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Preface

The work presented in this document was initiated while the author was a senior researcher at
the Forschungszentrum Telekommunikation Wien (FTW) from November 2002 until July 2003.
Many chapters have been continuously added since while the was appointed assistant Professor at
Institut Eurecom. The initial goal was to develop and analyze wireless MIMO models. However,
when starting the bibliographical work, the author got rapidly confused considering the huge
amount of papers dedicated to MIMO channel models1. Indeed, nearly all the models proposed
are different and moreover validated by measurement campaigns! Who should we trust? This
contribution aims at providing some partial answers to this question by combining the influence
of three fields namely communication theory, random matrix theory and Bayesian probability
theory.

The author was first introduced to Bayesian probability theory and particularly Jaynes
work as a graduate student of Prof. Guy Demoment. Formalizing Laplace’s statement that
”Probability Theory is nothing but common sense reduced to calculation”, Jaynes shows how
to conduct scientific inference with incomplete information (a situation encountered by all of
us everyday). Probability Theory is developed as a reasonable degree of belief and a procedure
to translate information into probability assignment is given through the use of the principle of
maximum entropy. From a practical standpoint, the author was quite astonished at that time
by the number of fields where the Bayesian inference procedure was proved to be successful
(spectrum estimation, image reconstruction...). Bayesian inference is still in its infancy and the
author hopes that this contribution will be a new application field of the powerful feature of
”probability theory as logic”.

As far as random matrix theory is concerned, the author was introduced to this theory as
a PhD student of Prof. Philippe Loubaton while conducting research on the use of Linear Pre-
coders for wireless OFDM (Orthogonal Frequency Division Multiplexing) transmissions (a single
user version of downlink Multi-Carrier Code Divison Multiple Access also known as MC-CDMA).
The goal was to study the usefulness of precoding in wireless fading channels and in particular
analyze the Signal to Interference plus Noise Ratio (SINR) at the output of different receiver
structures2. As the SINR did not have an interpretable expression and in order to overcome
this problem, results from random matrix theory were used where the precoder was modeled
as a random matrix (upon realistic justification with constraints such as orthogonality...). One
of the useful features of this approach is its ability to predict, under certain conditions, the
behavior of the empirical eigenvalue distribution of products and sums of matrices. The results
were striking in terms of closeness to simulations with reasonable matrix size and the theory
was shown to be an efficient tool to forecast the behavior of wireless systems with only few
meaningful parameters (see [1]). The author has now no more doubts on the usefulness of this
tool for the engineering community and hopes again that this contribution will confirm his point

1A web search on ”Wireless channel Modelling” dated November 2002 (when this work started) showed more
than 5000 publications on channel modelling. At a reading rate of 10 papers per day, it would take 500 days to
have a small overview of the field! Note that for the non-british community, the number of publications is even
higher (as modelling takes only one l).

2The SINR is usually used as a performance measure in communication theory. In the case where the inter-
ference is Gaussian, the SINR can be easily related to measures such as bit error rate (BER) or capacity.
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of view and push forward random matrix analysis in engineering programs.
The author would like to thank all the staff of FTW and Eurecom Institute for their cheerful

welcome. Particular thanks are also addressed to Ralf Mueller, Laura Cottatellucci for fruitful
collaborations as well as Helmut Hofstetter from FTW and Per Lehne from Telenor for their
help in providing the measurements conducted in Oslo.
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Chapter 1

Introduction

The problem of modelling channels is crucial for the efficient design of wireless systems [2, 3, 4].
The wireless channel suffers from constructive/destructive interference signaling [5, 6]. This
yields a randomized channel with certain statistics to be discovered. Recently ([7, 8]), the
need to increase spectral efficiency has motivated the use of multiple antennas at both the
transmitter and the receiver side. Hence, in the case of i.i.d Gaussian entries of the MIMO link
and perfect channel knowledge at the receiver, it has been proved [9] that the ergodic capacity
increase is min(nr,nt) bits per second per hertz for every 3dB increase (nr is the number of
receiving antennas and nt is the number of transmitting antennas) at high Signal to Noise Ratio
(SNR)1. However, for realistic2 channel models, results are still unknown and may seriously
put into doubt the MIMO hype. As a matter of fact, the actual design of efficient codes is
tributary of the channel model available: the transmitter has to know in what environment the
transmission occurs in order to provide the codes with the adequate properties: as a typical
example, in Rayleigh fading channels, when coding is performed, the Hamming distance (also
known as the number of distinct components of the multi-dimensional constellation) plays a
central role whereas maximizing the Euclidean distance is the commonly approved design criteria
for Gaussian channels (see Giraud and Belfiore [10] or Boutros and Viterbo [11]).

As a consequence, channel modelling is the key in better understanding the limits of trans-
missions in wireless and noisy environments. In particular, questions of the form: ”what is the
highest transmission rate on a propagation environment where we only know the mean of each
path, the variance of each path and the directions of arrival?” are crucially important. It will
justify the use (or not) of MIMO technologies for a given state of knowledge.

Let us first introduce the modelling constraints. We assume that the transmission takes
place between a mobile transmitter and receiver. The transmitter has nt antennas and the
receiver has nr antennas. Moreover, we assume that the input transmitted signal goes through
a time variant linear filter channel. Finally, we assume that the interfering noise is additive
white Gaussian.

The transmitted signal and received signal are related as:
1In the single antenna Additive White Gaussian Noise (AWGN) channel, 1 bit per second per hertz can be

achieved with every 3dB increase at high SNR.
2By realistic, we mean models representing our state of knowledge of reality which might be different from

reality. Chapter 2 will explain in detail this idea.

7



8

TxRx

Figure 1.1: MIMO channel representation.

y(t) =
√

ρ

nt

∫
Hnr×nt(τ, t)x(t− τ)dτ + n(t) (1.1)

with

Hnr×nt(τ, t) =
∫

Hnr×nt(f, t)ej2πfτdf (1.2)

ρ is the received SNR (total transmit power per symbol versus total spectral density of the
noise), t, f and τ denote respectively time, frequency and delay, y(t) is the nr × 1 received
vector, x(t) is the nt×1 transmit vector, n(t) is an nr×1 additive standardized white Gaussian
noise vector.

In the rest of the paper, we will only be interested in the frequency domain modelling
(knowing that the impulse response matrix can be accessed through an inverse Fourier transform
according to relation 1.2). We would like to provide some theoretical grounds to model the
frequency response matrix H(f, t) based on a given state of knowledge. In other words, knowing
only certain things related to the channel (Directions of Arrival (DoA), Directions of Departure
(DoD), bandwidth, center frequency, number of transmitting and receiving antennas, number of
chairs in the room...), how to attribute a joint probability distribution to the entries hij(f, t) of
the matrix:

Hnr×nt(f, t) =




h11(f, t) . . . . . . h1nt(f, t)
... . . . . . .

...
... . . . . . .

...
hnr1(f, t) . . . . . . hnrnt(f, t)




(1.3)

This question can be answered in light of the Bayesian probability theory and the principle of
maximum entropy. Bayesian probability theory has led to a profound theoretical understanding
of various scientific areas [12, 13, 14, 15, 16, 17, 18, 19] and has shown the potential of entropy
as a measure of our degree of knowledge when encountering a new problem. The principle of
maximum entropy3 is at present the clearest theoretical justification in conducting scientific
inference: we do not need a model, entropy maximization creates a model for us out of the
information available. Choosing the distribution with greatest entropy avoids the arbitrary

3The principle of maximum entropy was first proposed by Jaynes [13, 14] as a general inference procedure
although it was first used in Physics.
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introduction or assumption of information that is not available4. Bayesian probability theory
improves on maximum entropy by expressing some prior knowledge on the model and estimating
the parameters of the model.

As we will emphasize all along this paper, channel modelling is not a science representing
reality but only our knowledge of reality as thoroughly stated by Jaynes in [21]. It answers in
particular the following question: based on a given state of knowledge (usually brought by raw
data or prior information), what is the best model one can make? This is, of course, a vague
question since there is no strict definition of what is meant by best. But what do we mean then
by best? In this contribution, our aim is to derive a model which is adequate with our state of
knowledge. We need a measure of uncertainty which expresses the constraints of our knowledge
and the desire to leave the unknown parameters to lie in an unconstrained space. To this end,
many possibilities are offered to us to express our uncertainty. However, we need an information
measure which is consistent (complying to certain common sense desiderata, see [22] to express
these desiderata and for the derivation of entropy) and easy to manipulate: we need a general
principle for translating information into probability assignment. Entropy is the measure of
information that fulfills this criteria. Hence, already in 1980, Shore et al. [22] proved that the
principle of maximum entropy is the correct method of inference when given new information
in terms of expected values. They proved that maximizing entropy is correct in the following
sense: maximizing any function but entropy will lead to inconsistencies unless that function
and entropy have the same maximum5. The consistency argument is at the heart of scientific
inference and can be expressed through the following axiom6:

Axiom 1 If the prior information I1 on which is based the channel model H1 can be equated to
the prior information I2 of the channel model H2 then both models should be assigned the same
probability distribution P (H) = P (H1) = P (H2).

Any other procedure would be inconsistent in the sense that, by changing indices 1 and 2,
we could then generate a new problem in which our state of knowledge is the same but in which
we are assigning different probabilities. More precisely, Shore et al. [22] formalize the maximum
entropy approach based on four consistency axioms stated as follows7:

• Uniqueness: If one solves the same problem twice the same way then the same answer
should result both times.

• Invariance: If one solves the same problem in two different coordinate systems then the
same answer should result both times.

4Keynes named it judiciously the principle of indifference [20] to express our indifference in attributing prior
values when no information is available.

5Thus, aiming for consistency, we can maximize entropy without loss of generality.
6The consistency property is only one of the required properties for any good calculus of plausibility statement.

In fact, R.T Cox in 1946 derived three requirements known as Cox’s Theorem[23]:

• Divisibility and comparability: the plausibility of of a statement is a real number between 0 (for false) and
1 (for true) and is dependent on information we have related to the statement.

• Common sense: Plausibilities should vary with the assessment of plausibilities in the model.

• Consistency: If the plausibility of a statement can be derived in two ways, the two results should be equal.

7In all the rest of the document, the consistency argument will be referred to as Axiom 1.
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• System independence: It should not matter whether one accounts for independent infor-
mation about independent systems separately in terms of different densities or together in
terms of a joint density.

• Subset independence: It should not matter whether one treats an independent subset of
system states in terms of a separate conditional density or in terms of the full system
density.

These axioms are based on the fundamental principle that if a problem can be solved in more
than one way, the results should be consistent. Given this statement in mind, the rules of
probability theory should lead every person to the same unique solution, provided each person
bases his model on the same information.8

Moreover, the success over the years of the maximum entropy approach (see Boltzmann’s
kinetic gas law, [24] for the estimate of a single stationary sinusoidal frequency, [15] for estimating
the spectrum density of a stochastic process subject to autocorrelation constraints, [25] for
estimating parameters in the context of image reconstruction and restoration problems, [26] for
applying the maximum entropy principle on solar proton event peak fluxes in order to determine
the least biased distribution) has shown that this information tool is the right way so far to
express our uncertainty.

Let us give an example in the context of spectral estimation of the powerful feature of the
maximum entropy approach which has inspired this monograph. Suppose a stochastic process
xi for which p + 1 autocorrelation values are known i.e E(xixi+k) = τk, k = 0, ..., p for all i.
What is the consistent model one can make of the stochastic process based only on that state of
knowledge, in other words the model which makes the least assumption on the structure of the
signal? The maximum entropy approach creates for us a model and shows that, based on the
previous information, the stochastic process is a pth auto-regressive (AR) order model process
of the form [15]:

xi = −
p∑

k=1

akxi−k + bi

where the bi are i.i.d zero mean Gaussian distributed with variance σ2 and a1, a2, .., ap are chosen
to satisfy the autocorrelation constraints (through Yule-Walker equations).

