{" () = sup
>0 Yk V>0 Yk
T )
E ¥ Z log (1 + ak,nﬁk,n)]
@ ]_ L n=1
= lim
Y—0 Vi
T
E N Z ak,nﬂ;,n]
® Y A (k)
= lim =Sy (94)
Y —0 ’}/k

where: (a) follows since ka])v(*yk) is concave in 7 (see the Corollary to Lemma 1 at the
end of this section) and (b) follows for Lemma 2 at the end of this section.

With similar steps, we find that the boundary surface of the inner region in (92) is
also given by (94). We conclude that the K-user average capacity region per unit energy
is the hyper-rectangle

UK,N = {’I" € Rf e < SS\]?)} . (95)

for s%c) given in (94) and that 8* = {8}, : k=1,--- ,K,n=1,---, N} is the optimal
K-user average capacity region per unit energy achieving policy. 0

”

In the following we drop the superscript “(k)” since no confusion may arise.

Lemma 1. () y(7v) given in (71) is a concave function of +.

Proof. Consider the single-user average capacity achieving power allocation that, for

notation convenience, we re-write as follows

(Biim), - (@) = arg_swp E[%meuanﬁn(%)) (%)

/BGFLN(’Y)
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to explicitly denote the dependency on the constraint v. For every A € [0, 1] and for every

Ya, 7 > 0 consider the convex combination

N
AOI,N(’Y(L) + (1 - )‘)OI,N(’Yb) = AE [% Z lOg (1 + angn(?n; ’70.))
n=1

+(1-AE [% Zlog (1 + B (F; ’Yb))]

N

%) %;E [log (1 + A3 (T Ya) + (1 — N) BT %))]
(2 % XN: E [log (1 + i B (Fs Mya + (1 — A)%))]

= Cin(Ma+ (1= X)) (97)

where: (a) follows from Jensen’s inequality and (b) because the feasible power policy
AB(:7a) + (1 = A)B(;7) does not coincide in general with the optimal power alloca-
tion (96) for v = Ay, + (1 — A) . O

Corollary. Since C y(v) is non-negative and concave we have

sup 28 _ ¢ o) (08)
>0 v
where O} x(0) denotes the first derivative of C} y(v) at v = 0.
In fact, since C y() is concave, its second derivative is non-positive, i.e., C’I,N(fy) <0,
and hence its first derivartive is non-increasing, i.e. C’l,N(fy) < C’LN(O). Since C n(7) is
non-negative, by integrating both sides of the inequality C () < C;.x(0) and imposing
the initial condition C x(0) = 0 we get
0 < Civ(y) < 701N (0) (99)

hence (98) follows. O

Lemma 2. Let 3 = arg maxg E [% SV log (1 + anﬁn(i}"n))] and
B* = arg maxg E [% SN anﬁn(ﬁ"n)], where in both case 8 € I'y x(7). Then, the follow-

ing relation holds

1 & W [1& .
“Nlog(1+a,8)] < E|=S"1 (1 nn)
E N; og(1+ ﬁn)] < E N; og 1+ a,p ]
o [1& s]lo [1 &
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where (a) and (c) follow by definition and (b) follows since log(1 + x) < z for x > 0. By
recalling the definition of B* (see (20) and (21)), relation (100) implies

1 & .
3 2ws (14 0)

S o

E

N
1
T 2108 1+ Nraul{n = n}>] <P

and by letting v — 0, equality (94) follows.

