
Group Rekeying with a Customer Perspective
�

Melek Önen , Refik Molva
Insitut Eurécom

2229 Route des Crètes BP 193
06904 Sophia-Antipolis FRANCE�

Melek.Onen,Refik.Molva � @eurecom.fr

Abstract

In secure multi-party communications, several solutions
have been proposed to deal with group rekeying. However,
most of existing solutions including the most efficient ones
still are severely lacking with respect to reliability and real
customer expectations. Since in these solutions, each rekey-
ing operation requires the update of the keying material
of all members alike, frequent rekeying caused by volatile
members would strongly affect long-lived members. We thus
propose to restructure the Logical Key Hierarchy (LKH)
scheme, by separately regrouping members based on their
membership duration aiming at preserving members with
long duration membership from the impact of rekeying oper-
ations caused by arrivals or departures of short-lived mem-
bers. We designed a hybrid reliability scheme based on a
combination of ARQ and FEC that assures a quasi certain
delivery of keying material to long-lived members. We then
come up with an extensive method to determine the system
parameters applicable to each member set based on the tar-
get customer satisfaction criteria.

1. Introduction

Multicast rekeying is one of the most visited areas in net-
work security. Yet the existing solutions still are severely
lacking with respect to reliability and real-life customer ex-
pectations. In this paper, we suggest a new approach that
takes into account different recipient categories based on
the “loyalty” concept and that treats each category differ-
ently by offering better service to more loyal recipients. In
our solution as presented here, we take a simple definition
of loyalty based on the membership duration with respect
to the multicast group. Our solution then aims at preserv-
ing loyal members with long-duration membership from the

� This work is partially supported by Alcatel Space Industries, Toulouse,
France.

impact of rekeying operations caused by less loyal mem-
bers whose membership is shorter by definition. A typical
metaphor for this goal is given in real life in the case of a
meeting in a room : the goal of organizers is to preserve
the participants of a meeting from frequent openings of the
door by other people in search of their meeting door.

Most of existing multicast rekeying solutions require re-
liable delivery of new keys to members for group rekeying.
In particular, in the Logical Key Hierarchy (LKH) scheme
proposed by Wong et al. [1] and Wallner et al. [2] and
proved to be communication optimal in [3], the key server
uses keys of one rekeying interval to encrypt new keys
of the subsequent one. Therefore, there is a strong depen-
dency between keys of subsequent intervals. When a new
key does not reach its intended recipient because of some
packet losses, in the following rekeying interval, members
affected by these losses will not be able to access future
rekeying material.

Recently, some studies [4, 5, 6] have focused on this is-
sue and different reliability schemes using Forward Error
Correction (FEC) [7] or retransmission techniques (ARQ)
have been proposed aiming at reducing the probability of
losses in a rekeying. However, in all proposed solutions, the
LKH scheme still suffers from the “one affects all” scala-
bility failure [8] which occurs when the arrival or departure
of a member affects the whole group. Each arrival or depar-
ture of a single member causes the update of at least one
key with all members. Consequently, members who don’t
leave the group during the entire session can be strongly af-
fected by frequent membership changes. From a commer-
cial point of view it is unfair for a member who’ll stay until
the end of the session to be equally treated with short-lived
members.

In this paper, we investigate how to assure higher re-
liability for members staying in the group during almost
the whole session. Our aim is to guarantee that almost all
long-lived members receive their keying material on time,
ie. before the receipt of the corresponding encrypted mul-
ticast data.To achieve this aim, we propose a restructuring

of the key tree and split the group into 2 different sets with
regards to members’ membership duration. The reliability
assurance1 for members of each different set will increase
proportionally with the membership duration of the corre-
sponding members . In order to assure a quasi certain relia-
bility to long-lived members, we propose a hybrid reliabil-
ity scheme combining both FEC and ARQ techniques.

