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Abstract

We consider a linear multistage detector with universal (large system) weighting
for large asynchronous code-division multiple-access (CDMA). A convenient choice
of the basis of the projection subspace allows a joint projection of all users’ signals
and avoids truncation effects due to finite time windowing. Thanks to the joint
projection the complexity per bit of the proposed detector scales linearly with the
number of users. Under the assumption that the system is symbol asynchronous
but chip synchronous the detector performance is analyzed analytically and shown
to be identical to synchronous CDMA in the large system limit thanks to the
absence of truncation effects.

The proposed detector is compared to the finite-window linear minimum mean-
square error detector (LMMSE). While in the synchronous case the LMMSE de-
tector always outperforms weighted multistage detectors, we show that, with a suf-
ficiently large delay, the proposed multistage detector can outperform the LMMSE
detector in asynchronous CDMA due to constraints on the observation window.

1 Introduction

The asymptotic analysis of linear multiuser detectors under the assumption of random
spreading sequences is mainly focused on synchronous CDMA systems and only few
works analyze linear detectors in asynchronous scenarios [1, 2, 3]. In [1, 3] the effects
of chip asynchronicity are analyzed. It is shown that the performance of the LMMSE
detector for chip asynchronous systems equals the performance of the same detector in
chip synchronous scenarios as the observation window size tends to infinity. In [2] a
corresponding statement is shown for chip-synchronous but symbol asynchronous and
symbol synchronous CDMA respectively. Additionally, [2] gives the large system signal-
to-interference and noise ratio (SINR) for a symbol centered in an observation window of
length equal to the symbol interval Ts. A loose lower bound of the SINR is also known
for any linear MMSE detector with observation window lengths multiple of Ts. However,
the mismatch between the lower bound in [2] and simulation results is quite large.

Multistage detectors for synchronous CDMA have been proposed and analyzed in
several works [4, 5, 6, 7]. They consist of a projector onto a subspace and a subsequent
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filter. The complexity reduction promised by the use of asymptotic filter coefficients
(optimum weighting as the number of users and spreading sequences tend to infinity
with constant ratio) in [8] inspired studies to design asymptotic weighting in different
scenarios [12, 9, 13, 14]. Although with asymptotic weighting the detector complexity
is determined by the complexity of the projection onto the subspaces, the choice of
the basis of the subspace received little attention. In the reverse link, the use of an
appropriate basis, that supports the joint processing of all users allows to reduce the,
in general, quadratic complexity order per bit of the multistage detectors in [12, 14], to
linear complexity per bit [9].

In this work we focus our attention on chip synchronous but symbol asynchronous
CDMA with multistage detectors. By choosing a convenient basis and allowing for a
detection delay equal to the number of stages we propose a multistage detector structure,
with linear complexity order per bit, which does not suffer from windowing effects and
performs as well as the multistage detector for synchronous systems. We present also
an algorithm to calculate an arbitrarily tight lower bound on the SINR of LMMSE
detectors. This algorithm allows an arbitrarily close approximation of the asymptotic
LMMSE detector SINR for any symbol impinging the received signal. We show that the
proposed multistage detector can outperform the full rank windowed MMSE detector.
The rationale behind this fact is that the observation window of the proposed multistage
detector increases automatically with the number of stages while being fixed for the full
rank LMMSE detector. The sliding observation window used in the multistage detector
implementation allows constant performance for all transmitted symbols in contrast to
the full rank LMMSE detector, whose performance depends on the detected symbol
position in the observation window.

Effects of chip asynchronicity on multistage detectors are analyzed in [15].

2 System Model and Notations

In the following, upper and lower boldface symbols will be used, respectively, for matrices
and vectors corresponding to signal transmitted in a specific symbol interval n. Matrices
and vectors describing signals spanning more than one symbol interval are denoted by
upper calligraphic letters.

