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Department of Multimedia Communications

2229, route des Crétes
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Abstract

It is well known that the peaks in log Mel-filter bank spectrum are important cues in
characterizing the speech sounds. However, low energy perturbations in the power
spectrum may become numerically significant after the log compression. We show
that even if the spectral peaks are kept constant, the low energy perturbations in the
power spectrum can create huge variations in the cepstral coefficients. We show,
both analytically and experimentally, that exponentiating the log Mel-filter bank
spectrum before the cepstrum computation can significantly reduce the sensitivity
of the cepstra to spurious low energy perturbations. Mel-cepstrum modulation
spectrum [3] is computed from the processed cepstra which results in further noise
robustness of the composite feature vector. In experiments with speech signals, it
is shown that the proposed technique based features yield a significant increase in
speech recognition performance in non-stationary noise conditions when compared
directly to the MFCC and RASTA-PLP features.
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1 Introduction

As is well known, in the presence of commonly encountered additive noise
levels, the formants are less affected as compared to the spectral “valleys” which
exhibit spurious ripples. The DCT of a log Mel-filter bank spectrum (logMelFBS)
which is commonly known as MFCC[2] feature vector, is sensitive to ripples in the
spectral valleys which, otherwise, do not characterize the speech sounds. This is
one of the reasons for the poor performance of MFCC features in additive noisy
conditions. Observing that the higher amplitude portions ( such as formants) of a
spectrum are relatively less affected by noise, Paliwal proposed spectral subband
centroids (SSC) as features [8, 9]. In this work, we analytically show that expo-
nentiating the logMelFBS can decrease the sensitivity of the cepstra to the spurious
perturbations in the logMelFBS valleys as compared to the peaks.

Lim has proposed the use of spectral root homomorphic deconvolution system
(SRDS) [4] as an approximately more general case of logarithmic homomorphic
deconvolution system (LHDS) [1]. SRDS uses a root compression ���������
	���

of the mel-filter bank energies instead of the logarithmic compression used by
LHDS. Although, Lockwood et. al [5] and Tokuda et. al [6] have proposed a uni-
fied approach to root Mel-cepstral coefficients (RMFCC), many researchers have
used RMFCC with a motivation based on auditory and perceptual data. How-
ever, in this work, we use LHDS based MFCC features[2]. We provide a signal
processing reason for the high sensitivity of the MFCC features towards addi-
tive noise and propose a solution to alleviate this problem by exponentiating the
logMelFBS by a suitable positive power greater than unity. In [3], we proposed
the use of Mel-cepstrum modulation spectrum (MCMS) features for robust ASR.
MCMS features[3] are obtained by filtering cepstral trajectories using a bank of
band-pass filters in the range ��������������� . In this work we derive MCMS features
from the cepstra of the exponentiated logMelFBS. The experimental results show
that these two sequential processing techniques synergistically improve the recog-
nition rate in presence of additive non-stationary noise as compared to the MFCC
and RASTA-PLP feature vectors.

2 Perturbations in log Mel-filter bank spectrum

One of the outcomes of logarithmic compression of the Mel-filter bank energies
is the reduction of the dynamic range of the spectral amplitudes. Consequently, the
spurious perturbations which are numerically insignificant in the power spectrum
domain may become numerically significant after the logarithmic compression of
the Mel-filter bank energies. In figure 1, we illustrate this problem. Blue and
red curves are two instances of a logMelFBS with same formants but different
perturbations in the low energy. These perturbations account for approximately

������! #" of the power spectral energy (before the log compression) and therefore
do not characterize the speech sound. However, DCT being a linear transformation,
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gives an equal weightage to the formants and the low energy filter bank outputs and
therefore is sensitive to the spurious ripples. A natural solution to this problem is
to weight the logMelFBS such that formants become more significant than the low
energy mel-filter bank samples. To this end, a copy of the logMelFBS itself, is a
good candidate for the “lifter” as it will emphasize the formants much more than
the low energy log Mel-filter bank outputs. This is same as exponentiating the
logMelFBS with a power � ���������	�
��� 
 . In figure2, we plot squares of the two
instances of the logMelFBS, same as in figure 1. As can be visually noted from the
curves in figure 2, the formants have become more prominent as compared to the
spurious ripple. In figure 3, the blue curve corresponds to the percentage absolute
difference between the first 
�
 DCT coefficients of the two logMelFBS same as in
figure 1 and red curve corresponds to the percentage absolute difference between
the first 
�
 DCT coefficients of the squared logMelFBS same as in figure 2. The
fact that the red curve lies below the blue curve, indicates that the squaring of the
logMelFBS decreases the sensitivity of lower DCT coefficients towards spurious
ripples in low energy region.