We first briefly describe the LKH scheme and review its
failures in terms of scalability and reliability. We then intro-
duce our solution based on a new partitioning scheme. Af-
ter summarizing the partitioning idea, we describe the hy-
brid reliability scheme implemented for the rekeying opera-
tion of long-lived members and present an extensive method
for computing optimized system parameters offering the
required reliable delivery to members with long duration
membership.

2. Problem statement

The LKH scheme was proposed independently by Wong
et al. [1] and Wallner et al. [2] and proved to be communica-
tion optimal. After giving a brief description of the scheme,
we review its shortcomings in terms of scalability and reli-
ability.

2.1. Logical Key Hierarchy : LKH

In this scheme, the key server constructs and maintains
an almost balanced tree with � leaves and � is the group
size. A random key is attributed to each node where each
leaf node corresponds to a unique member of the group.
The key corresponding to the root node is the data encryp-
tion key. Each member ��� receives the set of keys corre-
sponding to the path from the root of the tree to its cor-
responding leaf. Referring to the example in figure 1, ���
would receive the key set ���
	
��������
�����
��� where ��	 repre-
sents the data encryption key.

To remove a member from the group, all keys associated
with the vertices of the path from the root to the leaf corre-
sponding to the leaving member are invalidated. The rekey-
ing operation then consists of substituting for these invali-
dated keys with new values and broadcasting the new values
in key envelopes encrypted under keying material known
by remaining members. As depicted in figure 1, if mem-
ber ��� leaves the group, �
� , �� and ��	 are updated with
��� ’, �� ’ and ��	 ’, respectively. The key server then broad-
casts �������
�������� � ����!
������"� � � �$#% ������"� � � �$#� �����	�� and ����&
�����	�� .

To add a member, the key server extends the tree with
an additional leaf. The server marks again all keys associ-
ated with the vertices on the path from the leaf to the root as

1 In this paper, we only deal with the reliability of rekey packets; the
reliability of data packets lies beyond our concern.

k0

R
1

R
2

R
3 R

4
R

5
R

6
R

7 R
8

k1

k3

k8 k k10 k12

k

k2

k7

k14k13 k

k4

9

5

15

Figure 1. An Example of the LKH scheme

invalid. A random key is assigned to the new leaf and trans-
mitted with a secure unicast channel. All other nodes in the
path are updated with the same algorithm as the rekeying
operation for a leaving member.

2.2. Shortcomings of LKH and related work

Although the LKH scheme has been proved to be com-
munication optimal in [3], it still suffers from some draw-
backs in terms of scalability and reliability. Hence, when
there are frequent arrivals or departures, individual rekey-
ing becomes inefficient and the key server needs a strong
reliable key delivery protocol because of the existing de-
pendency between keys of subsequent different intervals.

2.2.1. Individual rekeying : At each arrival or departure
of a member, the key server needs to immediately rekey the
whole group in order to ensure backward and forward se-
crecy [8] which respectively prevents a member from ac-
cessing the data sent before its arrival or after its depar-
ture. However, individual rekeying is relatively inefficient
in large groups where join/leave requests happen very fre-
quently. For example, referring to the example in figure 1,
if members �'� and ��� leave the group one after the other
with a very short delay between the two departures, the key
server will need to modify twice, the keys located at same
vertices in the tree. If on the contrary, the key server had re-
grouped these two departures in one rekeying operation, the
rekeying cost would be reduced by a half.

Batched rekeying algorithms have therefore been pro-
posed in [9] whereby leave and join requests collected dur-
ing an interval are processed by rekeying operations per-
formed during the subsequent interval. An evaluation of the
batch rekeying scheme in [9] shows a clear advantage over
individual rekeying. Considering a group of 4096 mem-
bers regrouped in a key tree of degree 4, in the case of
400 leaving members, batch rekeying requires approxima-
tively 2147 encrypted keys while individual rekeying re-
quires 9600 keys.

