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ABSTRACT
In this paper we study the performance of a recently pro-
posed scheduling technique, known as selective multiuser di-
versity scheme, when the users in the system have unequal
average signal-to-noise ratios (SNRs). Numerical examples
confirm that selective multiuser diversity reduces dramat-
ically the feedback load but maintains a good portion of
multiuser diversity gain.

Categories and Subject Descriptors
H.1.1 [Information Systems]: MODELS AND PRINCI-
PLES—Systems and Information Theory

General Terms
Performance

Keywords
(1) Fading Channels, (2) Multiuser Diversity, (3) Propor-
tional Fair Scheduling, (4) Scheduling Outage, (5) Feedback
Load, and (6) System Capacity.

1. INTRODUCTION
Wireless channels are time-varying due to the multipath

fading phenomenon. Traditionally, channel fading is viewed
as a destructive factor that reduces the communication re-
liability. An effective way to combat fading is to obtain
multiple independent replicas of the transmitted signal at
the receiver by means of diversity. In a wireless network, in-
dependent paths between a base station and individual users
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form a new type of diversity. Recent studies on this mul-
tiuser diversity were motivated by Knopp and Humblet who
showed in [1] that the total uplink (mobile to base) capacity
can be maximized by picking the user with the best channel
to transmit. Essentially, independent variations of channels
for many users make it very likely that the communication
always occurs over a strong channel. As such, the system
throughput can benefit from the randomness due to the fad-
ing effect. The study of [1] was extended in [2] which showed
that the same access scheme is valid also for the downlink
case.

In a more recent paper [3], this type of multiuser selection
diversity was studied from a different perspective, namely,
the trade-off between the system throughput and the fair-
ness among different users. It was argued that although
the selection diversity based on the “best channel” crite-
rion maximizes the system throughput, it can cause unfair
scheduling of the system resources across users. Indeed with
this system, users with the strongest channels in average will
end up monopolizing the resources most of time. For this
reason, proportional fair scheduling that uses a modified se-
lection criterion based on the “relative channel strength”
was then proposed to exploit the multiuser diversity while
maintaining the fairness among users. The basic idea is to
pick the user with the best channel compared to its own
average.

One of the basic limitation facing multiuser diversity is
the required feedback that carries the instantaneous channel
quality estimates from all active users to the access point. In
order to manage the priorities among the users, the sched-
uler requires theoretically the channel quality information
of all users at all time. This makes traditional multiuser
diversity system hardly practical when the number of si-
multaneously active users becomes large. As such, a recent
paper [4] presented a new scheduling technique, referred to
as selective multiuser diversity scheduling in which each user
compares its own channel quality to a predetermined thresh-
old and requests to be considered for channel access only if
its channel quality is above this threshold. These quali-
fied users then feedback the transmission rate that they can
achieve to the access point. Relying on this self-qualification
by the users, it was shown in [4] that the total amount of
feedback is significantly reduced in comparison with the tra-
ditional multiuser diversity while most of the multiuser di-
versity gain is still achieved. The study in [4] was limited
to the scenario in which all the users have identical aver-
age channel quality in terms of average signal-to-noise ratio



(SNR). However users in practical systems are likely to be
distributed randomly over the coverage area and therefore
their average SNRs can be quite disparate. Moreover, the
trade-off between the multiuser selection diversity gain and
the scheduling fairness among all users is a more prominent
issue when channels of different users are statistically non-
identical.

In this paper, we investigate the performance of this new
scheduling technique when the users in the system have un-
equal average SNRs. In the proportional fair scheduling
setup, the relative channel strength in [3] is defined as the
ratio of the data rate each individual’s channel can afford
to its average throughput, which is tracked by the base sta-
tion over a certain time window. In this paper, we take
an alternative point of view and assume that the schedul-
ing is based on the relative SNR, that is, each mobile user
can measure its received SNR and feeds it back to the base
station. The base station tracks the average SNR of each
user over a time window. In each time slot, the base station
chooses the user with the largest ratio of SNR to its own av-
erage SNR. Further, as argued in [5], the power constraint
at the base station is usually based on the maximum power
rather than the long term average power which is typical in
battery-limited applications. Therefore, we assume that the
transmitting power is constant over all time slots.