Let us consider a direct-sequence CDMA system with K users and spreading factor
N . We focus on asynchronous systems in the reverse link. However, to make the analysis
tractable we will assume the system to be chip-synchronous as in [2]. User 1 is the
reference user. Without loss of generality we can assume that the time shift between any
user and user 1 is, at most, one symbol and the users are ranked in ascending order of time
shift with respect to the reference user. Let y(n) ∈ CN and b(n) ∈ CK be, respectively,
the observed column vector synchronized to the reference user and the column vector
of the transmitted user modulation symbols at time n. S(n) ∈ C2N×K is the spreading
matrix containing the users’ spreading sequences at time n, opportunely shifted and zero
elsewhere. A = diag(a1, a2, . . . aK) is the K × K matrix of complex received amplitudes
and H(n) = S(n)A. For notation reasons we split the matrix H(n) in two matrices1

Hu(n),Hd(n) ∈ CN×K such that H(n) = [HT
u (n),HT

d (n)]T .
Then, the baseband discrete-time asynchronous system in the reverse link is described

1The indices u and d are used to denote, respectively, the upper and lower block in which we split
the matrix H(n)



by
Y = HB + N (1)

where Y = [. . . ,yT (n−1),yT (n),yT (n+1) . . .]T , B = [. . . , bT (n−1), bT (n), bT (n+1) . . .]T .
N is the additive white gaussian noise with variance σ2. The matrix H is a bi-diagonal
block matrix with infinite block rows

[
. . . 0 Hd(n − 1) Hu(n) 0 . . .

]
(2)

for n ∈ (−∞, +∞). Throughout this work we assume that the nonzero elements of
all matrices S(n), ∀n ∈ (−∞, +∞), are independent and identically distributed (i.i.d.).
Additionally, E{sij} = 0, E{|sij|

2} = 1
N

.

The sequence of the empirical eigenvalue distribution of AAH converges almost surely,
as K → ∞, to a non-random distribution function with upper bounded support. β = K

N

is the system load, i.e. the number of physical users per chip. The time shifts are i.i.d.
distributed among the users. The time shift normalized to the symbol interval Ts, τ , has
probability mass function (p.m.f) PN(τ). The support of PN(τ) is [0, γ], with γ ≤ 1.
As N → ∞ the sequence {PN(τ)} converges to the p.d.f pτ (τ). We will also consider
the system corresponding to a finite observation window of length T symbols centered in
the n-th transmitted symbol of the reference user. In order to keep the notation simple
we assume T to be integer and odd. However, the result will hold for any T such that
TN ∈ Z. In this case, the model has the following form:
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YN,T (n) = HN,T (n) BN,T (n) + NN,T (n)

(3)

3 Multistage Detector

3.1 Choice of the basis of the projection subspace

In order to introduce the concept of multistage detectors we consider a synchronous
system. In this case, Hd(n)=0, ∀n. H becomes a block diagonal matrix and the detection
of the transmitted symbols at time instant n is independent from the transmitted symbols
at different time instants. Then, definingH(n)=Hu(n), the system model is given by

y(n) = H(n)b(n) + n(n). (4)

A linear multistage detector of order M for user k is a multiuser detector performing

• a projection of the observed signal onto the Krylov subspace

χM,k,n(H(n)) = span{T m
∼k(n)hk(n)}M

m=0 (5)

= span{T m(n)hk(n)}M
m=0, (6)

where hk denotes the k-th column of H(n), T (n) = H(n)H(n)H , T∼k(n) =
H∼k(n)H∼k(n)H , and H∼k(n) is the N × (K − 1) matrix obtained from H(n) by
removing the k-th column2;

2About the identity of the subspaces spanned by the two bases in (5) and (6) see [6].



• A subsequent processing of the projections by a filter designed according to an
optimality criterion.