In this contribution, we would like to provide guidelines for creating models from an infor-
mation theoretic point of view and therefore make extensive use of the principle of maximum
entropy together with the principle of consistency. Once the models are created, we will test

8It is noteworthy to say that if a prior distribution Q of the estimated distribution P is available in addition
to the expected values constraints, then the principle of minimum cross-entropy (which generalizes maximum
entropy) should be applied. The principle states that, of the distribution P that satisfy the constraints, one
should choose the one which minimizes the functional:

D(P, Q) =

Z
P (x)log

�
P (x)

Q(x)

�
dx

Minimizing cross-entropy is equivalent to maximizing entropy when the prior Q is a uniform distribution. Intu-
itively, cross-entropy measures the amount of information necessary to change the prior Q into the posterior P .
If measured data is available, Q can be estimated. However, one can only obtain a numerical form for P in this
case (which is not always useful for optimization purposes). Moreover, this is not a easy task for multidimensional
vectors such as vec(H). As a consequence, we will always assume a uniform prior and use therefore the principle
of maximum entropy.
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them upon some useful metrics for communications engineers. In particular, we will focus our
analysis on the mutual information and MMSE SINR. To ease (in terms of complexity) the
validation process, for each state of knowledge, the asymptotic mutual information and MMSE
SINR distribution will be derived based only on the number of parameters at hand. Moreover,
answers will be given to the following question:

• What is the impact of the number of scatterers, DoD, DoA, power of the steering directions
on the mutual information and MMSE (Minimum Mean Square Error) SINR distribution?

In the rest of this contribution, for sake of simplicity, we will write H instead of H(f, t)
(without forgetting the dependency on frequency and time). Supposing that the model is ad-
equate with reality and that the channel is perfectly known at the receiver, we will prove the
following conjecture.
Conjecture: Let

IM (nt, nr, ρ) = log2det
(
Int +

ρ

nt
HHH

)
9

and

SINRk(nt, nr, ρ) = hH
k

(
UUH +

nt

ρ
Inr

)−1

hk
10.

Then, for many channel models,

∃µ, σ lim
nt→∞, nr

nt
=γ

IM (nt, nr, ρ)− ntµ → N(0, σ2) (1.4)

∃µ, σ lim
nt→∞, nr

nt
=γ

√
nr

(
SINRk − µ

)
→ N(0, σ2) (1.5)

The convergence is in distribution11. Only the mean µ and the variance σ2 are needed to
fully characterize the distribution. Note that µ = µ(γ, ρ) and σ2 = σ2(γ, ρ) depend on γ = nr

nt

and ρ. When this conjecture cannot be proved, only the mean will be derived.
For proving the conjecture, results of random matrix theory will be used [27]. Random matrices

9Note that IM (nt, nr, ρ) is also equal to log2det
�
Inr + ρ

nt
HHH

�
(this result stems from the determinant

identity det(I + AB) = det(I + BA)).
10hk is the kth column of H and U is the nr × (nt − 1) matrix which remains after extracting hk from H.
11Although the result is asymptotical, we will use it in the finite dimension case upon justification. However,

we will not forget that in the latter case, it is only an approximation. Otherwise, many disturbing results may
appear. For example, IM (nt, nr, ρ) is always a positive quantity while by making the Gaussian approximation in
the finite case, we make allowances of negative values to appear. Fortunately, the probability of IM (nt, nr, ρ) to
be negative tends to zero as the number of transmitting antennas nt increases. Indeed,

P (IM ≤ 0) =

Z 0

−∞
dIMp(IM )

=
1

σ
√

2π

Z 0

−∞
dIMe

− (IM−ntµ)2

2σ2

= 1−Q
�−ntµ

σ

�
→nt→∞ 0

µ and σ are positive constant whereas Q(x) = 1√
2π

R∞
x

dte
−t2
2 .
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were first proposed by Wigner in quantum mechanics to explain the measured energy levels
of nuclei in terms of the eigenvalues of random matrices. When Telatar [9] (in the context
of antenna capacity analysis), Grant & Alexander12(in the analysis of random sequences for
code-division multiple access) [28], Rapajic & Popescu [30] and then simultaneously Tsé &
Hanly [31] and Verdu & Shamai [32] (for the analysis of uplink unfaded CDMA equipped with
certain receivers) introduced random matrices, the random matrix theory entered the field of
telecommunications13. From that time, random matrix theory has been successively extended
to other cases such as uplink CDMA fading channels [34], OFDM [1, 35], downlink CDMA [36],
multi-user detection [37]14, advanced MIMO models [40, 41, 42, 43]. One of the useful features
of random matrix theory is the ability to predict, under certain conditions, the behavior of the
empirical eigenvalue distribution of products or sums of matrices. The results are striking in
terms of closeness to simulations with reasonable matrix size and enable to derive linear spectral
statistics for these matrices with only few meaningful parameters. Note that other powerful
tools of statistical mechanics based on the replica method15 could be used[45, 46, 47, 48] to
derive similar asymptotic results; however, these results will not be used in this monograph.

Notations: In the following, upper and lower boldface symbols will be used for matrices
and column vectors, respectively. (.)T will denote the transpose operator, (.)? conjugation and
(.)H =

(
(.)T

)? hermitian transpose. ln is the natural logarithm such ln(e) = 1. When this
notation is used, the mutual information is given in nats/s. When the notation log2(x) = ln(x)

ln(2) is
used, the results are given in bits/s. The Stieltjes Transform m(z) of a distribution F is defined
as

m(z) =
∫

1
λ− z

dF (λ) (1.6)

We recall that, if the distribution function F (λ) has a continuous derivative, it is related to
its Stieltjes transform m(z) =

∫ dF (λ)
λ−z by

dF

dλ
=

1
π

lim
y→0+

Im(m(λ + iy)).

δ(x) is the Dirac distribution whereas δim denotes the Kronecker product:

δim =
{

1 if i = m
0 otherwise

(1.7)

Moreover,

1[0,2π](x) =
{

1 if x ∈ [0, 2π]
0 otherwise

(1.8)

The operator vec(H) stacks all the columns of matrix H into a single column.

12In [28], it is shown that the use of random sequences incurs asymptotically no rate penalty compared to the
use of the optimal spreading sequences determined by Rupf and Massey in 1994 [29] which satisfy the Welch’s
lower bound.

13It should be noted that in the field of array processing, Silverstein used already in 1992 random matrix theory
[33] for signal detection and estimation.

14Note that in the context of multiuser detection, the simulated curves of spectral efficiency of CDMA systems
in [38] (later published in English in 1999 [39]) triggered theoretical analysis based on random matrices.

15Tanaka was the first to introduce in 2001 the replica method [44] as an efficient tool to evaluate analytically
the performance of synchronous CDMA multiuser detectors



Chapter 2

Some Considerations

2.1 Channel Modelling Methodology

In this contribution, we provide a methodology (already successfully used in Bayesian spectrum
analysis [24, 18]) for inferring on channel models. The goal of the modelling methodology is
twofold:

• to define a set of rules, called hereafter consistency axioms, where only our state of knowl-
edge needs to be defined.

• to use a measure of uncertainty, called hereafter entropy, in order to avoid the arbitrary
introduction or assumption of information that is not available.

In other words, if two published papers make the same assumptions in the abstract (concrete
buildings in Oslo where one avenue...), then both papers should provide the same channel model.

To achieve this goal, in all this document, the following procedure will be applied: every
time we have some information on the environment (and not make assumptions on the model !),
we will ask a question based on that the information and provide a model taking into account
that information and nothing more! The resulting model and its compliance with later test mea-
surements will justify whether the information used for modelling was adequate to characterize
the environment in sufficient details. Hence, when asked the question, ”what is the consistent
model one can make knowing the directions of arrival, the number of scatterers, the fact that
each path has zero mean and a given variance?” we will suppose that the information provided
by this question is unquestionable and true i.e the propagation environment depends on fixed
steering vectors, each path has effectively zero mean and a given variance. We will suppose that
effectively, when waves propagate, they bounce onto scatterers and that the receiving antenna
sees these ending scatterers through steering directions. Once we assume this information to be
true, we will construct the model based on Bayesian tools.1.
To explain this point of view, the author recalls an experiment made by his teacher during a
tutorial explanation on the duality behavior of light: photon or wave. The teacher took two
students of the class, called here A and B for simplicity sake. To student A, he showed view (1’)
(see Figure 2.1) of a cylinder and to student B, he showed view (2’) of the same cylinder. For A,
the cylinder was a circle and for B, the cylinder was a rectangle. Who was wrong? Well, nobody.

1Note that in Bayesian inference, all probabilities are conditional on some hypothesis space (which is assumed
to be true).

13
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(1) (2)

(1’)

(2’)

(3’)

Figure 2.1: Duality wave-corpuscule?

Based on the state of knowledge (1’), representing the cylinder as a circle is the best one can
do. Any other representation of the cylinder would have been made on unjustified assumptions
(the same applies to view (2’)). Unless we have another state of knowledge (view (3’)), the true
nature of the object will not be found.

Our channel modelling will not pretend to seek reality but only to represent view (1’) or
view (2’) in the most accurate way (i.e if view (1’) is available then our approach should lead
into representing the cylinder as a circle and not as a triangle for example). If the model fails
to comply with measurements, we will not put into doubt the model but conclude that the
information we had at hand to create the model was insufficient. We will take into account
the failure as a new source of information and refine/change our question in order to derive a
new model based on the principle of maximum entropy which complies with the measurements.
This procedure will be routinely applied until the right question (and therefore the right answer)
is found. When performing scientific inference, every question asked, whether right or wrong,
is important. Mistakes are eagerly welcomed as they lead the path to better understand the
propagation environment. Note that the approach devised here is not new and has already been
used by Jaynes [21] and Jeffrey [49]. We give hereafter a summary of the modelling approach:

1. Question selection: the modeler asks a question based on the information available.

2. Construct the model: the modeler uses the principle of maximum entropy (with the
constraints of the question asked) to construct the model Mi.

3. Test: (When complexity is not an issue) The modeler computes the a posteriori probability
of the model and ranks the model (see chapter.9)

4. Return to 1.: The outcome of the test is some ”new information” evidence to keep/refine/change
the question asked. Based on this information, the modeler can therefore make a new model
selection.
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This algorithm is iterated as many times as possible until better ranking is obtained. How-
ever, we have to alert the reader on one main point: the convergence of the previous algorithm
is not at all proven. Does this mean that we have to reject the approach? we should not because
our aim is to better understand the environment and by successive tests, we will discard some
solutions and keep others.