The remainder of this paper is organized as follows. Sec-
tion II describes the system model and the problem under
consideration. Section III studies the performance of se-
lective multiuser diversity in presence of unequal average
SNRs among users when an absolute thresholding scheme is
employed. Section IV studies on the other hand the perfor-
mance of a normalized thresholding scheme. Finally, section
V ends the paper with some preliminary numerical examples
and concluding remarks.

2. SYSTEM MODEL AND PROBLEM STATE-
MENT

2.1 System and Channel Models
We consider a single-cell multiuser diversity system in

which K simultaneously active users are communicating with
an access point/base station. The baseband channel model
can be written as

ri(t) = hi(t)x(t) + ni(t), i = 1, 2, · · · , K, (1)

where x(t) ∈ C is the transmitted signal in time slot t and
ri(t) ∈ C is the received signal of user i in time slot t.

We assume that x(t) has the same constant normalized
transmit power over time, i.e., E

(

|x(t)|2
)

= 1. This is a
valid power assumption for the base station where the power
constraint is regulated by its peak power rather than the
long-term average power constraint (eg. battery-limited) as
for mobile units. {ni(t)} is an independent and identically
distributed (i.i.d.) sequence of zero mean complex Gaussian
noise with variance σ2

n. hi(t) is the fading channel gain from
the base station to the ith user in time slot t. We adopt the
quasi-static fading channel model where hi(t) is indepen-
dent identically distributed (i.i.d.) from burst to burst but
remains roughly constant over each burst. We consider a
flat fading model and assume that the fading coefficients of
all users are independent but allow these coefficients not to

be necessarily identically distributed. Let γi(t) ,
|hi(t)|

2

σ2
n

denote the instantaneous (in time slot t) received SNR and

γ̄i ,
Ωi

σ2
n

be the short-term average received SNR for the

user i, respectively, where Ωi is the short-term average fad-
ing power of the ith user which we assume in this paper to
be not the same from user to user.

2.2 Problem Statement
If the sequences {hi(t)}, i = 1, · · · , K, can be tracked per-

fectly at the transmitter and the receiver, then the down-
link channel for each channel realization can be viewed as
a set of parallel Gaussian channels. The sum capacity (the
maximum achievable sum of data rates transmitted to all
users) can be achieved by transmitting to the user with the
strongest channel (or equivalently, the user with the largest
γi(t)) [2]. The main problem with this scheduling scheme is
the lack of fairness among users if some of them experience
the best fading conditions most of time [3]. As a remedy, a
proportional fair scheduling scheme was proposed in [3] to
transmit to the user k∗ with the largest

Rk(t)

Tk(t)
,

where Rk(t) and Tk(t) are the requested data rate and the
average throughput of users k, respectively. Alternatively,
in this paper we assume that the base station transmits to
user k∗ with the largest

γk(t)

γ̄k
. (2)

This scheduler uses the same idea as the original propor-
tional fair scheduling algorithm in [3] except that it oper-
ates based on the SNR criterion rather than the data rate.
In what follows, we refer to the proportional fair scheduling

based on γk(t)
γ̄k

as the “normalized SNR-based scheduling”.

In [4], selective multiuser diversity scheduling was pro-
posed to reduce the amount of total feedback while main-
taining a good portion of multiuser diversity gain. Specifi-
cally, all active users first compare their instantaneous chan-
nel condition to a predetermined threshold to decide whether
or not they would request channel access from the access
point. Only those users whose channel condition qualifies
for an access request will then feedback information to the
access point. This subset of qualified users are referred to as
“feedback users”. The access point schedules the transmis-
sion among the feedback users. Let P (t) be the number of
feedback users at slot t. When P (t) > 0, the scheduler con-
ducts its selection on the set of feedback users. On the other
hand, when P (t) = 0, no user feeds back any information
to the base station, and in this case the scheduler randomly
picks a user for access and communication. The feedback
threshold can be optimized by a predetermined scheduling
outage probability, by a feedback load specification, or by a
quality of service requirement for reliable transmission. The