Both the projection and the filter design can be performed jointly for all users or individ-
ually for each user. This has effects on both the performance and the complexity of the
resulting multistage detector. The joint projection can be obtained using the vectors in

(6) as basis of χM,k,n(H(n)). In this case the projector consists of a matched filter H
H

and M stages each of them performing despreading — filtering by H — and successive
matched filtering. Using the vectors in (5), no joint computation of the projections is
possible for M > 1 and K different projectors are required. For the basis (6), filtering
design can be performed jointly using the same filter coefficients for all users and choos-
ing them, for example, by enforcing the minimization of the mean square error (MSE)
averaged over all users [9]. Alternatively, we can design a different filter for each user
minimizing the MSE individually. Table 1 shows the possible combinations and states
the denominations. Detectors Type I are known as polynomial expansion detectors and

Joint

Projection

Individual

Projection

Joint

Filtering
Type I @

Individual

Filtering
Type II Type III

Table 1: Multistage detector classification.

Detector
One user’s

detection

All users’

detection

SUMF O(K) O(K)

Type I O(K2) O(K)

Type II O(K2) O(K)

Type III3 O(K2) O(K2)

LMMSE O(K3) O(K2)

Table 2: Complexity order per symbol.

were proposed in [4]. Detectors Type II were considered in [9] and called there individual
LMMSE detectors in χM,k,n(H). Detectors Type III are known as multistage Wiener
filters and were presented first in [5]. Detectors Type II and Type III adopt the same
optimality criterion in the same subspace and differ only in the choice of the subspace ba-
sis. Therefore, they have identical performance. However, they need, in general, different
weights.

To be subspace methods does not imply that the multistage detectors have lower
complexity order than the full rank LMMSE detector. In fact, the filter coefficient design
complexity is O(K3) as the complexity order of the LMMSE detector. However, by
approximating the optimum filter coefficients with the corresponding weights for large
systems, i.e. as K,N → ∞ with K

N
→ β, as proposed in [8], the coefficient design

complexity becomes negligible with respect to the projection complexity. The complexity
order per bit, for detectors with asymptotic filter coefficients, is shown in Table 2. Table
2 distinguishes two cases: a single user is detected, typically in the forward link, and all
users are detected at the receiver, typically in the reverse link. Considering the advantages
of the Type II detectors in terms of performance with respect to Type I detectors [9] and
in terms of complexity with respect to Type III detectors, in the following we focus on
Type II detectors and extend them to the asynchronous case.

A straightforward extension of multistage detectors to asynchronous systems would
replace the matrix H(n) with the finite matrix HN,T (n). This would sum up the perfor-
mance degradation of a subspace method with respect to the full rank approach to the
loss due to windowing. However, an implementation of multistage detectors with finite

3For Type III detectors with a single stage (M = 1) an implementation with complexity order 0(K)
is possible as all users are detected (reverse link).
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Figure 1: Multistage detector Type II for asynchronous systems.

delay is still possible considering the unlimited system model (1) and using the subspace

χM,k,n(H) = span
{
}(k, n)HT m

}M

m=0
, where }(k, n) is the column of H corresponding to

user k at time instant n and T = HHH . Because of the bi-diagonal block structure of H,
the matrix T is a tri-diagonal block matrix and its power T m is a (2m+1)-diagonal ma-
trix. Therefore, the vector }(k, n)HT m has, at most, (2m+1)N nonzero elements and the
M -stage detector for the unlimited system model can be implemented with a finite delay
equal to MTs. Figure 1 shows its structure. The j-th stage consists of a re-spreading
block that multiplies the input vector by the matrix H(n−j+1) and a filter matched to
the transmitted vector at time n−j, H(n−j)H . It receives as input vector }(1 :K,n)T jY ,
where }(s :r, n) denotes the s−r+1 columns of the matrix H corresponding to the users
r, r+1, . . . s at time instant n. The re-spreading block provides two output vectors, the
upper part vector Hu(n − j)}(1 :K,n − j)T jY and Hd(n − j + 1)}(1 :K,n − j)T j−1Y .
The input to the following matched filter is given by

[
Hu(n−j)}(1 :K,n−j−1)HT j−1Y+Hd(n−j−1)}(1 :K,n−j−2)HT j−1Y

Hu(n−j+1)}(1 :K,n−j)HT j−1Y+Hd(n−j)}(1 :K,n−j−1)HT j−1Y

]
. (7)

The output of the j-th stage is delayed by (M − j)Ts before being used as input of the
filter to provide the soft estimate of b(n−M).

