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ABSTRACT structured as follows. In section 2 we present the Rice MIMO
channel model. In section 3 we present a useful technical result

Inu:hll\juﬁ)? pér (v)vstInlﬁe?&?ag)th;;f;;;ogg?rgfaetgé Sctﬁgﬁr']\glljsmiﬂeﬂ:g' based on7]. This result characterizes the behavior of the diagonal
p P P ; . entries of(XX 4 ¢2I)~! whereX is anon centered random
case where the number of transmit and receive antennas convergge

to infinity at the same rate. In this context we show that the expres-mamx of increasing dimensions with independent (but non nec-

- . N ssarily identically distributed) entries. The result is then used to
sions of classical performance indices such as the average mutual erive aporoximate expressions of the average mutual information
information or the output SINRs of MMSE receivers converge to hp P 9

L - . . and MMSE output SINRs. In section 4 we use these expressions in
deterministic expressions. The analysis determines the parameter

of interest and gives insight of the effect of the channel distribution c_)rder o study the Impact of channel statistics on mutu_al informa-
' tion and the (uncoded) bit error rate at the MMSE receiver output.
on the performance metrics.

In particular we identify some propagation conditions under which
the considered performance indices are optimum. Finally we pro-
1 INTRODUCTION vide in section 5 some numerical evaluations intended to show that

) ) the asymptotic regime is reached for reasonably small numbers of

Since the seminal work of Telatar]), the performance study of  antennas and to illustrate some interesting behaviors of correlated

MIMO systems has generated considerable interest. In particu-piMO Ricean channels.

lar, various indices of performance (average mutual information, In the following, upper and lower boldface symbols will be

ergodic capacity, output SINRs -signal to noise plus interference ;sed for matrices and column vectors, respectivelystands for

ratios- of MMSE receivers) of statiRayleigh (i.e. zero-mean)  the conjugate transpose of mate, 7r(A) for its trace, and the
correlated channels have been studied extensively (see among othnathematical expectation operator is denoted by

ers [?] to [?]). Despite the fact that the performance analysis of

Ricean (non zero-mean) MIMO channels is of great practical in-

terest, studied dedicated to this issue have been limited. The most

significant works studied the mutual information and capacity of

Ricean channels with independent identically distributed (i.i.d.)

Rayleigh component (see e.@] pnd [?] in the case of rank one . = ~

line-of-sight (LOS) component, oP[,[?]). However these works y=Hx+¥v @

do not discuss important issues such as the impact of the structurevherex is the vector of transmitted symbofgjs a white Gaussian

of the LOS or Rayleigh component on communications perfor- noise distributed ad/(0, °I), ¥ is the received signal arél is

mance metrics. the channel matrix. For simplicity sake, we will assume that the
number of transmit and receive antennas are equal. We denote this

The purpose of this paper is to study the average mutual in-common value by. However our results can be extended to the

formation and the output SINR of the MMSE receivers in static more general case where the channel matrix is not square. We

Ricean MIMO channels with or without correlation on the Rayleigh model the channel matrild as

component. We will only consider the case with correlation at the

receiver. This case corresponds to important practical situations H= \/ K A+ \/ 1 W @)

such as the downlink of a cellular system equipped with multi- K+1 K+1

ple antenna base and mobile stations. Moreover, it leads to very ~

useful analytical expressions that have not been considered in th&vhereA is a deterministic matrix representing a line-of-sight com-

literature so far. As in7], [?], [?]) we study the performance in-  ponent normalized in such a way thafr(AA") = 1. The ma-

dices mentioned above in the case where the number of transmitrix W represents the Rayleigh part of the channel and is assumed

and receive antennas converge to the infinity at the same rate. Théo be distributed according to the modaf = RY?W ;4 where

main advantage of this approach follows from the fact that, in this W, is an i.i.d. centered complex Gaussian matrix with variance

asymptotic regime, the expressions of the performance indices are% entries andR is a positive Hermitian matrix used to model an-

simple and can be used in order to get some insights on the intenna correlation at the receiver. Additionally this correlation ma-

fluence of the statistical properties of the channel. This paper istrix verifies  Tr(R) = 1. This implies thatt E[T((WW )] = 1.