former case corresponds to the feedback condition γk(t)
γ̄k

≥ A

with a fixed threshold A for normalized SNR, and we re-
fer to this scheme as “normalized thresholding scheme”. In
the latter case, the user k feeds back its channel quality if
and only if γk(t) ≥ γth, and this is referred to as “absolute
thresholding”. In the next two sections, we will investigate
the performance of selective multiuser diversity in presence
of unequal SNRs among users for both the absolute and the
normalized thresholding schemes.



3. ABSOLUTE THRESHOLDING SCHEME

3.1 System Capacity
In the selective multiuser diversity system with absolute

thresholding scheme, the number of feedback users, P (t), is
defined as,

P (t) = card{k, such that γk(t) ≥ γth}, (3)

where card is the cardinal operator. The selection process
can be mathematically described as

γk∗(t)

γ̄k∗

=







maxi

{

γi(t)
γ̄i

}

, if P (t) > 0

randi

{

γi(t)
γ̄i

}

, if P (t) = 0
, (4)

where rand is the random pick operator. Therefore the
cumulative distributive function (CDF) of the SNR post
scheduling γ∗ under absolute thresholding scheme, Fγ∗(γ),
can be shown to be given by

Fγ∗(γ) =
1

K

K
∑

k=1

K
∏

j=1;j 6=k

Fγj
(γth)Fγk

(γ); if γ ≤ γth

Fγ∗(γ) =

K
∏

j=1

Fγj
(γth) +

1

K

×

K
∑

k=1

{

[

Fj

(

γ

γ̄k

)]K

−

[

Fj

(

γth

γ̄k

)]

}

; if γ > γth,

(5)

where Fγk
(·) is the CDF of the k-th user SNR and Fk(·)

is the CDF of the normalized SNR γ
γ̄

of each individual

user, which is identical for all users. For example, for the

Rayleigh fading case, Fγk
(γ) = 1− exp

(

− γ
γ̄k

)

and Fk(x) =

1 − exp(−x). Then we can obtain the probability density
function (PDF) of γ∗, fγ∗(γ), by taking the derivative of
(5) with respect to γ yielding

fγ∗(γ) =







1
K

∑K
k=1

∏K
j=1;j 6=K Fγj

(γth) fγk
(γ), γ ≤ γth

∑K
k=1

1
γ̄k

[

Fj

(

γ
γ̄k

)]K−1
fj

(

γ
γ̄k

)

, γ > γth

, (6)

where fj(·) is the PDF of the normalized SNR γ
γ̄

and which

is for example equal to fj(x) = exp(−x) for the Rayleigh
fading case. In (6), fγk

(·) is the PDF of the k-th user SNR
and which is for example equal to fγk

(γ) = 1
γk

exp(−γ/γk)

in the Rayleigh fading case.
With the PDF of (6) in hand, one can show that the sys-

tem average capacity for the Rayleigh fading case is given by
taking the expectation with respect to log2(1 + γ∗) yielding

E(C∗) =
log2 e

K

K
∑

k=1

K
∏

j=1;j 6=k

[

1 − exp

(

−
γth

γ̄j

)]

×

{

exp

(

1

γ̄k

) [

E1

(

1

γ̄k

)

− E1

(

γth

γ̄k
+

1

γ̄k

)]

− ln(1 + γth) exp

(

−
γth

γ̄k

)}

+
K

∑

k=1

K−1
∑

i=0

(−1)i
(K − 1

i

) log2 e

1 + i

×

{

ln(1 + γth) exp

(

−(1 + i)
γth

γ̄k

)

+ exp

(

1 + i

γ̄k

)

E1

(

γth(1 + i)

γ̄k
+

1 + i

γ̄k

)}

, (7)

where E1(·) is the exponential-integral function of the first
order defined by

E1(x) =

∫ ∞

1

e−xt

t
dt, x ≥ 0,

which is related to the exponential-integral function Ei(x)
[6, Eqn. (8.21)] by E1(x) = −Ei(−x).