We provide hereafter a brief historical example to highlight the methodology. In the context
of spectrum estimation, the Schuster periodogram (also referred in the literature as the discrete
Fourier transform power spectrum) is commonly used for the estimation of hidden frequencies
in the data. The Schuster periodogram is defined as:

F (ω) =
1
N
|

N∑

k=1

ske
−jωtk |2

sk is the data of length N to be analyzed. In order to find the hidden frequencies in the
data, the general procedure is to maximize F (ω) with respect to ω . But as in our case,
one has to understand why/when to use the Schuster periodogram for frequency estimation.
The Schuster periodogram answers a specific question based on a specific assumption (see the
work of Bretthorst [18]). In fact, it answers the following question: ”what is the optimal
frequency estimator for a data set which contains a single stationary sinusoidal frequency
in the presence of Gaussian white noise?” From the standpoint of Bayesian probability, the
discrete Fourier Transform power spectrum answers a specific question about single (and not
two or three....) stationary sinusoidal frequency estimation. Given this state of knowledge, the
periodogram will consider everything in the data that cannot be fit to a single sinusoid to be
noise and will therefore, if other frequencies are present, misestimate them. However, if the
periodogram does not succeed in estimating multiple frequencies, the periodogram is not to
blame but only the question asked! One has to devise a new model (a model maybe based on a
two stationary sinusoidal frequencies?). This new model selection will lead to a new frequency
estimator in order to take into account the structure of what was considered to be noise. This
routine is repeated and each time, the models can be ranked to determine the right number of
frequencies.

2.2 Information and Complexity

In the introduction, we have recalled the work of Shore et al. [22] which shows that maximizing
entropy leads to consistent solutions. However, incorporating information in the entropy criteria
which is not given in terms of expected values is not an easy task. In particular, how does one
incorporate information on the fact that the room has four walls and two chairs? In this case,
we will not not maximize entropy based only on the information we have (expected values and
number of chairs and walls): we will maximize entropy based on the expected values and a
structured form of the channel matrix (which is more than the information we have since the
chairs and walls are not constraint equations in the entropy criteria). This ad-hoc procedure
will be used because it is extremely difficult to incorporate knowledge on physical considerations
(number of chairs, type of room...) in the entropy criteria. Each time this ad-hoc procedure
is used, we will verify that although we maximize entropy under a structured constraint, we
remain consistent. Multiple iterations of this procedure will refine the structured form of the
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channel until the modeler obtains a consistent structured models that maximizes entropy.

A question the reader could ask is whether we should take into account all the information
provided, in other words, what information should is useful? We should of course consider all
the available information but there is a compromise to be made in terms of model complexity.
Each information added will not have the same effect on the channel model and might as well
more complicate the model for nothing rather than bring useful insight on the behavior of the
propagation environment. To assume further information by putting some additional structure
would not lead to incorrect predictions: however, if the predictions achieved with or without
the details are equivalent, then this means that the details may exist but are irrelevant for the
understanding of our model2. As a typical example, when conducting iterative decoding analysis
[50], Gaussian models of priors are often sufficient to represent our information. Inferring on
other moments and deriving the true probabilities will only complicate the results and not yield
a better understanding.

2.3 Some Metrics

In this section, we introduce two metrics of interest for which the models derived within this
monograph should at least comply with.

2.3.1 Capacity Considerations

Before starting any discussions on MIMO capacity, let us first review the pioneering work of
Telatar[9] (later published as [51]) that triggered research in multi-antenna systems3. In this
paper, Telatar develops the channel capacity of a general MIMO channel. Assuming perfect
knowledge of H at the receiver, the mutual information IM between input and output is given
by4:

IM (x; (y,H)) = IM (x;H) + IM (x;y | H))
= IM (x;y | H))5

= Entropy(y | H)− Entropy(y | x,H)6

= Entropy(y | H)− Entropy(n | H)

In the case where the entries have a covariance matrix Q (Q = E(xxH)), we have, since
y = ρ

nt
Hx + n :

E(yyH) = Inr +
ρ

nt
HQHH

E(nnH) = Inr

2Limiting one’s information is a general procedure that can be applied to many other fields. As a matter
of fact, the principle ”one can know less but understand more” seems the only reasonable way to still conduct
research considering the huge amount of papers published each year.

3For contribution [51], Telatar received the 2001 Information Theory Society Paper Award. After the Shannon
Award, the IT Society Paper Award is the highest recognition award by the IT society.

4Note that the channel is entirely described with input x and output (y,H) = (Hx + n,H).
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If the xi, i = 1...nt are Gaussian7:

C(Q) = E (Entropy(y | H = H)− Entropy(n | H = H))

= E
(

log2det2πe(Inr +
ρ

nt
HQHH)− log2det2πeInr

)

= E
(

log2det(Inr +
ρ

nt
HQHH)

)

As a consequence8, the ergodic capacity of an nr × nt MIMO channel with Gaussian entries
and covariance matrix Q (Q = E(xxH))9 is :

C = maxQEH (C(Q)) (2.1)

where the maximization is over a set of positive semi-definite hermitian matrices Q satisfying
the power constraint trace(Q) ≤ P , and the expectation is with respect to the random channel
matrix. Therefore, the ergodic capacity is achieved for a particular choice of the matrix Q. It
is quite astonishing that usual channel measurements define the ergodic capacity as:

IM =
1
N

N∑

i=1

log2det
(
Inr +

ρ

nt
HiHi

H

)
(2.2)

Where has the matrix Q disappeared? In the original paper [9], Telatar exploits the isotrop-
ical property of Gaussian i.i.d H to show that in this case, ergodic capacity is achieved with
Q = I. However, this result has been proved only for a Gaussian i.i.d channel matrix and was
not extended to other types of matrices. In correlated fading, IM in (2.2) is called the average
mutual information with covariance Q = I. It has never been proved that capacity was close
to this mutual information except for certain particular cases (see [51, 52]). IM in (2.2) un-
derestimates the achievable rate10: indeed, even though the channel realization is not known,
the knowledge of the channel model (is it i.i.d Rayleigh fading? is it i.i.d Rice fading? is it
correlated Rayleigh fading with a certain covariance matrix?...) can be taken into account in
order to optimize the coding scheme at the transmitter. There is no reason why one should
transmit independent substreams on each antenna. It is as if one stated that the space-time
codes designed through the rank and determinant criterion [53] were optimal for all kinds of
MIMO channels.

The only explanation to this historical accident is the difficulty in deriving the optimum ma-
trix Q when the channel is not Gaussian i.i.d. But at least, IM in (2.2) should be called accord-
ingly as an average mutual information with covariance matrix identity. In [54, 55, 56, 57, 58, 52]

7The differential entropy of a complex Gaussian vector x with covariance Q is given by log2 det(πeQ).
8We only have derived the mutual information with Gaussian entries and have not proved this achieves capacity.

This stems from the fact that for a given covariance Q, the entropy of x is always inferior to log2 det(πeQ) with
equality if and only if x complex Gaussian

9In the general case where the noise is Gaussian with a covariance matrix Z, the capacity is given by: C(Q,Z) =

log2

det
�
Z+ ρ

nt
HQHH

�

det(Z)
10Note however that although not optimum, the mutual information with covariance Q = I can be useful in the

analysis of systems where the codebook can not be changed according to the wireless environment and therefore
remains the same during the whole transmission.
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this fact is well understood (only bounds on the ergodic capacity are derived for correlated
channels); in many other papers, the mistake persists when considering ergodic capacity. This
misconception is also a motivation for studying more precisely the probability distribution of a
matrix H in order to derive the coherent ergodic capacity (receiver has perfect channel knowl-
edge, the transmitter only knows the statistics). Such calculations do not have only an academic
dissemination goal for deriving capacity issues but also a practical one. One of the visions of
future wireless communications the author would like to advocate is the following: depending
on the environment (dense or not, field, street, number of chairs,...), the user writes down that
information on his mobile terminal (this can also be done by downloading localization infor-
mation from the base station if the user wants an automatic process). Immediately, based on
that state of knowledge, an online channel model is created using the maximum entropy ap-
proach (which incorporates only that information and not more!). The transmitted signal and
the coding scheme is then online optimized for that specific scenario (by deriving new rank
and determinant criteria for example). Such a service could be called ”user customized channel
model coding service”. From a software defined radio perspective, this scenario is completely
viable.

Another misconception concerns the design of MIMO systems. For a wireless content
provider, the most important criteria is the quality of service to be delivered to customers.
This quality of service can be quantified through measures such as outage capacity: if q=1%
is the outage probability of having an outage capacity of R, then this means that the provider
is able to ensure a rate of R in 99% of the cases. Since the channels are rarely ergodic, the
derivations of ergodic capacities are of no use for content providers. We give hereafter the two
definitions of ergodic and outage capacity:

• If the channels are ergodic, C(Q) can be averaged over many channel realizations and the
corresponding capacity is defined as : C = maxQE(C(Q))

• If the channels are static, there is only one channel realization and an outage probability
for each positive rate of transmission can be defined:11

Cq = maxQsup{R ≥ 0 : Pr[C(Q) < R] ≤ q}

Once again, when deriving the outage capacity, if the channel distribution is known, then it is
possible at the transmitter side to optimize the covariance of the transmitting signal. However,
this is not an obvious task12 and in all the following we will therefore derive the outage mutual
information with Gaussian input covariance matrix Q = I (and not the outage capacity!).

Many results have already been derived on the ergodic capacity of channels based on different
channel models taking into account correlation [59, 57, 60, 61] or not [9]. However, very few have
been devoted to the outage capacity [62, 63, 64] or deriving the capacity distribution [65, 66].
In this respect, conjecture 1.4 is extremely useful. Indeed, let q denote the outage probability

11Note that the covariance matrix Q which optimizes the ergodic capacity does not necessarily optimize the
outage capacity.

12Except in the case of i.i.d Gaussian entries where this mutual information is equal to capacity.
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and IM
q the corresponding outage mutual information with covariance Q = I, then:

q = P
(
IM ≤ IM

q

)

=
∫ IM

q

−∞
dIMp(IM )

≈ 1
σ
√

2π

∫ IM
q

−∞
dIMe−

(IM−ntµ)2

2σ2

≈ 1−Q

(
IM

q − ntµ

σ

)

IM
q ≈ ntµ + σQ−1(1− q)

We define13

Q(x) =
1√
2π

∫ ∞

x
dte

−t2

2

Therefore, for deriving the outage mutual information, only knowledge of the mean and variance
of the mutual information distribution is needed in large system limit.

2.3.2 MMSE SINR Considerations

As far as the MMSE SINR is concerned and based on the model 1.1, the output of the MMSE
detector x̂ = [x̂1, . . . , x̂nt ]T is given by

x̂ = E
(
xyH

) [
E(yyH)

]−1
y (2.3)

=
√

ρ

nt
HH

(
ρ

nt
HHH + Inr

)−1

y (2.4)

=
√

ρ

nt
HH (A)−1 y . (2.5)

with A = ρ
nt

HHH + Inr . Each component x̂k of x̂ is corrupted by the effect of both the thermal
noise and by the ”multi-user interference” due to the contributions of the other symbols {xl}l 6=k.
Let us now derive the expression of the SINR at one of the nt outputs of the MMSE detector.
Let hk be the column of H associated to element xk, and U the nr × (nt − 1) matrix which
remains after extracting hk from H.