2.2.2. Key dependency : Although batch rekeying im-
proves the efficiency of LKH by reducing the rekeying cost,

it does not completely solve the synchronization problem
between each member and the key server [5]. At a new
rekeying interval, the key server uses the keys of the pre-
vious interval to encrypt new keys. Because of this strong
dependency between keys, when a member looses some
rekeying packets during a rekeying interval, it needs to con-
tact the key server to refresh its key set, otherwise it will
never again be able to decrypt multicast data sent after this
rekeying interval even if it still is member of the group.
Thus, the key server needs to ensure the receipt of keys by a
maximum number of members before the beginning of the
next rekeying interval.

In order to deal with this problem, the authors in [6] have
designed the WKA-BKR protocol which exploits the prop-
erty that some keys are more valuable than others and de-
fines the replication degree of a key based on its localization
in the key tree. Moreover, Yang et al. [5] have proposed a re-
liable rekeying protocol based on the use of pro-active-FEC
in order to optimize bandwidth utilization.

2.2.3. “The one affects all” failure : In the LKH scheme,
as well as in most of rekeying solutions, any arrival or de-
parture of a recipient causes the update of the keying mate-
rial of all members alike. Indeed, any rekeying operation at
least requires the update of the data encryption key which
is shared with all members of the group. In these condi-
tions, frequent arrivals or departures should not affect mem-
bers that are supposed to stay in the group until the end
of the session. The key server must thus minimize the im-
pact of rekeying due to the frequent dynamics of short-lived
members on members that remain over longer periods of
time since the service is offered to them for the entire ses-
sion. This problem is discussed in the following sections
and thanks to the proposed partitioning scheme, the relia-
bility assurance to each partition increases based on mem-
bers’ membership duration.

3. The solution

The basic idea behind our solution is that the key
server partitions members in different categories based
on their membership duration. The key server then uses
error-correction mechanisms with a degree of reliabil-
ity that depends on the “loyalty” of each category.

3.1. Partitioning

In [10], Almeroth et al. observed the group members’ be-
havior during an entire multicast session. The authors real-
ized that members leave the group either for a very short pe-
riod after their arrival or at the end of the session. Based on
these results, we define two real categories to distinguish
members :

� short-duration members are supposed to leave the
group a very short period after their arrival;

� long-duration members are on the opposite supposed
to stay in the group during the entire session.

Since the key server cannot predict the time a mem-
ber will spend in a multicast session, it cannot decide if a
member belongs to the short-duration category or the long-
duration one. Thus, we propose to partition members into
two monitored categories. In this proposed partitioning, a
new coming member is first considered to be volatile. If
this member spends more than a certain threshold time � in
the group, then it becomes permanent.

Thanks to this partitioning, permanent members
will not be affected from departures of volatile mem-
bers but only from departures of members from their
subgroup which is supposed to be quasi-static. The reliabil-
ity processing of each monitored category will be different
and the key server must guarantee to almost all perma-
nent members the delivery of keying material with a very
high probability before the receipt of multicast data en-
crypted with these keys.

3.2. Rekeying the two monitored sets

As depicted in the previous section, members are sepa-
rately regrouped in 2 disjoint sets :

� the set representing volatile members whose member-
ship duration is less than � ;

� the set representing permanent members whose mem-
bership duration has exceeded � .

For efficiency reasons, volatile and permanent mem-
bers are respectively regrouped in two key trees denoted by���

and
���

, with � � and � � being keys located at the root
of each tree. Unlike the classical key tree approach, � � and
� � are different from �	��
��
 which represents the data en-
cryption key.

Assuming that volatile members’ departures will hap-
pen very frequently, in order to limit the number of leaving
members and the extra-time they can stay in the group, the
key server sets their rekeying interval � � to a value as short
as possible. The common data encryption key (����
��
) will
thus be modified while rekeying volatile members. On the
other hand, since permanent members are assumed to stay
longer in the group, the key server grants a longer extra-
time to these members after their real leaving-time. Thus,
the rekeying interval � � will be set to be longer than � � . We
define � � as � ��� ��� � .