E Proof of Theorem 7

Relation (98) and definition (94) imply C’Eka,(O) = s(Nk) for every N. By using (81), we

have

lim s = lim C{%(0) = C{"®(0) (102)

N—00 N—o

The single-user ergodic capacity is given by the waterfilling formula (73) parameterized

by the Lagrangian multiplier A satisfying (75). Hence, we have

- dE [(log %)1
erg
lim 6y ") ) = lim dA
¥—0 dy =0 4R [(% _ l)"']
dA ~v=E[(1/A—1/a)*+]
= lim A1{X <sup{a}}=sup{a} (103)
A—sup{a}
]
F Proof of Theorem 8
Let
Su(P) = E max {log (1 + au) + S, 1 (P —u)} (104)
ue|0,
and
un(a, P) = arg rn[[:]nlg} {log(1+au)+S,_1(P—u)} (105)
ue|0,
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for n =1,---, N and initial condition Sy(P) = 0.

In order to prove statement (31) we need to analyze in detail expression (104). Because

of the concavity of S,,(P) (from Lemma 1 in Appendix D since S,,(P) = nC} ,(P/n) from

Theorem 2), u,(c, P) in (105) can be written as

0 ifCY<Sn1()
(0, P)={ P if =805 > 5,,(0)

*

» elsewhere

U

with »; the unique solution of

«

=S, (P —u*
1+ au} 1 tn)

The first and second derivative of S, (P) are given by
S.(P) = E [Sn_l(P) 1, (a, P) = o}]

17, (0.P) = P}

+E[1+ aP

(6
{Gn(a, P) =
| (0, P) = )]
and by

~8,(P) = B[(=8.1(P)) Han(a, P) = 0}]

+E <1+aP> H{u, (o, P) = P}
=1 P) =
e <1+ u) {itn(a, P) = Un}]
Now, as P — 0 we have
0 if @ < S,1(0) = (=S, -1(0)) P+ o(P)
o, P)=¢ T if o> S, 1(0)+ (S, 1(0))2 P+ o(P)
p ou,, lsewh
oP elsewnere
P=0

Hence, by substituting (110) in (109) and by letting P — 0 we obtain
~5,(0) = E [0® o> 801(0)}] = $ara (0 B [1{a < $0a(0)}
which coincides with (31).
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Next, in order to prove the second-order optimality of the policy 3%, we show that the

rate function C7 y(7), defined as

Cin() =B | 3 log(1+ Ny 1{n* = n}) (112)

n=1
obtained by applying 8*, has the first and second derivative at v = 0 equal to those of
Cin (7).
It follows immediately that the first and second derivative of (112) w.r.t. v computed

for v =0 are

C’{:N(O) = E Zanl{n* =n} (113)
1 ., o 2 290, % _ :
_NCLN(()) - E ;anl{n = n}_ (114)

From the proof of Theorem 5 it follows that C{N(O) = Oy n(0), i.e., B* achieves (Ey/No)min-
Next we show that (114) is equal to —Sx(0) which implies C’fN(O) = (. x(0). In order
to show the identity of the second order derivatives we shall show that (114) can be
computed by a recursion identical to (111).

The probability that transmission occurs in slot n is

n—1
Pr(n* =n) = Pr(a, > sy_n) H Pr(o; < sy—j) (115)
j=1
Obviously, S Pr(n* = n) = 1. For every n = 1,---, N, the cdf of a,1{n* = n} is

given by
Pr(a,1{n* =n} < x)
= Pr(a,1{n* =n} < z|n* =n)Pr(n* =n)
+ Pr(a, 1{n* = n} < z|n* # n) Pr(n* # n)
= Pr(a, < zn* =n)Pr(n* =n) +Pr(0 < zjn* # n) Pr(n* # n)
= Pr(a, <z[n* =n)Pr(n*=n)+Pr(n*#n) for >0 (116)

By recalling the expression of Pr(n* = n) in (115) we finally get

n—1
Pr(ap,1{n* =n} <z) = H Pr(a; < sy—j) Pr(an, <z, 05 > sn_p)
7=1
n—1
+ <1 — PI‘(Oén > San) H PI'(CY]' < 5Nj)> (117)
j=1
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and hence, for every r € N such that the r-th moment of F,(z) exists, we have

n—1 50
Efog1{n* = n}] = [ Falsv_) / 7 dF (x) (118)
j=1 SN—n

By summing the terms in (118) over n = 1,--- N for r = 1 and 7 = 2 we get respec-
tively (113) and (114). Let pn(r) = ij [ "1{n* = n}], then by using (118) w

have

N n—1
pn(r) = ZHFa SN j/ x’"dFa(x)
n=1 j=1

o N
= / " dF,( Z
SN—1

= z" dFa(.’II) +Fa(SN_1)/LN_1(T)