The component x̂k after MMSE equalization has the following form:

x̂k = ηhk
xk + τk

where
ηhk

=
ρ

nt
hH

k (A)−1 hk . (2.6)

13Usual programming tools use the complementary error function defined as erfc(x) = 2√
π

R∞
x

e−t2dt. In this

case, Q(x) = 1
2
erfc( x√

2
).
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and

τk =
ρ

nt
hH

k (A)−1 H[x1, . . . , xk−1, 0, xk+1, . . . , xnt ]
T +

√
ρ

nt
hH

k (A)−1 n

The variance of τk is given by: V = E(| τk |2| H). Knowing that UUH = HHH −hkhH
k , we

get:

V =
ρ2

n2
t

hH
k (A)−1 UUH (A)−1 hk +

ρ

nt
hH

k (A)−1 (A)−1 hk

=
ρ

nt

(
hH

k (A)−1 [
ρ

nt
HHH − ρ

nt
hkhH

k + Inr ] (A)−1 hk

)

=
ρ

nt

(
ηhk

− η2
hk

)

=
ρ

nt
ηhk

(1− ηhk
)

The Signal to Interference plus Noise Ratio SINRk at the output k of the MMSE detector
can thus be expressed as:

SINRk =
E[| ηhk

xk |2| H]
E[| τk |2| H]

=
(ηhk

)2

ηhk
(1− ηhk

)

=
ηhk

1− ηhk

Writing HHH = UUH + hkhH
k and invoking the matrix inversion lemma14, we get after

some simple algebra another useful expression for this SINR (see e.g. [31]):

SINRk = hH
k

(
UUH +

nt

ρ
Inr

)−1

hk . (2.7)

For a fixed nr and nt, it is extremely difficult to get insight on the performance of the MMSE
receiver from the expressions (2.7) and (2.6). As a consequence, in order to obtain interpretable
expressions, we will focus on an asymptotical analysis of the SINR. Moreover, it has been shown
in [67] and [68] that the additive noise τk can be considered as Gaussian when nt and nr are large
enough. In this case, τk is an asymptotically zero mean Gaussian noise of variance and one can
easily derive performance measures such as BER or spectral efficiency with MMSE equalization.
For example, the average probability or outage probability of error can be immediately derived.
Hence, let q denote the outage probability and pq the corresponding outage probability of error
with QPSK uncoded constellations. In this respect, conjecture 1.5 is extremely useful and yields:

14The matrix inversion lemma states that for nay invertible matrix F and E: (D−1 + FE−1FH)−1 = D −
DF(E + FHDF)−1FHDH
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1− q = P
(
Q(
√

SINR) ≤ pq

)

= P
(
SINR ≤ (Q−1(pq))2

)

≈
∫ (Q−1(pq))2

−∞

√
nr

2πσ2
e−

nr
2σ2 (SINR−µ)2dSINR

≈ 1−Q

(√
nr(Q−1(pq))2 − µ)

σ

)

Therefore,

pq ≈ Q

(√
σ√
nr

Q−1(q) + µ

)

The Gaussian behavior of the SINR is appealing as error-control codes which are optimal
for the Gaussian channel will also be optimal for the MIMO channel when using the MMSE
receiver.

2.3.3 SINR versus Capacity

Historical note: The MMSE receiver plays a central role in telecommunications. It seems that
the MMSE estimator, which as its roots in Signal Processing, plays a key role in Information
Theory. Nice discussions on the Shannon [12, 69] versus Wiener[70, 71] legacy are given by
Forney [72] and Guo [73, 74]. It may seem strange that it took more than 50 years to discover
quite fundamental relationships between the input output mutual information and the minimum
mean square error of an estimate. Astonishingly, it is shown in [73] that the derivative of the
mutual information (nats) with respect to the SNR is equal to half the MMSE. The MMSE
receiver has also several attributes that makes it appealing for use. The MMSE receiver is
known to generate a soft decision output which maximizes the output Signal to interference
plus Noise ratio (see [75]) (whereas in a AWGN channel with no interference, the match filter
maximizes the output SNR). This advantage combined with the low complex implementation of
the receiver (due in part to its linearity) has triggered the search for other MMSE based receivers
such such as the MMSE DFE. The MMSE DFE [76, 77] is at the heart of very famous schemes
such as BLAST [7]. BLAST which stands for Bell Labs Layered Space Time, was invented
by Foschini at Bell Labs in 1998. Note that spatial multiplexing was already introduced in a
1994 Standford University patent by A. Paulraj [78]: the idea is based on successive interference
cancellation where each layer is decoded, re-encoded and subtracted from the transmitted signal.
The fact that this approach is optimal with MMSE successive equalizations (with respect to the
achievable spectral efficiency) dates back back to Varanasi and Guess[79]15. The MMSE receiver
is therefore at the heart of many schemes and studying the SINR distribution enables to design
and understand the performance of many MMSE based receivers (MMSE DFE [76, 77, 80],
MMSE Parallel Interference cancellation [81]) In the MIMO case, similar results can be proven
[82].

Indeed, assuming that x and n are uncorrelated with one another, we have:
15The optimality follows in fact directly by a simple determinant identity.
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Ry = E(yyH) =
ρ

nt
HQHH + I (2.8)

Rxy = E(xyH) =
√

ρ

nt
QHH (2.9)

From the previous paragraph, the MMSE estimate of x and its covariance matrix are given
by:

x̂ = RxyRy
−1y (2.10)

and the covariance matrix of the MMSE receiver is:

RMMSE = E
[
(x− x̂)(x− x̂)H

]
(2.11)

= RxyRy
−1RH

xy − 2RxyR−1
y RH

xy + Q (2.12)

= Q−RxyRy
−1RH

xy (2.13)

It follows from the inversion lemma that:

R−1
MMSE = Q−1 + Q−1Rxy

(
Ry −RH

xyQ
−1Rxy

)−1
R∗

xyQ
−1 (2.14)

= Q−1 +
ρ

nt
HH (Ry −HQH∗)−1 H (2.15)

= Q−1 + HHH (2.16)

Finally, the capacity is given by:

C = log2 det
(
I +

ρ

nt
HQHH

)
(2.17)

= log2 det
(
I +

ρ

nt
HHHQ

)
(2.18)

= log2 det (Q) + log2 det
(
Q−1 + HHH

)
(2.19)

Hence, the channel capacity can be rewritten:

C = log2

det (Q)
det (RMMSE)

(2.20)

The expression relates, in a simple manner, the channel capacity to the covariance matrix
of the MMSE estimate of x. In this form, the channel capacity formula has an intuitive appeal.
In fact, the MMSE estimate x̂ lies (with high probability) in a ”small cell” centered around
the codeword x. The volume of the cell is proportional to det(RMMSE). The volume of the
codebook space (in which x lies with high probability) is proportional to det(Rx). The ratio

ρ = det(Rx)

det(RMMSE)
gives the number of cells that can be packed into the codebook space without

significant overlapping. The ”center” of each such cell, the codeword, can be reliably detected,
for instance, using x̂. As a consequence, one can communicate reliably using a codebook of size
ρ, which contains log2(ρ) information bits. This provides an intuitive motivation to the capacity
formula, in the same vein as [83].
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2.3.4 The Infamous SINR-Multiplexing Trade-Off

This section makes clear several notions used inappropriately by many authors. *****In Octo-
ber********* A scheme is said to achieve spatial multiplexing gain r if the data rate:

lim
SNR→∞

R(SNR)
log SNR

= r (2.21)

[84, 78]
A scheme is said to achieve diversity gain d if the data rate:

lim
SNR→∞

log Pe(SNR)
log SNR

= −d (2.22)

*** ****** [85]
Historical note: Space-time codes have been introduced by Tarokh et al. [86, 87, 88] in

order to provide the bandwidth efficiency predicted by MIMO information theory [9] for which
he won the Waterman Prize in 2001. Note however that one of the first proposals to use multiple
transmitters with time processing is due to Wittneben in 1991 in the context of multicast [89]:
simultaneous transmission from several physically displaced network access points to a given
terminal. The space-time coding scheme can be seen as a generalization of the work of Boutros
and Viterbo [90, 91, 11, 92] dealing with multidimensional constellations for fading channels
(note that unitary transformations for Multidimensional QAM constellations date back to Lang
[93]). The real space-time coding revolution began in 1998 when Alamouti invented a two
transmit antenna space-time block code [94] with maximum diversity and only linear processing
at the receiver. The generalization of this scheme to more than two antennas is known as space-
time block codes based on orthogonal design (STBC-OD)[95]. Note that STBC-OD (and also
the well-known V-Blast scheme[96]) belong to a more general class of STBC known as linear
dispersion space-time block codes [97]. LD codes use a linear modulation and the transmitted
codeword is a linear combination over space and time of dispersion matrices with the transmitted
symbols as combining coefficients. STBC-OD suffer a loss in performance compared to more
advance coding schemes (space-time trellis codes,..). Note that recently, another scheme called
Threaded Algebraic Space Time (TAST) coding [98, 99] has been proposed which guarantees
full diversity and full rate with arbitrary number of transmit and receive antennas.



Chapter 3

Gaussian i.i.d Channel Model

3.1 Model

In this chapter, we give a precise justification on why and when the Gaussian i.i.d model should
be used. We recall the general model:

y =
√

ρ

nt
Hx + n

Imagine now that the modeler is in a situation where it has no measurements and no knowl-
edge where the transmission took place. The only thing the modeler knows is that the channel
carries some energy E, in other words, 1

nrnt
E

(∑nr
i=1

∑nt
j=1 | hij |2

)
= E. Knowing only this

information, the modeler is faced with the following question: what is the consistent model one
can make knowing only the energy E (but not the correlation even though it may exist) ? In
other words, based on the fact that:

∫
dH

nr∑

i=1

nt∑

j=1

| hij |2 P (H) = ntnrE (Finite energy) (3.1)

∫
dP (H) = 1 (P(H) is a probability distribution) (3.2)

What distribution P (H)1 should the modeler assign to the channel? The modeler would
like to derive the most general model complying with those constraints, in other words the one
which maximizes our uncertainty while being certain of the energy. This statement can simply
be expressed if one tries to maximize the following expression using Lagrange multipliers with
respect to P :

L(P ) = −
∫

dHP (H)logP (H) + γ

nr∑

i=1

nt∑

j=1

[E −
∫

dH | hij |2 P (H)]

+β

[
1−

∫
dHP (H)

]

1It is important to note that we are concerned with P (H | I) where I represents the general background
knowledge (here the variance) used to formulate the problem. However, for simplicity sake, P (H | I) will be
denoted P (H).

24



25

If we derive L(P ) with respect to P , we get:

dL(P )
dP

= −1− logP (H)− γ

nr∑

i=1

nt∑

j=1

| hij |2 −β = 0

then this yields:

P (H) = e−(β+γ
Pnr

i=1

Pnt
j=1|hij |2

= e−(β)
nr∏

i=1

nt∏

j=1

exp−(γ | hij |2)

=
nr∏

i=1

nt∏

j=1

P (hij)

with
P (hij) = e

−(γ|hij |2+ β+1
nrnt

)
.

One of the most important conclusions of the maximum entropy principle is that while
we have only assumed the variance, these assumptions imply independent entries since the
joint probability distribution P (H) simplifies into products of P (hij). Therefore, based on the
previous state of knowledge, the only maximizer of the entropy is the i.i.d one. This does not
mean that we have supposed independence in the model. In the generalized L(P ) expression,
there is no constraint on the independence. Another surprising result is that the distribution
achieved is Gaussian. Once again, gaussianity is not an assumption but a consequence of the fact
that the channel has finite energy. The previous distribution is the least informative probability
density function that is consistent with the previous state of knowledge. When only the variance
of the channel paths are known (but not the frequency bandwidth, nor knowledge of how waves
propagate, nor the fact that scatterers exist...) then the only consistent model one can make is
the Gaussian i.i.d model.
In order to fully derive P (H), we need to calculate the coefficients β and γ. The coefficients are
solutions of the following constraint equations:

∫
dH

nr∑

i=1

nt∑

j=1

| hij |2 P (H) = ntnrE

∫
dHP (H) = 1

Solving the previous equations yields the following probability distribution:

P (H) =
1

(πE)nrnt
exp{−

nr∑

i=1

nt∑

j=1

| hij |2
E

}

Of course, if one has any additional knowledge, then this information should be integrated
in the L(P ) criteria and would lead to a different result.
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As a typical example, suppose that the modeler knows that the frequency paths have different
variances such as E(| hij |2) = Eij . Using the same methodology, it can be shown that :

P (H) =
nr∏

i=1

nt∏

j=1

P (hij)

with P (hij) = 1
πEij

e
− |hij |2

Eij . The principle of maximum entropy still attributes independent
Gaussian entries to the channel matrix but with different variances.
Suppose now that the modeler knows that the path hpk has a mean equal to E(hpk) = mpk and
variance E(| hpk −mpk |2) = Epk, all the other paths having different variances (but nothing is
said about the mean). Using as before the same methodology, we show that:

P (H) =
nr∏

i=1

nt∏

j=1

P (hij)

with for all {i, j, (i, j) 6= (p, k)} P (hij) = 1
πEij

e
− |hij |2

Eij and P (hpk) = 1
πEpk

e
− |hpk−mpk|2

Epk . Once
again, different but still independent Gaussian distributions are attributed to the MIMO chan-
nel matrix.