Consider ����� DCT coefficient of a � point sequence � . It can be approximately
seen as a weighted sum of the “discrete” derivatives of the sequence � evaluated
at � equidistant samples and multiplied by alternating signs. For instance, if �����
and ����
�� , we have,

����� �
�!���"�$#$% ���&('*),+.-0/ �213�54768� �9� �:4 �
� #<;&('*) +.-0/ �213�=476�
�� �9� �:4 �

�>� � � �?6��A@ #>B&0' � �DC 
#�
&FE(G  &0H � E(G  & �  HG  &0H � G  & �  H @I� �!J �?6��

K #<B&(' � �DC 
#�
& ��L � �=4MC 
#� �

(1)

where, � L �:4 � denotes “discrete” derivative of � . Therefore the sensitivity of the
DCT of the logMelFBS can be approximately measured in terms of the sensitivity
of derivatives of the logMelFBS. We define the sensitivity index N �2O �QP�� as the ratio
of derivatives of the function R -TS �:��� at a Mel-formant energy �U�VO and a low
Mel-filter bank energy value �I�WP . Given (1), we expect N �2O �QP�� to measure the
relative contributions of a peak of the logMelFBS and the low energy Mel-filter
bank energies in a DCT coefficient which is a cepstral coefficient.

N �2O �QP��"�YX[Z9\Q] G[E H_^ `ba0cXdZe\ ] G[E H_^ `ba	f �
�9gDh�9gDi

��Pj6=O���� �j�	�kO�lmP
n N �2O �QP��"o 
�� � �

(2)

Similarly we define the sensitivity index p �2O �QP�� as the ratio of the derivatives of
the function /�qrS 4 �2R -sS �:� � � � R -TS �:� �!�ut at a Mel-formant energy �v�wO and a low
Mel-filter bank energy value �M��P .
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p �2O �QP��k� t�� ��� \ & G XdZe\ G h HuH�� � XdZe\ G h H��	��

� gDht�� ��� \ & G X[Z9\ G i H H�� � XdZe\ G i H�� ��

� gDi
� � ��� \ & G XdZe\ G h H H�� � XdZe\ G h H��	��
��� ��� \ & G X[Z9\ G i H H�� � XdZe\ G i H�� ��

� �!P.6=O �

� � ��� \ & G XdZe\ G h H H�� � XdZe\ G h H�� ��
��� ��� \ & G X[Z9\ G i H H�� � XdZe\ G i H�� ��

� N �2O �QP � ��� �j�	�kO,lmP
n p �2O �QP�� � N �2O �QP�� � �����0� O,lmP �b�v� 
�� �

(3)

The value of N o 
�� � in (2) implies that a unit change in the low Mel-filter
bank energy value, namely �bP L L will have a far greater influence on the computation
of the DCT of logMelFBS as compared to a unit change in the Mel-formant en-
ergy, namely �?O5L L . Therefore, it can be seen in the light of (2) that the DCT of the
logMelFBS is quite sensitive to the perturbations in the low-energy regions as com-
pared to those around the formants. However, for the domain 
�� ��� P o O����
and � � 
 , p �2O �QP � is always greater than N �2O �QP�� . This can be achieved by using
�2R -TS �:� @ 
#� �et as � being power spectral energy never takes negative values. The
fact that the p �2O �QP � is always greater than the N �2O �QP�� implies that we have been
able to decrease the sensitivity of cepstral coefficients to spurious low energy per-
turbations. An important parameter in the above mentioned processing scheme is
the exponent � . As can be seen from (3), the sensitivity ratio p �2O �QP�� increases
exponentially as the exponent � increases. However, a large value of � will re-
sult in the case where the spectral modulations of the largest formant takes very
high numerical values which render the spectral modulations of the other formants
numerically insignificant relative to those of the largest formant. Therefore an in-
termediate value of � is the most suitable for such a processing scheme.1
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Figure 1: Log Mel-filter bank energies of clean and noisy(perturbed) speech.

1The experiments results with different values of P reconfirmed these observations.
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Figure 2: Square of the log Mel-filter bank energies of clean and noisy(perturbed)
speech.
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Figure 3: Absolute percentage error between the cepstral coefficients due to per-
turbations. Blue curve corresponds to the DCT of the log Mel-filter bank spectrum
while red curve corresponds to the DCT of the squared log Mel-filter bank spec-
trum.