Since ����
��
 is modified every � � while rekeying volatile
members, permanent members still would be affected by
losses resulting from this rekeying operation. Thus, dur-
ing each � � whereby no rekeying for permanent members

takes place, an additional feature of our scheme allows per-
manent members to retrieve new data encryption keys re-
sulting from rekeying operations at each � � from their local
keying material and without any information from the key
server. The key retrieval algorithm at each � � during one � �
is described as follows :

����
��
�� � � ��� ��� �	� ��� � � ����
��
�� � � � (1)

Here PRF denotes a pseudo-random function (see [11] for
further details) and provides forward secrecy for volatile
members since they don’t have the knowledge of � � .

3.3. Membership management and rekeying pro-
cess

A new coming member ��� first joins the tree represent-
ing volatile members

� �
and receives the actual data en-

cryption key and its keying material. Every � � , �'� receives
the new data encryption key and the necessary information
to update its keys like described in section 2.1. When � � ’s
membership duration reaches � , it is directly transfered to
the key tree representing permanent members and it re-
ceives the new �	��
��
 and its new set of key encryption keys
without waiting the next � � . After its transfer to

� �
, dur-

ing one � � and at each � � , �'� automatically retrieves the
new data encryption key using the algorithm (1).

4. Optimizing system parameters

The global rekeying architecture being defined, we now
come to the crucial problem of determining the values of
� � , � � and � . On one hand, to increase the quality of ser-
vice, the key server needs to increase as much as possible
� � and � � to be able to offer almost fully reliable delivery
of keying material. On the other hand, increasing these val-
ues implies to let more extra-time to leaving members since
rekeying is processed in a batch for efficiency reasons. As
a result, � � and � � should be as small as possible for secu-
rity reasons but large enough to offer a better service to per-
manent members. In order to offer them an almost fully re-
liable delivery of keying material, the key server needs to
adjust these parameters by computing the rekeying cost of
each category (including additional packets to offer reliabil-
ity). We first introduce our hybrid reliability scheme which
provides the evaluation of the rekeying cost for permanent
members and then present the method to determine � � , � �
and � .

4.1. Evaluation of rekeying cost for perma-
nent members

In this section, after formally defining the reliability re-
quirements of permanent members, we propose a hybrid

method to ensure an almost fully reliable delivery of key-
ing material and evaluate the cost of this reliability scheme.

4.1.1. Reliability requirements : Any key distribution
scheme should provide a reliable delivery mechanism. Any
member of the group should be able to receive its entire
keying material, in order to be able to access the content of
multicast data. In the context of the LKH scheme, this reli-
ability issue becomes a more important problem because of
the key dependency problem described in section 2.2.2. In
our solution, it is required that every permanent member re-
ceives all of its keying material before the end of the corre-
sponding rekeying interval, ie. before the receipt of the cor-
responding encrypted multicast data.

The group controller defines
 , � , such that
 denotes
the portion of permanent members that receive their key-
ing material with probability at least as high as � . Given the
number of permanent members � � , the key server must
ensure that the probability that more than �����
 � � � of per-
manent members will not receive their corresponding key-
ing material must not exceed ������ � . Assuming � is a ran-
dom variable representing the number of permanent mem-
bers that don’t receive all of their corresponding rekeying
packets, the previous requirement can be expressed by the
following inequality :

� ����� �����
 � � � ��� ������ � (2)

To ensure reliability for rekeying protocols implement-
ing the LKH scheme, some projects [4, 5, 6] proposed
the use of FEC or retransmission techniques (ARQ) based
on batch rekeying. We propose a hybrid reliability scheme
which combines both techniques in order to achieve effi-
ciency both at the sender and the recipients.

4.1.2. Hybrid reliability scheme : We have evaluated the
performance of different existing reliability techniques for
protocols implementing the LKH scheme and we found that
the use of a hybrid reliability scheme combining FEC and
retransmission techniques (ARQ) outperforms the existing
ones. Due to space limitations, we only present here the pro-
posed scheme.