The previous examples can be extended and applied whenever a modeler has some new source
of information in terms of expected values on the propagation environment2. In the general
case, if N constraints are given on the expected values of certain functions

∫
gi(H)P (H)dH = αi

for i = 1...N , then the principle of maximum entropy attributes the following distribution [100]:

P (H) = e(−1+λ+
PN

i=1 λigi(H))

where the values of λ and λi (for i = 1..N) can be obtained by solving the constraint equations.
Although these conclusions are widely known in the Bayesian community, the author is

surprised that many MIMO channel papers begin with: ”let us assume a nr × nt matrix with
Gaussian i.i.d entries...”. No assumptions on the model should be made. Only the state of
knowledge should be clearly stated at the beginning of each paper and the conclusion of the
maximum entropy approach can be straightforwardly used.3

As a matter of fact, the Gaussian i.i.d model should not be ”thrown” away but be extensively
used whenever our information on the propagation conditions is scarce (we don’t know in what
environment we are transmitting our signal i.e the frequency, the bandwidth, WLAN scenario,
we do not know what performance measure we target...)4.

2The case where information is not given in terms of expected values is treated in chapter 5.
3”Normality is not an assumption of physical fact at all. It is a valid description of our state of information”,

Jaynes.
4In ”The Role of Entropy in Wave Propagation” [101], Franceschetti et al. show that the probability laws that

describe electromagnetic magnetic waves are simply maximum entropy distributions with appropriate moment
constraints. They suggest that in the case of dense lattices, where the inter-obstacle hitting distance is small
compared to the distance traveled, the relevant metric is non-Euclidean whereas in sparse lattices, the relevant
metric becomes Euclidean as propagation is not constrained along the axis directions.
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3.2 From Conjecture to Theorem:

3.2.1 Mutual Information

In this section, we recall some important results proved by Kamath et al.[62]:

Theorem 1 With the Gaussian i.i.d model, as nt → ∞ with nr = γnt, C(nt, nr, ρ)− ntµ(γ, ρ)
converges in distribution to a N(0, σ2(γ, ρ)) random variable where:

µiid(γ, ρ) =
∫ ∞

0
ln(1 + ρλ)dFiid(λ)

= γln(1 + ρ− ραiid(γ, ρ)) + ln(1 + ργ − ραiid(γ, ρ))− αiid(γ, ρ)

and

σ2
iid(γ, ρ) = −ln[1− α2

iid(γ, ρ)
γ

]

with

αiid(γ, ρ) =
1
2
[1 + γ +

1
ρ
−

√
(1 + γ +

1
ρ
)2 − 4γ]

Note that αiid is related to the Stieltjes transform mfiid
of the limiting eigenvalue distribution

fiid of 1
nt

HHH through:

ρ(1− αiid) = mfiid
(
−1
ρ

) =
∫

dFiid(λ)

λ + 1
ρ

This theorem extends Telatar’s result [9]. It is noteworthy to precise that in this case,
I(nt, nr, ρ) = C(nt, nr, ρ). The theorem has been proved using a lemma in [27] (recalled in the
Appendix as Lemma 1) which deals with linear spectral statistics of the form:

1
nt

nt∑

i=1

l(λi) =
∫

l(x)dFBnt (x)

where (λ1, ..., λnt) denotes the eigenvalues of matrix Bnt , FBnt (λ) = 1
nt
| {j : λj ≤ λ} | and l is a

function on [0,∞[. The proof of theorem 1 (provided in the appendix) follows the introductory
example treated in [27] concerning the distribution of:

TN = log(det(SN ))

where

SN =

(
1
N

N∑

i=1

xkxH
k

)

and xk is a n dimensional mean zero random vector with i.i.d standard normal entries.
Note that in the high SNR regime (ρ → ∞), C(nt, nr, ρ) converges in distribution to a

Gaussian random variable:
ntµ = min(nt, nr)ln(ρ)

σ2
iid =

{
−ln

(
1− min(nt,nr)

max(nt,nr)

)
if nt 6= nr

1
2 ln(ρ) if nt = nr

(3.3)

The striking result that the mean value of the mutual information scales linearly with nt or
nr by a factor of ln(ρ) is at the origin of the success story of MIMO systems (which dates back
to 1995). In simple terms, suppose nt ≤ nr, it is as if there were nt non interfering cables that
connect the transmitting and receiving antennas (in a environment full of scatterers)!
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3.2.2 MMSE SINR

In this section, we recall some important results proved by Tse et al. [102]:

Theorem 2 With the Gaussian i.i.d model, as nt →∞ with nr = γnt

√
nt

(
SINRk − µiid(γ, ρ)

)

converges in distribution to a N(0, σ2(γ, ρ)) random variable where:

µiid(γ, ρ) =
(γ − 1)

2
ρ

γ
− 1

2
+

√
(1− γ)2

4
ρ2

γ2
+

(1 + γ)
2

ρ

γ
+

1
4

and

σ2
iid(γ, ρ) =

2µiid(1 + µiid)2

1 + γ(1+µiid)2

ρ

− 2
µ2

iid

γ

There is a small problem with complex and real case.... This theorem extends results
of Tse et al. [31]5 where it is shown that in a large system limit, the SINR of a user at the output
of the MMSE receiver converges to a deterministic limit. The proof uses ideas of Silverstein [103].
In fact, for many linear receivers (MMSE, matched filter, decorrelator), asymptotic normality
of the receiver output (in the general the ouput decision statistic) can be proven [104, 68].

3.3 How Far is Asymptotic?

How far is asymptotic, in other words to what extent can we apply the asymptotic formulas in
the finite regime? The answer to this question depends on many factors such as SNR, ratio of
the number of transmitting to receiving antennas but also the performance measure we target
such as BER, mutual information. However, we would like to provide a rule of thumb on the
minimum number of antennas which satisfy the asymptotic regime.

3.3.1 Mutual Information

In the following, we have plotted in Figure 3.1 and 3.2 respectively the mean and the variance
of the mutual information for systems of 1× 1, 2 × 2, 3 × 3, ...15 × 15 antennas at 10dB. One
can observe that

• With 6 antennas, we are at 0.02% (2.723−2.7225
2.723 ) of the asymptotic mean value while the

variance is only at 1% (1.6−1.58
1.58 ) of the asymptotic variance value.

• With 3 antennas, we are at 0.6% (2.74−2.723
2.723 ) of the asymptotic mean value while the

variance is only at 4% (1.64−1.58
1.58 ) of the asymptotic variance value.

As far as MIMO mutual information is concerned, infinity is only a couple of antennas and
the results can be immediately used for designing future mobile systems6.

5For this contribution, Tse and Hanly received the IEEE Communications and Information Theory Society
Joint Paper Award in 2001.

6Confirmation that ”infinity” in multi-antenna systems can be met with realistic systems can also be found in
[105]. In [106], the authors even joke on the fact that infinity ”ain’t what it used to be”.
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Figure 3.1: Empirical mean versus the number of antennas in the i.i.d Gaussian model.
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Figure 3.3: Mutual Information cumulative distribution function for the i.i.d Gaussian model

The asymptotic probability distribution of the capacity is given by:

P (C) =
1√

2πσ2
e

(C−ntµ)2

2σ2

The CDF of the capacity is given by:

F (C) = 1−Q(
C − tµ

σ
)

In Figure 3.3, the cumulative distribution function of the capacity is plotted for a system
with 1×1, 2×2 and 4×4 antennas for a SNR of 10dB. There is a quite realistic match between
the asymptotical theoretical formulas and the finite size simulated system for a 4 × 4 system
which shows the usefulness of the random matrix approach. The reader must also note that
similar curves can be found in the work of Biglieri et al. [105] and Hochwald et al. [63] (using
results of central limit theorems involving log

(
det(HHH)

)
[107])

3.3.2 MMSE SINR

In Figure 3.4 and Figure 3.5, we have plotted respectively the empirical mean and variance of the
SINR versus the theoretical formulas of theorem 2. As one can observe, although the formulas
are accurate, the asymptotic limit is reached for a number of antennas far greater than for the
mutual information.

• With 6 antennas, we are at 22.3% (3.4768−2.7016
3.4768 ) of the asymptotic mean value while the

variance is only at 42.57% (28.9706−16.6379
28.9706 ) of the asymptotic variance value.
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Figure 3.4: Empirical mean versus the number of antennas in the i.i.d Gaussian model

• With 12 antennas, we are at 12.08% (3.0727−2.7016
3.0727 ) of the asymptotic mean value while the

variance is only at 23.22% (21.6695−16.6379
21.6695 ) of the asymptotic variance value.

This is mainly due to the convergence of order 1√
nr

whereas for the mutual information, the

convergence was of the order 1
nr

. As a consequence, from a practical standpoint, the random
matrix approach is less appealing for the SINR amalysis. However, it gives us a hint on the
number of antennas needed to obtain a Gaussian behavior. As a consequence, in all the following,
we will focus on the mean behavior of the SINR and derive the mean.
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Chapter 4

More on Gaussian channels

4.1 Knowledge of the Existence of Correlation (but not the
Value of the Correlation Matrix)

In many MIMO applications, one is aware of some correlation between the entries of the channel
(due to reduced antenna spacing at the transmitter or/and the receiver for example) but does not
know the value of the correlation matrix. However, as we will see afterward, such a knowledge
is sufficient to determine a probability distribution for the MIMO matrix.

4.1.1 Energy unknown

Before considering the case of unknown correlation matrix, we will first consider a case similar to
section 3.1 where the modeler is in a situation where it has no measurements and no knowledge
where the transmission took place. The modeler does know that the channel carries some energy
E but is not aware of its value.

In the case where the modeler knows the value of E, we have shown that:

P (H | E) =
1

(πE)nrnt
exp{−

nr∑

i=1

nt∑

j=1

| hij |2
E

}

In general, when E is unknown, the probability distribution is derived according to:

P (H) =
∫

P (H, E)dE

=
∫

P (H | E)P (E)dE

and is consistent with the case where E is known i.e P (E) = δ(E − E0):

P (H) =
1

(πE0)nrnt
exp{−

nr∑

i=1

nt∑

j=1

| hij |2
E0

}

In the case were the energy E is unknown, one has to determine P (E). E is a positive
variance parameter and the channel can not carry more energy than what is transmitted (i.e

33
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E ≤ Emax) . This is merely the sole knowledge the modeler has about E on which the modeler
has to derive a prior distribution1.