3.2 Scheduling Outage Probability
When P (t) = 0 and no user feeds back any information,

we declare a scheduling outage. The probability of this event
is given by

Po = Pr(P (t) = 0) =
K
∏

k=1

Fγk
(γth) . (8)

3.3 Feedback Load
According to [4], the normalized feedback load is defined

as

F̄ =
E(P (t))

K
, (9)

where E(P (t)) for selective multiuser diversity system can
be shown to be given under the absolute thresholding scheme
by

E(P (t)) =

K
∑

k=0

k Pr [P (t) = k]

=

K
∑

k=0

k

K
∑

i1=1

K
∑

i2=1;i2 6=i1

· · ·

K
∑

ik=1;ik 6=i1,··· ,ik−1

×

k
∏

j=1

[

1 − Fγij
(γth)

]

×

K
∏

ik+1=1;ik+1 6=i1,··· ,ik

Fγik+1
(γth). (10)

Another statistics of the feedback load is the feedback load
variation, which is defined as [4]

VF =
Var(P (t))

[E(P (t))]2
(11)

Contrary to VF in [4] for the i.i.d. case, no closed-form can
be obtained for VF in this case.

3.4 Threshold Choice
The threshold γth can be optimized by reaching a pre-

determined scheduling outage probability P0 or by meeting
certain normalized average feedback load specification F̄ ,
which correspond to the inverse functions of (8) and (9).
Note that this inversion can not be done in closed-form in
this case and as such it has to be done numerically.

4. NORMALIZED THRESHOLDING SCHEME

4.1 System Capacity
Under the normalized thresholding scheme, the number

of feedback users, P (t), is defined as,

P (t) = card{k, such that
γk(t)

γ̄k
≥ A}. (12)



The selection process is the same as that described in (4).
Without loss of generality, let us assume γ̄1 ≤ γ̄2 ≤ · · · ≤
γ̄K . The CDF of the SNR post scheduling γ∗ under the
normalized thresholding scheme, Fγ∗(γ), can be shown to
be given piece by piece as

Fγ∗(γ)=F0,γ∗(γ) =
K

∑

k=1

1

K

K
∏

j=1;j 6=k

Fj(A)Fγk
(γ); if γ < Aγ̄1

Fγ∗(γ)=F1,γ∗(γ) = F0,γ∗(Aγ̄1) +
K
∏

j=2

Fj(A) [Fγ1
(γ) − Fγ1

(Aγ̄1)]

+
K

∑

k=2

1

K

K
∏

j=1;j 6=k

Fj(A) [Fγk
(γ) − Fγk

(Aγ̄1)] ; if Aγ̄1 ≤ γ < Aγ̄2

Fγ∗(γ)=F2,γ∗(γ) = F1,γ∗(Aγ̄2) +
1

2

K
∏

j=3

Fj(A)

×

2
∑

k=1

[

(

Fk

(

γ

γ̄k

))2

−

(

Fk

(

Aγ̄2

γ̄k

))2
]

+

K
∑

k=3

1

K

K
∏

j=1;j 6=k

Fj(A) [Fγk
(γ) − Fγk

(Aγ̄2)] ; if Aγ̄2 ≤ γ < Aγ̄3

Fγ∗(γ)=· · · · · ·

Fγ∗(γ)=FK−1,γ∗(γ) = FK−2,γ∗(Aγ̄K−1) +
1

K − 1
FK(A)

×

K−1
∑

k=1

[

(

Fk

(

γ

γ̄k

))K−1

−

(

Fk

(

Aγ̄K−1

γ̄k

))K−1
]

+
1

K

K−1
∏

j=1

Fj(A) [Fγk
(γ) − Fγk

(Aγ̄K−1)] ; if Aγ̄K−1 ≤ γ < Aγ̄K

Fγ∗(γ)=FK,γ∗(γ) = FK−1,γ∗(Aγ̄K)

+
1

K

K
∑

k=1

[

(

Fk

(

γ

γ̄k

))K

−

(

Fk

(

Aγ̄K

γ̄k

))K
]

; if γ ≥ Aγ̄K .