We first need to define the structure of FEC blocks. In or-
der to improve performance at the member’s side, any mem-
ber will only receive one block of rekey packets and if dur-
ing the rekeying operation some losses occur, members af-
fected from these losses will perform the key recovery oper-
ation only once. Consequently, we propose to split the key
tree representing permanent members (with degree � and
depth �) into disjoint subtrees of depth � � where � �"! �$# # �&% .
Assuming that a member needs at most � keys, the block
size '��(� � is defined as follows :

'��(� � � � ��� � � � ����� �
� � (3)

With this key regrouping method, some rekey packets
will appear in several blocks. Thus, our scheme inherently
combines FEC and retransmission techniques (ARQ), and
lets members that are not able to recover their rekey pack-
ets, retrieve remaining keys from other blocks.

4.1.3. Cost of rekeying : The key server needs to as-
sure the required degree of reliability to permanent mem-
bers independently of the number of leaving members in
both subgroups. The worst rekeying cost corresponds to the
case where all keys of the key tree representing permanent
members except their individual keys need to be modified.
In this case, for every � members, one member leaves the
group and thus each of the ��� � � � remaining members needs
to receive all � keys located on the path from the root to its
corresponding leaf except the individual key.

In our reliability scheme, given
 , � , the chosen depth
� for the subtree and the corresponding block size '��(� � , the
key server needs to compute the necessary number of par-
ity packets per FEC block. The computed value must follow
the source’s reliability requirements given in the inequality
(2). Let ' be the block size, � be the number of parity pack-
ets for one FEC block and � be the packet loss probabil-
ity. In order to compute the probability that a member �
receives its specific packets in one block, we define the fol-
lowing 3 events :
� E = “ � receives its � packets from its block”;
� �'� = “ � receives at least ' packets from its block and

thus can recover all its � packets”;
� �	� = “ � receives less than ' packets but receives all its
� packets ”

We have :

� � �'� � ��
���� � �

�
�

��� ������ �

�
�
�����

�
(4)

� � �	� � � ������ ���
�� ��� � � � �
�
����� �
�
� � ������ �

�
� � �
�����

�
(5)

Since �'� and �	� are disjoint events we get � � � � �
� � �'� � � � � �	� � . Assuming that the packet loss probability
per member (�) is independent and identical for each mem-
ber, the key server chooses the lowest value � satisfying the
following inequality :� � ���������� � � 	

�
�
��� ������ � � � �

�
� � � � ��� �

�
! � (6)

Since some keys inherently are replicated in other blocks
and their degree of replication depends on their localization
in the key tree, the probability that a member receives all
required keying material is even higher than � � � � .
4.1.4. Example : In order to compare the rekeying cost
using different techniques, we assume that � � �#"%$�$'&�"
and � �)(# � . The key server needs to ensure that *�* # *�*,+ of
permanent members receive their keys with a probability
greater than *�* # *�*,+ . We then have
 � � �-(# *�*�*�* . Table
1 gives a comparison of the rekeying cost in different imple-
mentations. The WKA-BKR protocol [6] exploits the prop-
erty that some keys are more valuable than others and de-
fines the replication degree of a key based on its localization
in the key tree. We conclude that our hybrid scheme out-
performs the other reliability schemes even when the block
size is the smallest one (ie. with � � �). We also realize that
the rekeying cost decreases when the block size increases.
However, in order to avoid excessive buffering at members,
' needs to be chosen as small as possible.

Table 1. Rekeying cost comparison
Rekeying cost of different schemes when .0/�1�2323431 , 5,/�67 8 , 9:/�;3;7 ;3;=< , >?/�;3;7 ;3;=<
Initial cost Retransmission WKA-BKR Our scheme

t = 5 b(1)=10 b(2)=25 b(3)=88 b(4)=343
70996 354980 311640 311296 155648 116738 105216

4.2. Determining @BA , @�C and D
In this section, we evaluate possible values for � � , � �

and � .
To evaluate � � , the key server computes the average

number of members leaving from the volatile set and from
this information, it evaluates an average rekeying cost in-
cluding the reliability factor which is not very large as for
permanent members.