2. CHANNEL MODEL

We consider a wireless MIMO link characterized by the following
equation:




. . -1
The factorK > 0 is the so-called Ricean factor. It expresses the Fa(m, §) = %Tr |:D2 <0_2 (I+ ?ﬁ) 4K AAH > } L ®

relative strength of the direct and scattered components of the re- K114 22y
ceived signal. 2 9 . . .
. L Den nd ¥ h nal matr fin
Moreover, channel state information is assumed only at the enote byb (o) and ¥ (o”) the diagonal matrices defined by
receiver end. In this case the covariance matrixafoincides ) 5(0?)
with the identity matrixI and as a consequence, the average mu- V(") = (1 t KT 1) I (7
tual information per transmit anteni@(o?) given by C(o?) = D
LR (log de(T+HE")). LetR = UD?U" be the eigenvalue/eigenvector ®(0°) = o (I+m(c”) = 1) (8)
decomposition of the correlation matik (note that%Tr(D) =1) +
and denote byH the matrixH = U H. Then it is easily seen  Then, for eactk,
— K 1 — UHA —
thatH = ,/KHA. + ~/1<_+1W whereA. = U A.andW = lim pra(o?) — (F(0?) + AZ®(0?) " A)L =0 )
DW.:a. The matrixW,, is a Gaussian i.i.d. matrix defined by e ’
Wi = UPW,;4. Using the unitary invariance af(o?) it is lm gor(0?) — (8(c2) + AT AT L =0 (10)
straightforward to see thét(c?) = E(log det(T+ H(I;H ). There- e
fore the observation equation given by (1) is strictly equivalent to and 1
the following equation lim ;Tr(Q(oﬂ)) —m(c?) =0 (11)
t——+oo
y=Hx+v 3)

) ) ) ) ) 3.2. Applying Theorem 1totheperformanceanalysisof MIMO
in terms of mutual information. This remark is very useful because systems

the zero-mean component Bf has independent (but not identi- ) _ ) _ _
cally distributed) entries. Note that equations (1) and (3) are also !N this section we explain more precisely why Theorem 1 |S2USGfU|
equivalent in terms of output SINR for MMSE receivers where the t0 study the behavior of the average mutual informatiof-)

SINR 3, is defined with respect to theth componentz;, of x. and the SINR'S(3x)x=1,..... We also establish the connections
As a consequence, in all the following, we will restrict ourselves between our figures of merit and the matri@andP introduced
to the observation model (3). in3.1.

3. ASYMPTOTICAL PERFORMANCE OF MIMO 3.2.1. Mutual Information Expression

SYSTEMSOVER NON ZERO-MEAN CHANNEL S It is well known that the derivativé”’ (o*) of C(o?) with respect

to the parameter” expresses a8’ (0”) = E(Z5 — 1 Tr(Q(c?)).
Using (11) shows thaf’ (o) has the same asymptotic behavior
As we will see in section 3.2 both mutual information and MMSE ascr—l2 — m(c?). Therefore
outpuIt{ SINES a{e strongly related to the eigenvalues of matrix _
(HH" + ¢°I)~". The convergence of functionals of the diag- o2y o 2y _ 1 2 2

onal entries of the matrif(HH" + o°I)~" holds under certain Clo’) = Jm Cle) = / ( m(w))dw. (12)
conditions and is an application of a theorem due to Gifolh

[?], Girko studied the behavior of these terms in the case where3.2.2. SINR Expression

the entriesH; ; of H are non centered and independent (but not

identically distributed) random variables of variange; ;. In In order to express the SINR,, we denote by, the k-th col-
our context the ternd; ; does not depend on the indgxwhich umn of H and by H, the matrix obtained frontf by remov-

. . _ 1. H H
can be used to simplify the original results 6. We denote by "9 the columnh,. Itis well known thatB, = hy (H.Hj +

21\ —1 : ; .
2 2 ; ) 2 H o“I)”"hy. Using straightforward algebrg, can also be written
dpP th t defined b@® = (HH . ’
QQ(U_)I an (02) e ma r}lIcHe:I _ellne (o) ( . - asfr = +0'2 — 1. The multiuser interference at the output of
o°I)"" andP(c”) = (I+ z=) ", and denote their entries by Pr k(%)
(4i,5(02)) i,j)=1,....c and (pi ;(c?)) (i j)=1,..... respectively. We

the MMSE receiver is usually modelled by a Gaussian distributed
assume thatup, ||A| < +oco where||A|| represents the largest

process. As a consequnce, the (uncoded) bit error rate at the out-
; : . - put of thet MMSE receivers (one for each componentxgfcan

smgular_ value ofA (the_ consequences of thls_ _condltlon are dls-_ be derived and is equal B, — %22:1 Q(v/Br) in the case of

cussed in th? next s_ectlon): Then, under additional p“fe.'y teChn"aﬂt — QAM modulation for exampleq is the classical Gaussian

cal assumptions, it is posgsnble to shgow that the normalized traceg o function). Theorem 1 thus implies that

and diagonal entries @) (o*) andP(o*) have the same behavior

as deterministic quantities given in the following theorem. . t

> Q(AK) (13)

Theorem 1 It exists a unique paifm(c?),5(c?)), m(c?) > 0, totoo et
§(c?) > 0, satisfying the following system of equations

3.1. A preliminary result

. . _ 1 _
where,, is defined byy, = O ATS(T) TA)] 1.