SN—-1

= Eloy Hay > sy} +E[H{a < sy_1}] pun_1(r) (119)

Since S,(0) = s, for all n and that —Sy(0) and sy (2) satisfy the same recursion and
have the same initial condition for N = 0, they coincide for all N. This concludes the
proof.

Remark. The cdf (116) can be used to compute recursively C} y(7) as defined in (112)

for all 7. In fact, with initial condition S§(P) = 0, we have

S%(P) 2 g Zlog (14 Pay, 1{n* = n})]
— ZhPra?<sN ]]/ log (1+ Pz)dF,(x)
= / h log (1 + Px)dF,(z) + Prla; < sy 1]S% 1 (P) (120)

and Gy (7) = +S3 (V7).

G Proof of Theorem 10

Consider the following inner and outer bound to the average capacity region

ReRY:VA Y R <gW b CCOxn(y) CCRERY VA ) R; < fW 5 (121)

jeA jeA
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where we define the set functions

N
N 1 A
fA 2R N Zlog 1+ Z aj,nﬁ](-m) (122)
n=1

JEA

where

N
1
{5%) cjeAn=1,---,N} 2 arg max FE NZlog 1+Zajynﬁj7n (123)
7 n—1

S jEA

and

N
wap |l |
g =E N ;log 1+ Z B} (124)

jEA

for all A C {1,---, K}. The inner bound in (121) is the average achievable region when
users apply the one-shot policy 3* and the outer bound in (121) is obtained by applying
the “max-flow-min-cut” theorem for multiterminal networks [19, Theorem 14.10.1] to our
system.

Before proceeding, we point out some characteristics of the set functions ¢ and f™.
First, they do not depend on the whole SNR vector 4 = (1, -- -, k) but only on {v;};ca.
Second, by recalling that 3%, = N v; 1{n} = n} for n} defined in (21), it easy to see that,
in the limit for 4 — 0, the first-order partial derivative of g“Y)({v;};ca) W.r.t. 7 for all
¢ € A is given by

N

09" (0) =Y "Eagal{n; =n}| (125)

n=1

and that the second-order partial derivative of g™ ({v;};ea) w.r.t. v, and 7, for all
¢,m € A is given by

N
Omg™(0) = =N Y Elaca{n} = n}am1{n}, = n}] (126)
n=1

Notice that, since nj only depends on the fading sequence of user ¢, in equation (126) the

mean value factors when ¢ # m. From Theorem 8 we have

99V (0) = sy =C%(0) (127)
0eeg™(0) = C%(0) (128)



where C’g])\,(w) is the /-th user single-user average capacity. Hence, we can write the single
user slope as 8\ = —2(9,9Y(0))2/0y..9V(0).
Now we derive an achievable slope region based on the inner bound in (121). For a

given permutation 7 = (7 --+ ,mx) of {1,..., K}, corresponding to the decoding order
TK,TK_1, - ,71, we have the following vertex of the inner bound region
Rﬂ'k (/n-) — g{ﬂ-l"'aﬂ-k} _ g{ﬂ-l'“!ﬂ-kfl} (129)

Every point on the dominant face of the inner bound region can be expressed as a convex

combination of the K! vertices, of coordinates (129), as follow
Ry=) AxR._,, (m) (130)
T

where 7 (k) gives the position of the integer k£ in the permuted vector r, where y
denotes the sum over the K'! permutations of {1,..., K'} and where A = {Ag} are non-
negative “time-sharing” coefficients (indexed by the permutations ) such that Y . Aqx =
1.