In this case, using maximum entropy arguments, one can derive P (E):

P (E) =
1

Emax
0 ≤ E ≤ Emax

As a consequence,

P (H) =
∫ Emax

0

1
(πE)nrnt

exp{−
nr∑

i=1

nt∑

j=1

| hij |2
E

}dE

With the change of variables u = 1
E , we obtain:

P (H) =
1

Emaxπnrnt

∫ ∞

1
Emax

unrnt−2e−
Pnr

i=1

Pnt
j=1|hij |2udu

Note that the distribution is invariant by unitary transformations, is not Gaussian and more-
over the entries are not independent when the modeler has no knowledge on the amount of energy
carried by the channel. This point is critical and shows the effect of the lack of information on
the exact energy2.

In the case nt = 1 and nr = 2, we obtain:

P (H) =
1

Emaxπ2
∑2

i=1 | hi1 |2
e−

P2
i=1|hi1|2
Emax

4.1.2 Correlation matrix unknown

Suppose now that the modeler knows that correlation exists between the entries of the channel
matrix H but is not aware of the value of the correlation matrix Q = E(vec(H)vec(H)H).
What consistent distribution should the modeler attribute to the channel based only on that
knowledge?

To answer this question, suppose that the correlation matrix Q = VΛVH is known (V =
[v1, ...vnrnt ] is a nrnt × nrnt unitary matrix whereas Λ is a nrnt × nrnt diagonal matrix Λ =
diag(λ1, ..., λnrnt) with λi ≥ 0 for 1 ≤ i ≤ nrnt).

Using the maximum entropy principle, one can easily show that:

P (H | V,Λ) =
1∏nrnt

i=1 πλi
exp{

nrnt∑

i=1

| vi
Hvec(H) |2

λi
}

1Jeffrey [49] already in 1939 proposed a way to handle this issue based on invariance properties and consistency
axioms. He suggested that a proper way to express incomplete ignorance of a continuous variable known to be
positive is to assign uniform prior probability to its logarithm, in other words: P (E) ∝ 1

E
. However, the

distribution is improper and one can not therefore marginalize with this distribution.
2In general, closed form solutions of the distributions do not exist. In this case, a powerful tool for approximate

Bayesian inference that uses Markov Chain Monte Carlo to compute marginal posterior distributions of interest
can be used through WinBUGS (http://www.mrc-bsu.cam.ac.uk/bugs/welcome.shtml.)
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The channel distribution can be obtained:

P (H) =
∫

P (H,V,Λ)dVdΛ

=
∫

P (H | V,Λ)P (V,Λ)dVdΛ

If the correlation matrix is perfectly known, then P (V,Λ) = δ(V −V0)δ(Λ−Λ0) and

P (H) =
1∏nrnt

i=1 πλ0
i
exp{

nrnt∑

i=1

| v0
i
Hvec(H) |2

λ0
i

}

In the case were the correlation matrix Q is unknown, one has to determine P (V,Λ) = P (Λ |
V)P (V). This is the problem of constructing an ignorance prior corresponding to ignorance of
both scale (up to some constraints proper to our problem) and rotation.

Let us first determine P (Λ | V): In the coordinate system of V, each individual variance
parameter λi is judged independent and positive. Moreover, each variance parameter λi is
bounded by some extreme value λmax (otherwise, the channel could carry infinite energy). This
is merely the sole knowledge the modeler has. In this case, expressing complete ignorance yields:

P (Λ | V) = P (λ1)...P (λnrnt)

and
P (λi) =

1
λmax

0 ≤ λi ≤ λmax

Let us now determine P (V): V is a unitary matrix, in particular each column of the ma-
trix has unit norm. Based solely on this state of knowledge and using the maximum entropy
principle, V is unitary haar distributed (its distribution does not change by right or left multi-
plication by deterministic unitary matrices. The matrix V can be generated by Gramm Schmidt
orthogonalization of an i.i.d Gaussian matrix). As a consequence,

P (H) =
∫

P (H,V,Λ)dVdΛ

=
∫

1∏nrnt
i=1 πλmaxλi

exp{
nrnt∑

i=1

| vi
Hvec(H) |2

λ0
i

}dλ1....dλnrntP (V)dV

=
∫

1
πntnrλntnr

max

ntnr∏

i=1

(
Ei(

| vi
Hvec(H) |2
λmax

)
)

P (V)dV

with Ei(x) =
∫∞
x

e−u

u du
In this case, the distribution is not invariant by unitary transform.

4.2 Multiple versus Single Antenna: is there a Contradiction?

4.2.1 Statement of the problem

[108, 109] In section 3.1, we have shown that if the modeler has knowledge of the line of sight
component mij between the transmitting antenna i and receiving antenna j, then the modeler
obtains the following distribution (also known as MIMO Rice distribution):
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P (H) =
1∏nrnt

i=1 πEij

exp{−
nr∑

i=1

nt∑

j=1

| hij −mij |2
Eij

}

Astonishingly, although a Rice distribution is well known to enhance the performance with
respect to the Rayleigh one in the SISO case, these results cannot be straightforwardly extended
to the MIMO case. Indeed, consider the following example:

Example 1 Suppose that the channel matrix is deterministic with equal entries 1 (this is the
limit case of a Rice distribution with variance 0). The mutual information per transmitting
antenna with input Gaussian entries and covariance matrix E(xxH) = Int is:

IM =
1
nt

log det(Inr +
ρ

nt
HHH).

=
1
nt

nr∑

i=1

log(1 +
ρ

nt
λi)

In this case, since HHH is rank one, it has one single eigenvalue equal to nrnt and the
mutual information is given by:

IM =
1
nt

log(1 + ρnr)

→ 0

when nr →∞ and nt
nr
→ γ.

This example shows that the line of sight component has a dramatic effect on the mutual in-
formation since it is well known that in the zero mean i.i.d Gaussian case, the mutual information
per transmitting antenna (see section 3.1) is constant.

In fact, the analysis of Rice MIMO models is quite important as it determines the way
antennas should be placed. In light of the previous result, one could conclude that it would be
better to place the transmitting antenna not in line of sight of the receiving one but to effectively
”hide” the transmitting antenna (under a table for example) in order to increase the scattering
effect!3

4.2.2 Some Considerations on MIMO Rice Channels

As a consequence, a more profound analysis should be conducted for determining the parameters
governing the performance of the Rice distribution with respect to the i.i.d Gaussian case. Before
going into detail, let us introduce more precisely the MIMO Rice model: The complex entries
of H are independently Gaussian distributed with identical variance and mean E(hij) = mij .
Denoting by K the Rice factor of the channel, we rewrite the channel matrix H as

H =

√
K

K + 1
HLOS +

√
1

K + 1
HNLOS

3I often joke in my presentations on this point where I tell the attendees that MIMO will not have only an
impact on rate but also on the usual common sense of people!
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in order to separate the random component of the channel from the deterministic part:

• HLOS represents the line of sight component of the channel such as ‖HLOS‖2
F = ntnr with

entries hLOS
ij =

√
K+1

K µij .

• HNLOS is the random component of the channel with Gaussian, independent and identically
distributed entries. The complex element hNLOS

ij is circularly symmetric, with zero mean
and unit variance.

Note that the model is general enough to take into account line of sight (LOS) and non line
of sight (NLOS) cases. Indeed, as K → ∞, (4.1) models a deterministic channel, whereas for
K = 0 it describes a Rayleigh fading channel.

We would like to predict the mutual information of a general Ricean MIMO channel using
only a few meaningful parameters, namely the asymptotic eigenvalue distribution of the mean
matrix HLOS, the Ricean factor K, the SNR, and the number of receive antennas per transmit
antenna γ = nr

nt
. Results in this case are based on random matrix theory [110] and use the

following assumption
Assumption: As nr, nt → ∞ with constant ratio γ = nr

nt
, the sequence of the empirical

eigenvalue distribution of the matrix HLOSHLOSH

nt
is assumed to converge in distribution to a

deterministic limit function FHLOS√
nt

.

In this case, let us recall some important results of Cottatellucci et al. [111, 43]:

Theorem 3 As nr = γnt → ∞ with nr
nt
→ γ, the asymptotic mutual information per trans-

mitting antenna with Gaussian input entries and covariance matrix Q = Int converges almost
surely to a deterministic value:

IM =
1
γ

∫ ∞

0
log(1 + ρλ)dF H√

nt

(λ)

FHLOS√
nt

(λ) is the limit distribution function of the eigenvalues of HHH

nt
, whose Stieltjes trans-

form m H√
nt

(z) is the unique solution of the fixed point equation

m H√
nt

(z) =
∫ d FHLOS√

nt

(λ)

Kλ
γm H√

nt

(z)+K+1 − z

(
γm H√

nt

(z)

K+1 + 1

)
+ 1−γ

K+1

(4.1)

such that Im(m H√
nt

(z)) > 0 for Im(z) > 0.

Remarkably, IM is completely determined knowing only F H√
nt

(λ), γ, ρ, and K and not the

particular fluctuations of the fading.
Remark

• In the case K →∞, equation (4.1) simplifies to

m H√
nt

(z) =
∫ d F H√

nt

(λ)

λ− z
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which is nothing else then the Stieltjes transform of the distribution of the line of sight
component.

• In the case K → 0, equation (4.1) simplifies to

m H√
nt

(z) =
1

−z(γm H√
nt

(z) + 1) + (1− γ)

which yields

d F H√
nt

(λ) =

{
[1− 1

γ ]+δ(λ) + 1
πγλ

√
λ− 1

4(λ− 1− 1
γ )2 if(

√
1
γ − 1)2 ≤ λ ≤ (

√
1
γ + 1)2

0 otherwise

where [z]+ = max(0, z). In this case, one obtains the solution of the i.i.d zero mean
Gaussian channel of section 3.2.1.

4.2.3 The infamous diversity versus path loss trade-off

So should the user ”hide under the table to communicate”? In fact, the result depends mostly
on how the mean matrix (through its limiting singular value decomposition) is structured as
revealed by equation 4.1. Even the example 1 is tricky: one cannot compare Rice and Rayleigh
at the same SNR ρ. Indeed, in the case of line of sight, the path loss incurred by the Rice
distribution is less dramatic than in the case of non-line of sight and as a consequence favors the
Rice model. However, a question the reader could ask is whether there is a trade-off between
the degrees of freedom of the channel (through the rank of H) and the path loss factor (which
influences ρ).
In order to answer this question, consider these two extreme cases:

• The n×n Rice matrix has rank one (with zero variance) and the path loss factor ρ = ρmax

r2

(path loss model in free space, r is the distance). In this case, the total mutual information
at high SNR is given by: ln(nρmax

r2 ).

• The Rayleigh case has a path loss factor ρ = ρmax

rl (l ≥ 2). In this case, the total mutual
information at high SNR is given by: nln(ρmax

rl ).

At high SNR, the path loss factor influences the slope of the mutual information (with respect
to the distance). The intersection of the two cases is given by:

nln(ρmax)− nlln(r) = ln(ρmax) + ln(n)− 2ln(r)

which gives for a very high number of antennas: r ∼ ρmax
1
l

As a consequence, there is a trade-off between diversity and the path loss factor which de-
pends mainly on how far the receiving antenna is with respect to the transmitting one. However,
in practical cases, this trade-off has small chances to be effective for two reasons:

• The Rice matrix is rarely rank one and the Rayleigh matrix is not full rank due to corre-
lations.
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• The previous examples assume that one is operating at very high SNR (ρmax >> rl), a
case that is not always fulfilled.