Based on the results in [10], since members are assumed
to leave the group either for a very short period after their ar-
rival or at the end of the multicast session, for each real cat-
egory, membership duration can be represented by an ex-
ponential distribution where the mean duration of mem-
bership for short-duration and long-duration members are
denoted by EGF and E

�
respectively. The ratio of short-

duration members over � , the total group size, is denoted
by H . In the sequel of this section, we assume that the sys-
tem is in a steady state.

The mean number of volatile members leaving the key
tree every � � is the sum of the average leaving members
from the two real categories, ie. long and short-duration cat-
egories. We have :I � � H � ����KJ �MLON�PRQTS � � ����UH � � ����KJ �MLON�PRQTV � (7)

The reader can refer to [5] for the computation of the av-
erage rekeying cost. Let ����� � � I � � be this cost based on

I � 2

and the overhead of packets ensuring reliability . � � must
then satisfy the following inequality where � is the neces-
sary bandwidth only reserved for the rekeying operation :

����� � � I � ��� �
		� � (8)

Symmetrically, the key server needs to adjust � � in or-
der to assure an arbitrarily high degree of reliability to per-
manent members independently of the number of leaving
members in this subgroup. The computation of the worst
rekeying cost is explained in section 4.1.3. Let ����� � � I � �
be this cost. Given the existing bandwidth of the network,
� � � ��� � must follow the following inequality which again
yields a lower bound on � � :

��	������ � � I � � � ����� � � I � ��� �		� � (9)

Once the value of � � and � � are determined, the next im-
portant parameter to be estimated is � . The main criterion
for the estimation of � is to keep the partitioning of mem-
bers as perceived by the key server as close as possible to the
real categories. However, there exists a tradeoff between �
and the rekeying cost of each tree, including the reliability
overhead. Hence, if � were too small than the majority of
real short-duration members would be identified as perma-
nent members and this would again cause further reliabil-
ity problems. On the other hand, if � were too large, long-
duration members would stay longer in the set of volatile
members and they then would always be affected from fre-
quent membership changes. Thus, the key server needs to
adjust � aiming at reducing the number of penalized real
long-duration members.

In order to define � , based on H corresponding to the ra-
tio of short-duration members in the real partitioning, the
key server can limit the number of permanent members to
�� �KH � � . The number of permanent members in one � �
is thus defined by the following expression3 :

� ��� �%H � J ����PRQTS � � ����UH � � J ����PRQTV (10)

Thus, � that achieves the closest identification of real
categories, should satisfy � ��� ����UH � � .

4.3. Example

We assume that � �)"%$�$'&�"
where

$'(+ of the group are
short-duration members with EGF �-&

minutes and E
�
� &

2 To compute ��� , the key server sums the average leaving members
with short-duration and long-duration membership. In the case of an
exponential distribution with a mean � the probability that a mem-
ber leaves at ��� is C�� ��� ���������! #"�$&% N('*) .

3 Here, +-, corresponds to the number of members who didn’t leave the
group during a period . . The probability that a member does not leave
the group before . where the time is distributed exponentially with a
mean � is : C�� �0/ .1����"�$&2 '*) .

hours. The bandwidth reserved for rekeying is limited to 1
Mbps and the loss probability of a rekeying packet for each
member is independent and equal to � � (# � . Based on
the optimization method, we then compute system parame-
ters for an objective defined by a target probability for the
rekeying rate as perceived by a large fraction of permanent
members. We set the block size b = 22. The following set-
ting for the rekeying intervals assures a quasi-certain rekey-
ing rate for permanent members, that is 99.99 + of per-
manent members have *�* # *�*,+ probability of receiving all
rekeying packets :

� � !43 " �
� � ! &�5�6'" �

Table 2 compares the computed minimum value of � �
with other schemes implemented in the same conditions.
We realize that no matter the block size is, our scheme out-
performs others in terms of security also. Hence, � � should
be as small as possible in order to let the minimum extra-
time to leaving members.