(13)

The corresponding PDF can be deduced by taking the
derivative of (13) with respect to γ yielding

fγ∗(γ)=f0,γ∗(γ) =
K

∑

k=1

1

K

K
∏

j=1;j 6=k

Fj(A)fγk
(γ); if γ < Aγ̄1

fγ∗(γ)=f1,γ∗(γ) =
K
∏

j=2

Fj(A)fγ1
(γ)

+

K
∑

k=2

1

K

K
∏

j=1;j 6=k

Fj(A)fγk
(γ); if Aγ̄1 ≤ γ < Aγ̄2

fγ∗(γ)=· · · · · ·

fγ∗(γ)=fK−1,γ∗(γ) = FK(A)

K−1
∑

k=1

1

γ̄k
fk

(

γ

γ̄k

) [

Fk

(

γ

γ̄k

)]K−2

+
1

K

K−1
∏

j=1

Fj(A)fγk
(γ); if Aγ̄K−1 ≤ γ < Aγ̄K

fγ∗(γ)=fK,γ∗(γ) =

K
∑

k=1

1

γ̄K
fk

(

γ

γ̄k

) [

Fk

(

γ

γ̄k

)]K−1

; if γ ≥ Aγ̄K .

(14)

The system average capacity for selective multiuser diver-
sity system under the normalized thresholding scheme over

Rayleigh fading channels can thereby be shown to be given
by

E(C∗) =
log2 e

K
[1 − exp (−A)]K−1

×

K
∑

k=1

{

exp

(

1

γ̄k

) [

E1

(

1

γ̄k

)

− E1

(

Aγ̄1

γ̄k
+

1

γ̄k

)]

− ln(1 + Aγ̄1) exp

(

−
Aγ̄1

γ̄k

)}

+ log2 e [1 − exp (−A)]K−1

×

{

exp

(

1

γ̄1

) [

E1

(

1 + Aγ̄1

γ̄1

)

− E1

(

1 + Aγ̄2

γ̄1

)]

− ln(1 + Aγ̄2) exp

(

−
Aγ̄2

γ̄1

)

+ ln(1 + Aγ̄1) exp (−A)

}

+
log2 e

K
[1 − exp (−A)]K−1

×

K
∑

k=2

{

exp

(

1

γ̄k

) [

E1

(

1 + Aγ̄1

γ̄k

)

− E1

(

1 + Aγ̄2

γ̄k

)]

− ln(1 + Aγ̄2) exp

(

−
Aγ̄2

γ̄k

)

+ ln(1 + Aγ̄1) exp

(

−
Aγ̄1

γ̄k

)}

+ · · · · · ·

+ [1 − exp (−A)]

K−1
∑

k=1

K−2
∑

i=0

(−1)i
(K − 2

i

) log2 e

1 + i

×

{

exp

(

1 + i

γ̄k

) [

E1

(

[1 + Aγ̄K−1](1 + i)

γ̄k

)

− E1

(

[1 + Aγ̄K ](1 + i)

γ̄k

)]

− ln(1 + Aγ̄K) exp

(

−
Aγ̄K(1 + i)

γ̄k

)

+ ln(1 + Aγ̄K−1) exp

(

−
Aγ̄K−1(1 + i)

γ̄k

)}

+
log2 e

K
[1 − exp (−A)]K−1

×

{

exp

(

1

γ̄k

) [

E1

(

1 + Aγ̄K−1

γ̄k

)

− E1

(

1 + Aγ̄K

γ̄k

)]

− ln(1 + Aγ̄K) exp

(

−
Aγ̄K

γ̄k

)

+ ln(1 + Aγ̄K−1) exp

(

−
Aγ̄K−1

γ̄k

)}

+
K

∑

k=1

K−1
∑

i=0

(−1)i
(K − 1

i

) log2 e

1 + i

×

{

ln(1 + Aγ̄K) exp

(

−(1 + i)
Aγ̄K

γ̄k

)

+ exp

(

1 + i

γ̄k

)

E1

(

Aγ̄K(1 + i)

γ̄k
+

1 + i

γ̄k

)}

. (15)

4.2 Scheduling Outage Probability
The probability of scheduling outage under normalized

thresholding scheme can be shown to be given by

Po = Pr(P (t) = 0) =
K
∏

k=1

Fk (A) = [Fk (A)]K . (16)

Note that in last equation, Fk(·) is identical for all users.