Chapter 5

Knowledge of the Directions of
Arrival or Departure

5.1 Model

The modeler1 is interested in modelling the channel over time scales over which the locations
of scatterers do not not change significantly relative to the transmitter or receiver. This is
equivalent to considering time scales over which the channel statistics do not change significantly.
However, the channel realizations do vary over such time scales. Imagine that the modeler is in a
situation where it knows the energy carried by the channel (nothing is known about the mean)2.
Moreover, the modeller knows from electromagnetic theory that when a wave propagates from
a scatterer to the receiving antennas, the signal can be written in an exponential form

s(t,d) = s0 ej(kT d−2πft) (5.1)

which is the plane wave solution of the Maxwell equations in free non-dispersive space for wave
vector k ∈ R2×1 and location vector d ∈ R2×1. The reader must note that other solutions to
the Maxwell equations exist and therefore the modeler is making an important restriction. The
direction of the vector s0 gives us knowledge on the polarization of the wave while the direction
of the wave vector k gives us knowledge on the direction of propagation. The phase of the
signal results in φ = kTd. The modeler considers for simplicity sake that the scatterers and
the antennas lie in the same plane. The modeler makes use of the knowledge that the steering
vector is known up to a multiplicative complex constant that is the same for all antennas.

Although correlation might exist between the scatterers, the modeler is not aware of such
a thing. Based on this state of knowledge, the modeler wants to derive a model which takes
into account all the previous constraints while leaving as many degrees of freedom as possible
to the other parameters (since the modeler does not want to introduce unjustified information).
In other words, based on the fact that:

1We treat in this section thoroughly the directions of arrival model and show how the directions of departure
model can be easily obtained from the latter case.

2The case where the paths have different non-zero means can be treated the same way.

40
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H =
1√
sr




ejφ1,1 . . . ejφ1,sr

...
. . .

...
ejφnr,1 . . . ejφnr,sr


Θsr×nt

what distribution should the modeler attribute to Θsr×nt? H is equal to 1√
sr

ΦΘ, φi,j = k.ri,j

and ri,j is the distance between the receiving antenna i and receiving scatterer j and Φis a nr×sr

matrix (sr is the number of scatterers) which represents the directions of arrival from randomly
positioned scatterers to the receiving antennas. Θsr×nt is an sr×nt matrix which represents the
scattering environment between the transmitting antennas and the scatterers (see Figure 5.1).

The consistency argument (see Proposition 1) states that if the DoA (Directions of Arrival)
are unknown then H = 1√

sr
Φnr×srΘsr×nt should be assigned an i.i.d Gaussian distribution (see

section 3.1) since the modeler is in the same state of knowledge as before where it only knew
the variance.

Based on the previous remarks, let us now derive the distribution of Θsr×nt . The probability
distribution P (H) is given by:

P (H) =
∫

P (ΦΘ | Φ, sr)P (Φ | sr)P (sr)dsrdΦ

• When Φ and sr are known, then P (Φ | sr) = δ(Φ−Φ0) and P (sr) = δ(sr−sr
0). Therefore

P (H) = P (Φ0Θ).

• When Φ and sr are unknown: the probability distribution of the frequency path hij is:

P (hij) =
∫

P (hij | Φ, sr) P (Φ | sr)P (sr)dΦdsr (5.2)

In the case when P (Φ | sr) and P (sr) are unknown, the consistency argument states that:

– The Θsr×nt matrix is such as each hij is zero mean Gaussian.

– The Θsr×nt matrix is such as E(hijhmn
∗) = δimδjn (since hij is Gaussian, decorrela-

tion is equivalent to independence).

In this case, the following result holds:

Proposition 1 Θsr×nt i.i.d. zero mean Gaussian with unit variance is solution of the
consistency argument and maximizes entropy.

Proof: Since Φ is unknown, the principle of maximum entropy attributes independent
uniformly distributed angles to each entry φij :

P (φij) =
1
2π

1[0,2π].

Let us show that Θsr×nt i.i.d zero mean with variance 1 is solution of the consistency
argument.
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Since hij = 1√
sr

∑sr
k=1 θkje

jφik then P (hij | Φ, sr) = N(0, 1
sr

∑sr
k=1 | ejφik |2= 1) =

1√
2π

e−
|hij |2

2 and therefore hij is zero mean Gaussian since:

P (hij) =
∫

P (hij | Φ, sr) P (Φ | sr)P (sr)dΦdsr

=
∫

1√
2π

e−
|hij |2

2 P (Φ | sr)P (sr)dΦdsr

=
1√
2π

e−
|hij |2

2

∫
P (Φ | sr)P (sr)dΦdsr

=
1√
2π

e−
|hij |2

2

Moreover, we have:

E(hijh
∗
mn) = EΘ,Φ(

1√
sr

sr∑

k=1

θkje
jφik

1√
sr

sr∑

l=1

θ∗lne−jφml)

=
1
sr

sr∑

k=1

sr∑

l=1

EΘ(θkjθ
∗
ln)EΦ(ejφik−jφml)

=
1
sr

sr∑

k=1

sr∑

l=1

δklδjnEΦ(ejφik−jφml)

= δjn
1
sr

sr∑

k=1

EΦ(ejφik−jφmk)

= δjnδim

which proves that H is i.i.d Gaussian for unknown angles.

One interesting point of the maximum entropy approach is that while we have not assumed
uncorrelated scattering, the above methodology will automatically assign a model with uncorre-
lated scatterers in order to have as many degrees of freedom as possible. But this does not mean
that correlation is not taken into account. The model in fact leaves free degrees for correlation
to exist or not. The maximum entropy approach is appealing in the sense that if correlated
scattering is given as a prior knowledge, then it can be immediately integrated in the channel
modelling approach (as a constraint on the covariance matrix for example). Note also that in
this model, the entries of H are correlated for general DoA’s.

Suppose now that the modeler assumes that the different steering vectors have different
amplitudes

√
Pi

r. What distribution should the modeler attribute to the matrix Θsr×nt in the
following representation:

H =
1√
sr




ejφ1,1 . . . ejφ1,sr

...
. . .

...
ejφnr,1 . . . ejφnr,sr







√
P r

1 0 . . .

0
. . . 0

... 0
√

P r
sr


Θsr×nt?
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Rx Tx

Φnr×sr Θsr×nt

Figure 5.1: Directions of arrival based model.

Proposition 2 Θsr×nt i.i.d Gaussian with variance 1 is solution of the consistency argument
and maximizes entropy

Proof: We will not go into the details as the proof is a particular case of the proof of
Proposition 6.

5.2 Mutual Information

5.2.1 General Case

We recall hereafter the general DoA based model:

H =
1√
sr

ΦPr 1
2 Θ

We are interested in the behavior of IM (nt, nr, sr, ρ) = log2det
(
Int + ρ

nt
HHH

)
and in particular

the eigenvalue distribution of

1
nt

HHH =
1

ntsr
ΘH

sr×nt
Pr 1

2 ΦH
nr×sr

Φnr×srP
r 1

2 Θsr×nt

Let us first make some assumptions3 on the matrix of the directions of arrival.
Assumption: The matrix 1

sr
Pr 1

2 ΦH
nr×sr

Φnr×srP
r 1

2 grows large with γ = nr
sr

remaining fixed

such that the empirical eigenvalue distribution Ssr,nr of 1
sr

Pr 1
2 ΦH

nr×sr
Φnr×srP

r 1
2 converges in

distribution to a fixed distribution Sdoa

Ssr,nr(λ) =
1
sr
| {j : λj ≤ λ} |→ Sdoa(λ)

Theorem 4 As nt →∞ with sr = ξnt, I
M

doa(nt, nr, sr, ρ)− ntµdoa(ξ, γ, ρ) converges in distri-
bution to a N(0, σ2

doa) random variable where:
3Note that the assumption is here used in a mathematical meaning, not in a modelling perspective.
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µdoa(ξ, γ, ρ) =
∫ ∞

0
ln(1 + ρλ)dFdoa(λ)

mfdoa
(z) =

∫
dFdoa(λ)

λ− z

z =
−1

mfdoa
(z)

+ ξ

∫
x

1 + mfdoa
(z)x

dSdoa(x)

σ2
doa = − 1

4π2

∫

Cx

∫

Cy

ln(1 + ρx)ln(1 + ρy)
(mfdoa

(x)−mfdoa
(y))2

m′
fdoa

(x)m′
fdoa

(y)dxdy

Cx and Cy are any closed contour that enclose the support of Fdoa but not −1
ρ .

fdoa is the limiting eigenvalue distribution of 1
nt

HHH in the DoA based model while Sdoa

is the limiting eigenvalue distribution of 1
sr

Pr 1
2 ΦH

nr×sr
Φnr×srP

r 1
2 . This result is based on con-

tribution [27]. Hence, if the directions of arrival and their powers can be estimated, one can
completely determine the distribution of the mutual information by solving the previous equa-
tions. From a practical point of view, the receiver estimates the angles of arrival and determines
the mean and the variance of the mutual information. This information is then sent back to
the transmitter for scheduling the network 4. One interesting point of the feedback mechanism
is that asymptotically only two values (the mean and the variance) are needed. This reduces
drastically the overhead of feedback transmissions.

Suppose that the DoA-distribution Sdoa is given (using DoA channel estimation techniques
for example). In this case, how does one derive µdoa without explicitly knowing Fdoa(λ)? One
can first of all notice that:

dµdoa

dρ
=

∫ ∞

0

λ

1 + ρλ
dFdoa(λ)

=
1
ρ

∫ ∞

0

ρλ + 1− 1
1 + ρλ

dFdoa(λ)

=
1
ρ
− 1

ρ2
mfdoa

(−1
ρ
)

Therefore, mfdoa
(−1

ρ) = ρ
(
1− ρdµdoa

dρ

)
and based on the result of theorem 4, we have:

−1
ρ

=
−1

ρ(1− ρ(dµdoa
dρ ))

+ ξ

∫
x

1 + xρ(1− ρ(dµdoa
dρ ))

dSdoa(x) (5.3)

and
µdoa(ρ) =

∫ ρ

0
(
dµdoa

dρ
)dρ

In the high SNR regime, the following result holds:
4Some results on the capacity of a MIMO multi-user network (where all the users have different angles of

arrival) in the large system limit (high number of antennas) can be found in [112].
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Proposition 3 In the high SNR regime, the mean mutual information of the DoA based model
converges to:

lim
ρ→∞E(IM ) = min

(
nt, sr

∫

λ>0
dSdoa(λ)

)
log(ρ)

The integral is on the support of non-zero eigenvalues and
∫
λ>0 dSdoa(λ)) expresses the

correlation factor of the sr scatterers. Note that a similar result, based on a different approach,
can be found in [113].

Let r = ρdµdoa
dρ ≤ 1 (ntr denotes in fact the multiplexing gain).

According to equation (5.3), we have:

−1
ρ

=
−1

ρ(1− r)
+ ξ

∫
x

1 + xρ(1− r)
dSdoa(x)

and at high SNR:

−1 =
−1

(1− r)
+

ξ

1− r

∫

λ>0
dSdoa(λ)

which yields:

r =
{

ξ
∫
λ>0 dSdoa(λ) if ξ

∫
λ>0 dSdoa(λ) ≤ 1

1 otherwise
(5.4)

and proves the result.

5.2.2 ULA and Fourier Directions Case

In this part, the modeler takes into account the geometry of the receiving antenna (as the
modeler knows it) to derive the steering vectors: in the case of a Uniform Linear Array (ULA),
the steering vector has the following form [1, e−j2π

d sin(φ)
λ , ..., e−j2π

d(nr−1) sin(φ)
λ ] where d is the

antenna spacing and φ is the direction of arrival.5 The DoA φ of a source is defined as the angle
between a line perpendicular to the incoming wave-front and a reference line through the array
(see Figure 5.1).

H =
1√
sr




1 . . . 1
...