3.2 Design of the Asymptotic Weighting

Let Wm(n)=diag(wm1(n), wm2(n), . . . , wmk(n)) and Wm=diag{. . . ,Wm(n),Wm(n+1), . . .}.
The multistage detector Type II for asynchronous systems is the linear detector M =∑M

m=0 WmH
HT m such that E{‖MY − B‖2} is minimum. This is equivalent to the

minimization of the mean square error (MSE) for each component (b(n))k
4 of B in the

correspondent subspace χM,k,n(H). The weight matrices Wm(n) can be derived by the
following equation:

wk(n) = (Φk(n))−1ϕk(n) (8)

where (wk(n))m = (Wm(n))kk, ϕk(n) is an (M + 1)-dimensional vector , Φk(n) ∈
R(M+1)×(M+1), (ϕk(n))m = (Rm+1(n))kk, (Φk(n))lm = (Rl+m(n))kk + σ2(Rl+m−1(n))kk,
R = HHH, and (Rm(n))kk = }(k, n)HT m−1}(k, n) denotes the diagonal element of the

4(.)m denotes the m-th component of the vector argument and (.)mn denotes the element ij of the
matrix argument.



matrix Rm corresponding to the user k at time instant n. The output SINR of user k is
given by [9]

SINRk(n) =
ϕT

k (n)(Φk(n))−1ϕk(n)

1 − ϕT
k (n)(Φk(n))−1ϕk(n)

(9)

In the asymptotic case, as N,K → ∞ with K
N

= β, the expression for Type II detectors re-
quires the existence and the expression of the limits lim

K=βN→∞
(Rm(n))kk = Rm

k,∞(n) k ∈

[1, K] and 1 ≤ m ≤ 2(M + 1). It is known [1, 2] that for K = βN and T → ∞ the
eigenvalue distribution of R converges to the limit distribution as the eigenvalues of the

matrix R = H
H

H for synchronous systems. It will be apparent from the discussion in
Section 4 that the same property holds also for the diagonal elements Rm

∞,k(n) and

lim
K=βN→∞

(Rm(n))kk = R
m

k,∞ ∀1 ≤ m ≤ 2(M + 1). (10)

Recursive and closed form expressions for R
m

k,∞ can be found in [9]. The extension of
these results to detectors of Type I and Type III is straightforward. The asymptotic
weights can be found in [9] and [12] respectively.

4 Asymptotic Performance of LMMSE Detectors

In this section we propose an algorithm to determine the asymptotic (i.e. K = βN → ∞)
SINR of linear MMSE detector for asynchronous systems. It is well known that for a
finite synchronous system with K users a K-stage detector coincides with the linear
MMSE detector [4, 6]. Therefore, the SINR of Type II detectors for M < K provides
a family of lower bounds for the SINRLMMSE of the full rank linear MMSE detector.
Additionally, it has been shown that for moderate to heavy loads an 8-stage detector
for synchronous system essentially achieves full rank performance [6] independently of
the number of users in the system, i.e. the required rank to achieve a fixed level of
performance does not scale with the system size. It was established in [7] that the reduced
rank multistage filter output SINR converges exponentially in the filter rank toward to the
full rank LMMSE filter output SINR. We use this property to determine the performance
of a LMMSE detector. We provide a family of lower bounds for the LMMSE detector
with finite observation window whose supremum coincides with the SINRLMMSE. The
family of lower bounds consists of the performance of multistage detectors with finite
observation windows and varying numbers of stages. We verified numerically that for
M ≥ 8 the lower bounds are so close to the supremum, also for asynchronous systems,
to be indistinguishable from it.

Let us consider an asynchronous system with finite observation window T and equal
powers. Then, without loss of generality we assume that A = I in (3). Making use
of (9), the problem of determining the family of lower bounds of SINRLMMSE reduces
to determining the diagonal elements of the matrix RT (n) = HH

N,T (n)HN,T (n) as K =
βN → ∞. A recursive algorithm to determine them is provided by Theorem 1.