Remark. As the previous results derive from Theorem 1, it is
important to discuss on the assumptiorp, ||A|| < +oo. This
in conjunction with the normalization constraint(?’xA) = ¢
implies that the rank oA, and therefore the rank df, should
increase tot-oo at the same rate than the number of anterinas

m = Fi(m,d), § = Fa(m,d) 4)

where the functiong} and F; are given by

2 H -1
Fi(m,8) = 1Tr {<02(1+ Do)+ B Al) (5)



4. DISCUSSION

In this section, we analyze the results derived in the previous sec-

tion. In particular, in some special cases of interest, we determine
the channel parameters optimiziGtc?) and P..

4.1. Low SNR regime

In this section we study the performance in the low SNR regime
i.e wheno? — +oo (the high SNR analysis is more complicated
to conduct and will be done in a future paper). For this purpose,
we have to study the behavior &fo*) andm(o?) (see equation
(4)). Itis easily seen that both functions are analytie-ab and
bothmo? anddo? tends to one whea® — +oco.

4.1.1. Mutual Information

In order to characterize the behavior@fo?) we need to evaluate
the first three terms of the series expansiomofv.rt. 2, and
use relation (12). Using the equatior?®®) and the normalization
contraints: Tr(AA*™) = 1Tr(D) = 1 we get after some algebra
a simple expression of the average mutual information:

+ L7 (KLHAAH + ﬁD)Q)

(
14

up to theo(c~?) terms. The dominant term is of course equal
to 0—12 and does not depend on the channel statistics. It is how-

1
204

2K+1

¢ K12

(=% -

ever interesting to discuss the behavior of the second term and td?€"

evaluate the channel parameters for which it is maximized. We
first consider the case where the Ricean faétois fixed. In or-
der to maximize the righthandside of (14) one has to minimize

1Tr(Z5AA™ + 25D)%. The Jensen’s inequality states that

for any positive matrixB, 1Tr(B*) > (%TrB)2 with equality if
and only ifB = I. Using this result foB = XL AA" + 15D
and noting that; Tr(B) 1 shows that the approximate mu-
tual information is maximum if and only iA andD are related
through

1
= AAT L~ D=1
K+1 tTRT1
2K +1

In this case thex(-%) term equals—(1 + Gernz)- Therefore,

if K is not fixed,C is maximized if and only ifX = +oco and
AA™ =1, which is not surprising.

Finally, we mention that ifA and D are fixed, it is possible
to find the value ofK maximizing theO(c—*) term of C(c?).
The optimum value is eithdr or +oco or cj;_”l wherea, b and
c represent respectively the normalized trace of the matiiXes
DAA* and(AA™)2. This point is illustrated in section 5.

(15)

4.1.2. Bit Error Rate

Similarly, let us study the behavior @?.. For this purpose we
still use thatmo? — 1 andéo? — 1 and deduce immediately

that pr(0?) = 1 — L ZleslHl 4 o 1) and thaty

(o8
2
L K2t 4 5(L ), whereay, represents thé-th column of

matrix A. We remark that the dominant term coincides with the

1

o(zz). Butitis easily seen that if — +oco then [|hg|[* con-
2
verges toflaltL

We now evaluate the channel parameters for which the dom-
inant term of P. is minimum. We first note tha% 22:1 Ve =
L +o(Z) sincet Y, |lax||* = 1. Thus the empirical mean
of the SINRs does not depend on the channel parameters. As

the functiont — Q(v/%) is convex,Pe > Q(1/+ 31 ) =
Q( 22) with equality if and only if the differenty ) k=1,
incide that is when|ay|| = 1 for eachk. In the low SNR regime

the best MMSE performance is thus achieved if and only if the
columns ofA have all a unit norm whatever the matiixis.