For fixed (61, --,0k) € RE we let v;,/v; = 6;/0; for all i,j € {1,---, K} and we
compute the derivatives of R, (7) in (129), expressed as a function of ~,,, that for
notation simplicity we indicate with x. The rate is given by

0 0, 0 O0r
R7|— (7T) — g{ﬂ-l"':ﬂ-k} (ﬂx’ SN k-1 x, l‘) _ g{ﬂ-l"'aﬂ-kfl} (ﬂl‘, U k-1 :I:) (131)
k Or, Or, Or, Or,

Its first derivative is

.87rj [g{m...,m@} _ g{ﬂl---,ﬁkfl}] + ankg{m...,mc} (132)

k—1 k—1 9 . 0
ka (7") = 9_] e 87r],7r[ |:g{71'1 ,7Tk-} g{ 1 "ﬂ—k—l}]
j=1 ¢=1 Tk "k
k—1 9
j=1 Tk

In the limit for z — 0 we get

lim Ry, () = Or,6'" 7 (0) (134)
T—
. k*l 0
lim R, () = am,mg{m-*“k}(o>+2§}i@m,mg{m--v“k}(o> (135)
]:



Note that the summation in (135) accounts for the users not decoded yet according to
the decoding order 7y, - -+, 7. Finally, by substituting (134) and (135) in (130) we get

z—0
— akg{m :Wk}(()) (136)
. kile
iy~ zm(mg ()Ze_a()>
= Opug™ T +22AW > Wjam AR () (137)
jeniy Ok

By recalling (127) and (128), and from expression (126), we get

sg’“
S, =
7r]<7r (k) O anl E[ak’nl{n,C = n}]

(138)

The slope region obtained as union over all A of (138) for all k£ is in general an inner
bound to the optimal slope region. Similarly, the slope region obtained considering the
outer bound (121) is in general an outer bound to the optimal slope region. Next we
prove that those two bounds coincide, thus proving that policy 8* in conjunction with
superposition-coding is second-order optimal for any number of users K and any delay
N.

In order to express a general point on the dominant face of the outer bound in (121)
we follow the same steps that led to (138). In particular we need the gradient and
Hessian matrix of f®), computed in 4 = 0, for all subsets A. The proof that the outer
bound yields the same slope region of the inner bound is hence complete if we show that
Oomg“™M(0) = 0y f(0) for all £,m € A and ¢ # m and for all subsets A. In fact it is
obvious that 9, (0) = 9,V (0), otherwise the points on the outer-bound region would
achieve higher minimum energy per bit than the points on the inner-bound region, and
that 909 (0) = 050 f M (0), otherwise the numerator of the equivalent of (138) for the
outer bound region would be different from the optimal ¢-th single-user slope ng)

For every subset A, foralln =1,--- N let

Sn ({Pj}jeA;-A) =E max lOg (1 + Zaj Uj) + Snfl ({PJ — Uj}jEA;-A) (139)

VjeA:u,;€[0,P; -
J ;5 €[0,P;5] JeA
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with initial condition Sy (0;.A) = 0, then

FA({)ien) = 35 5n (N hiea A) (140)

Let b € {0,1}M1] then a necessary condition for {u; = P;b;};ca to be solution of (139) is

Qyp <0 if b=0
38y L ({Pi(1 = b)) Yicn: A 141
Then it follows easily that in the limit for small {P;};cq we have u, = 0 if ap <
0pSn—1(0; A) and up = Py if ap > 9pS,—1 (0;.A). Then we can write
Su ({Pi}jen; A) = > E || log (1 +> o P bj) + Sn1 ({Pj(l - bj)}jeﬂifl)
b jeA
. H 1{u; = P;jb;}| + vanishing terms with {P;}jcq (142)

jeA

Finally, in the limit for vanishing { P; }jc4 the second-order partial derivative of S,, ({ P;}jca; A)
w.r.t. P, and P, is