Theorem 1 Let HN,T be an TN×(T +1)K bi-diagonal block matrix with blocks H(j) =
[HT

u (j),HT
d (j)]T ∈ C2N×K , and Hu(j),Hd(j) ∈ CN×K , as follows:

HN,T =




Hd(1) Hu(2) 0 . . . . . . . . .

0 Hd(2) Hu(3) 0 . . . . . .
. . .

. . .
. . .

. . .
. . .

. . .

. . . . . . 0 Hd(T−1) Hu(T ) 0

. . . . . . . . . 0 Hd(T ) Hu(T +1)




. (11)



Let H̃(k) for k = 1, . . . T + 1 be independent matrices in C2N×K with elements h̃ij(k),

1 ≤ i ≤ N , 1 ≤ j ≤ K, i.i.d. and such that E{h̃ij(k)} = 0, E{|h̃ij(k)|2} = 1
N

, and

h̃ij(k) ≤ log N

N
and the remaining elements equal to zero. The matrix H(k) is obtained

from H̃(k) circularly shifting each column by τN positions independently of all the others

and according to a p.m.f. PN(τ), and then, sorting the column vectors by ascending order

of τ . The sequence of p.m.f {PN(τ)} converges to a p.d.f. pτ (τ) with support [0, γ] and

γ ≤ 1, distribution function Fτ (τ). We assume the spectrum of the matrix HN,T be upper

bounded for sufficiently large N . Define for each N vN : [0, T ] × [0, (T + 1)β] → R the

limiting joint distribution of the variance:

vN(x, y) = NE{|hij|
2} for i, j satisfying (12)

i

N
≤ x ≤

i + 1

N

j

N
≤ y ≤

j + 1

N
. (13)

Then, vN(x, y) converges uniformly to a limited bounded function v such that v(x, y) = 1
in the region whose border is defined by the two curves r(x) and c(y) with

r(x) =

{
β

γ
F−1

τ

(
x−i
γ

)
+ iβ i ≤ x ≤ i + γ

(i + 1)β i + γ < x < i + 1
0 ≤ i ≤ T − 1, (14)

c(y) =

{
0 0 ≤ y ≤ β

(i − 1) + iβFτ

(
γ(y−iβ)

β

)
iβ < y < (i + 1)β

1 ≤ i ≤ T (15)

and vN(x, y) = 0 elsewhere. Moreover, let the function l(y) ∈ R be defined as

l(y) =





β

γ
F−1

τ

(
y

γ

)
0 ≤ y ≤ β

1 β < y < Tβ
β

γ
F−1

τ

(
(T+1)β−y

γ

)
+ (1 − γ) βT ≤ y ≤ β(T + 1)

. (16)

Then,

lim
K=βN→∞

(
T m

N,T

)
nn

= lim
K=βN→∞

((HN,TH
H
N,T )m)nn

a.s.
= T m

T (x) and x = lim
N→∞

n(N)

N
(17)

lim
K=βN→∞

(
Rm

N,T

)
kk

= lim
K=βN→∞

((HH
N,THN,T )m)kk

a.s.
= Rm

T (y) and y = lim
N→∞

k(N)

N
(18)

with Rm
T (y) and T m

T (x) determined by the following recursion:

T n+1
T (x) = β

n∑

s=0

T s
T (x)f(Rn−s

T , x) 0 ≤ x ≤ T (19)

Rn+1
T (y) = l(y)

n∑

s=0

Rs
T (y)g(T n−s

T , y) 0 ≤ y ≤ (T + 1)β (20)

with

f(Rn
T , x)

4
=

1

β

∫ r(x)+β

r(x)

Rn
T (y) dy 0 ≤ x ≤ T (21)

g(T n
T , y)

4
=

1

l(y)

∫ y+l(y)

y

T n
T (x) dx 0 ≤ y ≤ (T + 1)β (22)

and T1
T (x) = β and R1

T (y) = l(y).
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The proof is omitted due to space limitation. The assumption that the spectrum of
the matrix RN,T is upper bounded is of technical nature. Indeed, we conjecture that it
follows from the hypotheses on hij(k). This property is verified for the matrix H for
synchronous systems. In fact, extensive computer simulations were performed in order
to verify it [10] and the property was proven in [11]. However, no analogous result for
the matrix RN,T is known to the authors.