4.2. Influence of A in theuncorrelated case

In this sectiong? is assumed to be fixed and the receive antennas
are assumed to be uncorrelat@&lié equal tdl). In this context we
want to optimizeC' and P, w.r.t the matrixA. The Ricean factor

is also assumed to be fixed. Otherwise the best receiver perfor-
mance is achieved fak = co andA = I. As ¢ is fixed in this
section the corresponding notations will be temporarily removed
when referring taC (¢%), §(o?) andm(o?). We also mention that

if D = I, then functionsF; and F» defined by (5), (6) coincide,
and are denoted in this section. Therefore the parameterand

¢ defined as the unique solutions of equatioP®) @lso coincide
with the unique solution of the equatiom = F'(m,m). In the fol-
lowing, A is a fixed LOS term and we compare the corresponding
formance indices witl'; and P, 7, the performance indices
corresponding to a unitary LOS matrix (it is obvious thatand
thusC and P., only depend omA A™). The various parameters
corresponding to the matriA will be indexed byA (e.g. func-

tion F4 parametersna...) while the parameters associated with
A = T will be indexed by!I. Using these notations allows us to
state the main result of this section.

Theorem 2 C; > C 4 with equality if and only ifA A" = I and
P;. < Pa. with equality if and only fAA7 =1.

Proof. Due to the lack of space, we just prove the first state-
ment. To this end we first establish that for eash> 0, then
Fa(m,m) > Fr(m,m). Let (ur)r=1,....: be the eigenvalues of
AA" . ThenFa(m,m) can be written as :

-1

m
K+1

K Bk
)+ ' AT e

Fa(m,m) = %22:1 [02(1 +
As the functionu — ﬁ fora > 0,b > 0is convex the Jensen’s
inequality gives immediately’a (m, m) > Fr(m,m).

In order to complete the proof of the first statement, we remark
that F'a(m,m) > Fr(m,m) for eachm implies that the unique
solutionsm 4 andm; of equationsm = Fa(m,m) andm =
Fi(m,m) satisfyma > m;. Hence,; —m; > -5 —ma for
eacho?. Equation 9?) givesC; > C 4. If the equality holdsin;
must be equal tan4 for eacho?. Therefore, it existsn for which
Fa(m,m) = Fr(m,m), which implies thatA A" = 1.

4.3. Influence of D when A isunitary

asymptotic value of the output SINR of the matched filter. Since | the context of the Rayleigh channel it is know]{[that re-
the multi-user interference is dominated by the thermal noise for cejve antenna correlation tends to degrade the mutual information.
high noise levels, the matched filter SINR is equaH 0'2” + In the context of Ricean channels this claim is not always true. In



particular we have shown thati® — +o0, then the mutual in-
formation is maximum if and only if (15) holds. & is not unitary
itis clear that the optimum value @ is notI.

On the other hand, ifA is unitary, it seems quite relevant
to check ifD = I is optimum. Although several simulation re-
sults tend to confirm this behavior, we have been able to identify
counterexamples and show that there exist values ahd K for
which P, is not optimum forD = 1.

5. NUMERICAL RESULTS

In this section we illustrate our results by numerical experiments.
In the following experiments the matriX is defined as a normal-
ized version of the matriXd(6:),...,d(6:)) whered(9) is the
classical directional vectat(d) = (1,e'7 7 ... eim(t=DcosT
and the angle of arrival@y )x—1,..... are generated according to a
uniform distribution on[0, 27]. The matrixR corresponds to an
exponential correlation model and the correlation coefficient is de-
notedp.

We first compare our approximate performance indiceand
P, with the corresponding values 6fandP. evaluated by Monte-
Carlo simulations. In figur@? we compare with the values ot”
evaluated by Monte-Carlo simulations foe= 4 and for different
values of K andp. As shown in figureé?? our asymptotic evalua-
tions allows us to predict quite well the empirical resultstfer 4,
which is in agreement with previous works devoted to asymptotic
analyses of Rayleigh channels (see e3)). [As for the compar-
ison betweenP, and P. figure ?? shows that the convergence of
P. towardP. is slower. Heret = 8 and¢ = 48, while K = 1 and
p = 0.5. This is in accordance with the worR][in which the con-
vergence rate of the SINR is studied in the context of uncorrelated
Rayleigh channels.

We finally illustrate the result concerning the optimization of
K in the low SNR regime (see subsection 4.1). The predicted
optimum valueK,. of K is K. = 0.74, and we have evaluated
C(c?) by Monte-Carlo simulationg’ = 0,0.2,0.74, 1, +o0 in
the range)dB to 5dB. It turns out that = K. corresponds to the
optimum mutual information.