DpmSh (0; A) = ZE[(—bgbmagam—i—(1—bg)(l—bm)é’g,mSn,l(O;A))-
b

[I o <ascioay [ e = as. 040

JEA:b;=0 JjEA:b;=1

= B| - aanl{or> 08,1 (04} {am > 0,5, 1 (0;4)}
Oy Sn1(0; A)L{ oy <3Syt (0; AV} 1 {ctm < S (o;A)}]
1
- (A)
<00 f(0) (143)

In order to prove that Ny, Sy (0;A) indeed coincides with (126) we must show that (143)

is the recursion to compute (126). In fact, by recalling (118), we can write

N
pn(m) 23 Elogal{n; = n} Elamal{n, = n}] (144)
n=1
N n—1 00 n—1 00
_ GYRG) () ) (m) ( (M) (m)
= SR [, warOe@ - TIEE) [ warm @)
n=1 j=1 N—n j=1 N—n

43



now, by separating the term for n = 1 in the summation, we can write

pvltom) = [ sdF0@)- [ )

N-1 N-1
N n-1 n—1 50
(m)
+z;l_[1F SN ' /m zdF® 1_[1F SN 2 /ngm) xdF™ (x)
n 7 ] n

= E |:Oég]_{0ég > SN—I}] . [aml{am > ng )1 ]

+E [1{041_; < s%{l}] ‘E [1{% < s;’il}] i (6, m) (145)

which, by recalling that 9,5, (0;.A4) = s foralln =1,2,- - and all ¢ € {1, -+, K}, coin-
cides with (143) for n = N. This concludes the proof that dy,,,¢“Y(0) = 0y,,,.f ) (0) for all
¢, m € A and for all subsets A, thus proving that the optimal slope region, parameterized
by € can be written as in (38)

U{skzo V=1, K (146)
)
(k)
e oy S e, = et = |
S Eed A=l

and that the one-shot policy 3 is second-order optimal.
Remark. In analogy with (145), it can be shown that, for all A C {1,..., K},

9 ([)se) = 155 IV 2 hjeas A)

given by the recursion

St ({PYieasA) = Ellog |1+ oyl | [] 1{ey > s,

jeA jeA
+ [ Prley < si21]S5_s ({P}jens A)

JjeA

with initial condition S§ ({P;}jea;A) = 0.
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H Proof of Theorem 13

By repeating the same steps that led to (147) in Appendix G, it follows easily that the

term XK ; is given by

aj,kg(o)
Okk9(0)

gck,j - 2

where the function g(«) is defined as

gv)=E [% Zlog (1 + Zak,nN% {n = nZ})]

and where nj is the index of the maximum, i.e.,

*
ng = arg mrfl%X{Oék,h s Oyttt 7ak,N}

The partial derivatives are given by

N

SR S -

il ZkK:1 ko Ny H{n = ni}

by
N 2
O nl{n - RZ}
8 0 fd —N :
k,kg( ) E [; (1 + Zk g NV {n = nZ} ~=0
= ~NE [(max{or.))?]
and by
N
agnl{n = njta;nl{n = nj}
. 0 = —N : 7 Y
a],kg( ) E [; (1 + Zk ak’nN’yk 1{7L = nZ})Z y=0

= —NE [max{akyn} max{a;, }1{n} = n;}]

= —FE [max{akyn} max{a;, }

(147)

(148)

(149)

(150)

(151)

where the last equality follows because the events {max,{ax,} < z} and {n} = i} are

independent (notice the same user index k). Then, since {n} = i} is uniformly distributed

on {1,---, N}, and since the events {nj =i} and {n} = i} are independent (notice the
different user indexes), it follows that Pr(1{n} = n}}) = +. Finally, by subtituting (150)

and (151) in (147) we obtain (45).
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