Figure 3 illustrates the meaning of the functions v(x, y), r(x), c(x), and l(y). The
following example explains the use of the theorem. Let us assume T = 3, γ = 1 and the
delay uniformly distributed in the interval [0, Ts], then Fτ (τ) = τ , r(x) = βx ∀x ∈ [0, 3],

c(y) =

{
0 0 ≤ y ≤ β
y−β

β
β ≤ y ≤ 4β

and l(y) =





y

β
0 ≤ y ≤ β

1 β ≤ y ≤ 3β
4β − y

β
β ≤ y ≤ 4β

. (23)

Therefore, T 1
T (x) = β and R1

T (y) = l(y),

f(R1
T , x) =





1
β

[
β∫

βx

y

β
dy +

βx+β∫
β

dy

]
0 ≤ x ≤ 1

1
β

βx+β∫
βx

dy 1 ≤ x ≤ 2

1
β

[
3β∫
βx

dy +
βx+β∫
3β

(
4β − y

β

)
dy

]
0 ≤ x ≤ 1

(24)

and g(T 1
T , y) = β, 0 ≤ y ≤ 4β. We can then apply (19) and (20). In Figure 2 the

asymptotic values of Rn
3 (y) for n = 1 . . . 6 are compared to the values Rn

3,kk(N), for

N = 2048 and β = 1
2
, of a single realization. Simulations with various distributions of

the elements hij show that the diagonal elements of finite large matrices match very well
the asymptotic values determined by (20).

The difficulty in extending the previous theorem to a system with unbalanced powers
(A 6= I) is due to the difficulty in determining T m

T (x). However, for T → ∞ no truncation
effects occur and, as for synchronous systems, T m

T (x) is independent of x and is equal
to the normalized trace of T m. For T → ∞ it is known [1, 2] that the asymptotic
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eigenvalue distribution of T coincides with the eigenvalue distribution for synchronous
systems. Hence, with an approach analogous to the one applied to derive Theorem 1, we
can derive an equation equivalent to equation (20) for systems with unbalanced powers.
This leads to the same results as in the synchronous systems stated in (10).

5 Numerical Results

Throughout this section, we consider linear MMSE detectors with observation window
T = 3. Figure 4 shows the output SINRLMMSE for a system with β = 1

2
and Eb

N0
= 7

dB. As for the synchronous case, the convergence of lower bounds toward to the supre-
mum is very fast and the lower bound corresponding to M = 7 (marks in Figure 4) is
undistinguishable from the one obtained for M = 8. The SINR reaches its maximum
for the transmitted symbol centered in the observation window and decreases smoothly
for the transmitted symbols whose spreading is still completely observed (y ∈ [β, 3β]).
The performance degrades rapidly for symbols only partially included in the observation
window. In contrast to the synchronous case, in the asynchronous case the multistage
detectors with M sufficiently large, can outperform the full rank LMMSE detector with
finite observation window T . This is due to the fact that both detectors use only a subset
of a sufficient statistic, but, with the proposed subspace basis, multistage detectors in-
trinsically use a wider and wider subset as the number of stages increases, while the full
rank LMMSE detector exploits always the same statistic and the use of a wider statistic
requires an increment of the observation window size.

6 Summary of Results and Conclusion

We proposed a scheme the multistage detectors with linear complexity per bit, which
does not suffer from windowing effects in asynchronous systems, in contrast to the full
rank LMMSE detector. We also provided an algorithm to determine the performance
of the LMMSE detector with finite observation window for all the transmitted symbols
that impinge the received signal. In contrast to the synchronous systems, the multistage
detector for asynchronous systems can outperform the full rank LMMSE detector with
finite window T when choosing a sufficient large rank M .
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