3 Experiments and Results

In order to assess the effectiveness of the proposed scheme for reducing the
effect of spurious perturbations in the low Mel-filter bank energies, speech recog-
nition experiments were conducted on the OGI Numbers95 corpus [11] using the
proposed processing scheme for the logMelFBS. The lexicon size for this con-
nected digits recognition task is 30 words with 27 different phonemes. To verify
the robustness of the features to noise, the clean test utterances were corrupted
using additive non-stationary factory noise and f16 cockpit noise from the Noi-
sex92 [12] database. Throughout the experiments, Mel-frequency cepstral coeffi-
cients (MFCC) [2] and their temporal derivatives have been used as speech fea-
tures. Hidden Markov Model and Gaussian Mixture Model (HMM-GMM) based
speech recognition systems were trained using public domain software HTK [9] on
the clean training set from the original Numbers95 corpus. The system consisted of

6



80 tied-state triphone HMM’s with 3 emitting states per triphone and 12 mixtures
per state. Three kinds of feature sets were generated:

� [MFCC+Deltas:] 13 MFCCs with deltas.

� [ RMFCC+Deltas: generated by root Mel-filter bank spectrum with
� �

� � 
�� ] 13 root Mel-cepstral coefficients with deltas.

� [ ExpoMFCC+Deltas: generated by exponentiated logMelFBS with � � �����
] 13 exponentialted log-Mel-cepstral coefficients with deltas.

Per utterance cepstral mean subtraction was applied to each of the above feature
vectors. The speech recognition results using the above mentioned feature sets in
clean and noisy conditions are reported in table 1. The root

� ��� � 
�� and the
exponent �W� ����� gave the best recognition results for the RMFCC and ExpoM-
FCC features respectively. The exponentiated logMelFBS MFCC system performs
significantly better than the usual MFCC features in the noisy conditions. We note
that the performance of the proposed features is similar to that of RMFCC features
using the optimal value of the root

� � � � 
�� . Figure 4 illustrates the fact that the
proposed technique can significantly reduce the mismatch between clean and noisy
MFCC features.

In [3], we proposed the use of Mel-cepstrum modulation spectrum (MCMS)
features for robust ASR. MCMS features[3] are obtained by filtering cepstral tra-
jectories using a bank of band-pass filters in the range ��������������� . In this work we
derived MCMS features from the cepstra of the exponentiated logMelFBS. The
recognition results are reported in table 2. All the features in this table have
mean and variance normalized cepstra. The superior performance of ExpoM-
FCC+MCMS features can be noticed in the last column of the table 2. The average
word error rate (WER) for the ExpoMFCC+MCMS features in clean and all the
noisy conditions in 
����dJ " . This corresponds to a relative improvement of ��� � � "
over RASTA-PLP features and 
 
���� " over the optimal RMFCC features.

Table 1: Word error rate results for factory and f16 noise. The best results for
RMFCC (R=0.10) and Exponentiated MFCC (P=2.7) are reported.

SNR MFCC RMFCC ExpoMFCC

Clean 6.1 6.1 6.2
Fact SNR 12 14.0 12.0 11.6
Fact SNR 6 31.5 20.6 20.3
Fact SNR 0 75.7 45.7 44.3
F16 SNR 12 15.8 12.3 12.1
F16 SNR 6 32.8 20.8 20.9
F16 SNR 0 75.1 44.2 43.4
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Figure 4: Mean square error of MFCC vectors in clean and noisy conditions, nor-
malized by the average power of the corresponding MFCC feature vector in clean
condition. Blue curve corresponds to baseline MFCC while red curve corresponds
to MFCC derived by squaring the log Mel-filter bank spectrum. These mean esti-
mates were computed using nearly 160000 speech frames.

Table 2: Word error rate results for factory and f16 noise. All the features in this
case have cepstral mean and variance normalization.

SNR RASTA-PLP RMFCC ExpoMFCC+MCMS

Clean 6.5 6.1 5.0
Fact SNR 12 10.6 10.4 9.2
Fact SNR 6 18.4 16.7 15.2
Fact SNR 0 37.9 35.3 31.6
F16 SNR 12 11.2 10.2 9.5
F16 SNR 6 17.9 15.7 14.4
F16 SNR 0 34.8 28.9 26.0
Average 19.6 17.6 15.8

4 Conclusion

We identify a numerical sensitivity problem with the MFCC[2] features. It is
analytically shown that by exponentiating the logMelFBS one can desensitize the
MFCC coefficients to spurious low-energy spectral perturbations. Finally, Mel-
cepstrum modulation spectrum[3] is derived from the cepstra which in turn has
been derived by exponentiating the logMelFBS. The experimental results show that
significant noise robustness can be achieved by the use of the proposed features in
all conditions as compared to the RASTA-PLP and root MFCC features.
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