4.3 Feedback Load
When employing normalized thresholding scheme, the nor-

malized feedback load in (9) can be calculated with E(P (t))
given by

E(P (t)) =
K

∑

k=0

kPr [P (t) = k]

=
K

∑

k=0

k

(

K

k

)

[1 − Fi(A)]k[Fi(A)]K−k

= K (1 − Fi(A)) (17)

Finally, the normalized feedback load in this case can be
shown to be given by

F̄ = 1 − Fi(A), (18)

and the feedback load variation can be obtained in closed-
form in this case as

VF =
Fi(A)

K[1 − Fi(A)]
. (19)

4.4 Threshold Choice
The threshold A can be chosen to meet a certain required

outage probability or feedback load by solving equations (16)
and (18), respectively. For instance, in the Rayleigh fading
case, inverting (16) and (18) lead to

A = − ln(F̄ ) (20)

and

A = − ln
(

1 − P 1/K
o

)

. (21)

5. NUMERICAL EXAMPLES
We present in this section some initial/preliminary results.

A more detailed set of numerical results and their corre-
sponding discussion will be presented in the journal version
of this paper [7]. In Fig. 1-4, the short-term average SNR
γ̄k, k = 1, · · · , K are non-identical. The setup is as fol-
lows. Each time we increase the number of users by 2. For
the non-iid case, the average SNR values of these two new
users are generated from uniform(0, 1) and then normalized
so that they add up to 2 SNR (due to this randomness,
the curves in Fig. 1, 2 and 4 are not smooth), where SNR
equals 1 at this time. Therefore the total SNR of K users is
K SNR. The same set of values of γ̄k at each K are used
for all curves in Fig. 1 and 2 to ensure a fair comparison.

Specifically, Fig. 1 and 2 plot the average system capacity
and corresponding feedback load versus number of users for
selective multiuser diversity scheme with absolute thresh-
olding for various values of the threshold γth. The capac-
ity performance of the traditional full feedback proportional
fair scheduling scheme is also provided for comparison. Note
that the feedback load for the traditional full feedback pro-
portional fair scheduling scheme is 1. One can see that for
γth = 1, a negligible loss in capacity performance is observed
while the feedback load is reduced as low as 35%.

Fig. 3 shows the scheduling outage probability as a func-
tion of the absolute threshold γth. Note that when γth = 1
and K = 10, the scheduling outage probability is very small
and is approximately equal to 10−2.

Finally, Fig. 4 plots the average system capacity versus
the required feedback load under the normalized threshold-
ing scheme for various values of K. These figures confirm
that selective multiuser diversity scheme reduces dramati-
cally the feedback load but maintains most of the perfor-
mance. For instance note that for K above 20 or so, a feed-
back load greater than 10% results in a very little additional
capacity gain and is therefore not necessary.
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Figure 1: Average capacity comparison of tradi-

tional proportional fair scheduling and selective mul-

tiuser diversity scheme with absolute thresholding.

0 5 10 15 20 25 30 35 40 45 50
0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

Number of Users K

N
or

m
al

iz
ed

 A
ve

ra
ge

 F
ee

db
ac

k 
Lo

ad

threshold=0.5 Selective PFS
threshold=0.8 Selective PFS
threshold=1.0 Selective PFS

Figure 2: Normalized average feedback load of se-

lective multiuser diversity scheme with absolute

thresholding.
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Figure 3: Scheduling outage vs. threshold for the

selective multiuser diversity scheme with absolute

thresholding.
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Figure 4: Average system capacity vs. re-

quired feedback load for selective multiuser diversity

scheme with normalized thresholding.