Table 2. Comparison on � �
Minimum values for 7*8 when .	/�1=232 431 , 5,/�67 8 , 9:/�;3;7 ;3;=< , >?/�;3; 7 ;�;=<
Retransmission WKA-BKR Our scheme

t = 5 b(1)=10 b(2)=25 b(3)=88 b(4)=343
8418s 7452s 4600s 3726s 2806s 2530s

Based on these values, we then are able to compute the
threshold value � that would best fit the real partitioning
(
$'(+ short duration members). Using the resulting value

(� ! 6 � (�(�(), the protocol will eventually identify
$'(+ of

members as permanent.

5. Conclusion

Most of existing group rekeying solutions are severely
lacking with respect to reliability and real customer expec-
tations. Hence, in the LKH scheme, because of the inherent
strong dependency between keys of different subsequent in-
tervals, all members suffer alike from the loss rekey pack-
ets regardless of their membership duration. Thus, we pro-
pose to separately regroup members into two categories as
volatile and permanent members. A threshold value � sets
the time at which a volatile member is considered as per-
manent. In order to offer higher reliability to permanent
members, independently of the number of leaving members,
the key server evaluates the overhead of rekeying pack-
ets ensuring reliability with the proposed hybrid reliabil-
ity scheme. Based on this computation, it then adjusts the
rekeying intervals � � and � � of the permanent and volatile
member sets, respectively. Moreover, to keep the partition-
ing of members as perceived by the key server as close as

possible to the real categories, the key server adjusts the
threshold value � with regards to the number of perma-
nent members.

Our current work focuses on investigating the suitability
of our classification scheme to a range of membership dis-
tributions. Further validation of the analytical results will
involve trace based experimental evaluations.

References

[1] C. K. Wong, M. Gouda, and S. S. Lam. Secure group com-
munications using key graphs. In ACM SIGCOMM 1998,
pages 68–79, 1998.

[2] Debby M. Wallner, Eric J. Harder, and Ryan C. Agee. Key
management for multicast: Issues and architectures. Internet
draft, Network working group, september 1998, 1998.

[3] J. Snoeyink, S. Suri, and G. Varguese. A lower bound for
multicast key distribution. In IEEE Infocom, Anchorage,
Alaska, April 2001.

[4] C. Wong and S. Lam. Keystone: a group key manage-
ment system. In Proceedings of International Conference
in Telecommunications, 2000.

[5] Y. R. Yang, X. S. Li, X. B. Zhang, and S. S. Lam. Reliable
group rekeying : A performance analysis. In ACM Sigcomm,
San Diego, CA, August 2001.

[6] S. Setia, S. Zhu, and S. Jajodia. A comparative performance
analysis of reliable group rekey transport protocols for secure
multicast. In Performance, Rome, Italy, September 2002.

[7] Luigi Rizzo. Effective erasure codes for reliable computer
communication protocols. ACMCCR: Computer Communi-
cation Review, 27, 1997.

[8] Suivo Mittra. Iolus: A framework for scalable secure multi-
casting. In Proceedings of the ACM SIGCOMM’97 (Septem-
ber 14-18, 1997, Cannes, France), 1997.

[9] Xiaozhou Steve Li, Yang Richard Yang, Mohamed G.
Gouda, and Simon S. Lam. Batch rekeying for secure group
communications. In Tenth International World Wide Web
conference, pages 525–534, 2001.

[10] K. Almeroth and M. Ammar. Collection and modelling of
the join/leave behavior of multicast group members in the
mbone. In Proceedings of High Performance Distributed
Computing Focus Workshop (HPDC’96), Syracuse, New
York USA, August 1996.

[11] Oded Goldreich, Shafi Goldwasser, and Silvio Micali. On
the cryptographic applications of random functions. In
CRYPTO, pages 276–288, 1984.