. . .
...

ej2π
d(nr−1) sin(φ1)

λ . . . ej2π
d(nr−1) sin(φsr )

λ







√
P r

1 0 . . .

0
. . . 0

... 0
√

P r
sr


Θsr×nt

For simplicity sake, we will take d = λ
2 . We will also suppose that sr ≤ nr. In order to

have tractable explicit formulas, we will analyze the distribution of scatterers in the case where
for any i there exists a k such as sin(φi) = 2k

nr
(see Figure 5.2). This case can be seen as an

extreme case where all the scatterers are maximally distant from each other called here the
Fourier direction case.

5Note that the modeler is making a strong assumption based on the fact that the scatterers are far from the
antenna. We assume in this case that the modeler has some evidence that the antennas are not closely surrounded
by obstacles.
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Figure 5.2: Simple case: Scatterers positioned on special directions.

Equal Power Case

In this case, we consider Pr = Isr×sr . As a consequence, the limiting eigenvalue distribution
Sdoa of 1

sr
ΦH

nr×sr
Φnr×sr has the following expression (since the column vectors of Φnr×sr are

orthogonal):
Sdoa(λ) = δ(λ− γ)

Proposition 4 In the ULA and Fourier directions case, µdoa(ξ, γ, ρ) and σ2
doa(ξ, γ, ρ) are equal

to:

µdoa(ξ, γ, ρ) = ξln(1 + ργ − ργαdoa(ξ, γ, ρ)) + ln(1 + ρξγ − ργαdoa(ξ, γ, ρ))− αdoa(ξ, γ, ρ)

and

σ2
doa(ξ, γ, ρ) = −ln[1− αdoa

2(ξ, γ, ρ)
ξ

]

with

αdoa(ξ, γ, ρ) =
1
2

[
1 + ξ +

1
ργ

−
√

(1 + ξ +
1
γρ

)2 − 4ξ

]

Proof: One can notice that in this case, 1
nt

HHH = 1
ntsr

ΘH
sr×nt

ΦH
nr×sr

Φnr×srΘsr×nt = γ
nt

ΘH
sr×nt

Θsr×nt .
Therefore, the same result as the i.i.d (cf. theorem.1) can be applied if one does the following
change:

ρ −→ γρ

γ −→ ξ

.
In the high SNR regime (ρ →∞), it can be easily shown that:

• ntµdoa = min(sr, nt)ln(ρ)
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Figure 5.3: Mutual information cumulative distribution for the DoA based model with an 8×8
MIMO system and different values of the ratio sr

nr
.

•
σ2

doa =

{
−ln

(
1− min(nt,sr)

max(nt,sr)

)
if nt 6= sr

1
2 ln(ρ) if nt = sr

(5.5)

In Figure 5.3, simulations have been conducted with nr = nt = 8 antennas and an SNR of
10dB. In this case, sr

nr
= ξ = 1

γ . Three cases have been plotted ξ = 1
4 , (2 scatterers), ξ = 1

2 ,
(4 scatterers) and finally ξ = 1, (8 scatterers). A close match between the theoretical formulas
and simulations is observed. We can also quantify the impact of the number of scatterers on the
distribution of the mutual information. In Figure 5.4, the asymptotic variance of the mutual
information is plotted versus ξ = sr

nt
for several values of SNR (SNR=5, 10 and 15 dB). For

each SNR, the asymptotic variance has a maximum value. In Figures 5.5 and 5.6, the mean
and the variance have been simulated versus sr

nt
for a system of 32× 32 antennas and compared

to the theoretical formula6. A close match between theory and simulations is also obtained in
this case whatever the number of scatterers. In Figure 5.5, the asymptotic mean of the mutual
information with respect to ξ = sr

nt
at 10dB shows that the number of scatterers does not yield a

linear gain. The result also acknowledges the well known fact that the full transmission potential
is obtained when the number of scatterers is equal to the number of antennas.

6The number of antennas has been chosen high (i.e 32) in order to have a wide range of scatterers (sr = 1..32)
and not because the result does not fit with 8 or 6 antennas.
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Figure 5.4: Variance of the mutual information versus ξ for the DoA based model with an 8×8
MIMO system.
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Figure 5.5: Theoretical versus simulated mean for a 32× 32 system at 10dB for the DoA based
model.
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based model.
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Non-equal Power Case

We consider in this case that there is a finite set of Kr distinct amplitudes
√

Pi
r with weight li

r

such as
∑Kr

i=1 li
r = 1. As a consequence, the limiting eigenvalue distribution Sdoa of 1

r
Pr 1

2 ΦH
nr×sr

Φnr×srP
r 1

2

has the following expression:

Sdoa(λ) =
Kr∑

i=1

li
rδ(λ− γPi

r)

Proposition 5 In the non-equal power case with Fourier directions, µdoa(ξ, γ, ρ) and σ2
doa(ξ, γ, ρ)

are equal to:

µdoa(ξ, γ, ρ) = −ln(αdoa) + ξ

Kr∑

i=1

li
rln(1 + ρPi

rγαdoa)− (1− αdoa)

and

σ2
doa(ξ, γ, ρ) = −ln

[
1− ρ2ξαdoa

2
Kr∑

i=1

li
r (γPi

r)2

(1 + ργPi
rαdoa)2

]

with
Kr∑

i=1

li
r

1 + ργPi
rαdoa

=
αdoa

ξ
− 1

ξ
+ 1

Proof The proof is provided in the appendix. For the mean µdoa, the proof is an application of
the general Proposition 11 in the case of interest and is provided in the appendix (before reading
the proof, the reader is encouraged to read further the document until Proposition 11). For the
variance, results of [27] are used.

Note that αdoa is related to the Stieltjes transform mfdoa
of fdoa by:

mfdoa
(
−1
ρ

) = ρ(1− αdoa).

In Figure 5.7 and Figure 5.8, simulations have been conducted in the two power case with
nr = nt = 8 antennas. We impose P1

r = 2 − P2
r, l1

r = l2
r = 1

2 and sr = 8. In this case, we
have (γ = nr

sr
= 1 and ξ = sr

nt
= 1):

1
2

[
1

1 + ρP1
rαdoa

+
1

1 + ρ(2− P1
r)αdoa

]
= αdoa

with

µdoa = −ln(αdoa) +
1
2

(ln(1 + ρP1
rαdoa) + ln(1 + 2ραdoa − ρP1

rαdoa))− (1− αdoa)

and

σ2
doa = −ln

[
1− ρ2α2

doa

2

(
(P1

r)2

(1 + ρP1
rαdoa)@

+
(2− P1

r)2

(1 + ρ(2− P1
r)αdoa)2

)]

In Figure 5.7, the asymptotic mean mutual information has been plotted versus the amplitude
P1

r. A close match between theoretical predictions and simulations is obtained for a low number
of antennas (8×8 MIMO system). More importantly, one can observe that the best throughput is
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Figure 5.9: Outage mutual information versus P1
r at 10dB for an 8×8 DoA based model.

obtained when all the steering directions have equal power. The close match also pertains for the
variance (see Figure 5.8) where the highest variance is obtained in the equal power case. In terms
of outage mutual information, the equal power case is also the one which maximizes that criteria
(see Figure 5.9 and proposition 12). Intuitively, one can easily understand this observation: any
imbalances of power will reduce the effective number of scatterers and therefore the diversity
generated by the environment

5.2.3 Fourier versus Random Directions: Equal Power Case

One important question is to know, for a given number of scatterers, the effect of the directions
of departure on the mutual information. The answer has a direct impact on the understanding
and the design of future mobile systems. We will consider here an extreme case where the
exponential entries of matrix Φ are independent and identically distributed random variables
with zero mean and unit variance. The value of the angles do not change during the whole
transmission. This is a limiting case of near field scattering (all the rays, for a given scatterer do
not come from the same direction). In this case, the Stieltjes transform of the limiting eigenvalue
distribution of 1

sr
ΦHΦ is given by [114]:

mSdoa
(z) =

√
(1− γ)2

4z2
− (1 + γ)

2z
+

1
4
− 1

2
− (1− γ)

2z

Using equation (5.3), one has to solve the following equation to determine the derivative of
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the asymptotic mean mutual information:

1
4
(1− γ)2ρ2(1− ρ

dµ

dρ
)2 +

1
2
(1 + γ)ρ(1− ρ

dµ

dρ
) +

1
4

= (ρ(1− ρ

ξ

dµ

dρ
)(1− ρ

dµ

dρ
) +

1
2
− 1

2
(1− γ)ρ(1− ρ

dµ

dρ
))2

which yields:

(−ρ
dµ

dρ
)3 + (γξ + ξ + 1)(ρ

dµ

dρ
)2 + (

ξ

ρ
+ ξ + γξ2 + γξ)(−ρ

dµ

dρ
)2 + γξ2 = 0 (5.6)

The solution to this equation can be obtained explicitly and the asymptotic mean mu-
tual information can be obtained through numerical integration with the boundary condition:
limρ→0 µ(ρ) = 0. Note that a similar result was obtained by Müller [59] (eq.(54)) using free
probability theory. However, the result here is stronger as the complete distribution is provided
and not only the asymptotic mean.

Historical Note: Free Probability [115, 116] is a non-commutative probability theory,
in which the concept of independence of classical probability is replaced by that of freeness.
Voiculescu [117, 118, 119] discovered very important relations between free probability theory
and random matrix theory. He showed in particular that random matrices can be considered
as typical non-commutative random variables. To the author’s knowledge, the first use of free
probability in the telecommunication field was made by Evans and Tse in 1999 [120]. Since that
date, it has been used for the performance analysis of several transmission schemes (CDMA
[121, 122], OFDM [1, 35, 36] and MIMO [106, 59, 123]). Note that Free Probability is not only a
prediction tool but has been proved by several authors to be very useful in the practical design
of low-complex detectors [124, 125, 126, 127] (Multi-stage detectors...).

For simulations purpose, we consider the case nt = nr. In this case, ξ = sr
nt

= 1
γ and equation

(5.6) simplifies to:

(−ρ
dµ

dρ
)3 + (2 + ξ)(ρ

dµ

dρ
)2 + (

ξ

ρ
+ ξ + ξ + 1)(−ρ

dµ

dρ
) + ξ = 0

and has the following solution:

µ =
∫ ρ

0

( −1
6γρ2

τ(γ, ρ)− 2
3ρ

ργ2 − 2γρ− 3γ + ρ

γτ(γ, ρ)
+

1
3

1 + 2γ

γρ

)
dρ (5.7)

with:

τ(γ, ρ) = ((8ργ3 − 24ργ2 + 24ργ + 72γ2 + 36γ − 8ρ

+ 12
√

3

√
−4ρ2 + 12ρ2γ − ρ− 12ρ2γ2 + 4γ3ρ2 + 8ργ2 + 20γρ + 4γ

ρ
γ)ρ2)

1
3

We have plotted in Figure 5.10 the theoretical ergodic mutual information per receiving
antenna of the random directions scenario at 10 dB for various ratio of scatterers ( sr

nr
ranges

from 0 to 1). We have also plotted a simulated curve with a system of 8 × 8 antennas. The
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Figure 5.10: Fourier versus random directions at 10dB.

angles of arrival were generated randomly according to a uniform distribution and kept fixed
during all the trials. A close match between the theoretical formula and the simulations is
obtained. We have also plotted the asymptotic mean mutual information of the far field ULA
scenario where the scatterers are uncorrelated and given by Fourier directions (see section 5.2.2).
One can observe that far field scattering on Fourier directions yields better performance than
near field scattering. A simple explanation can be provided to this observation: in the Fourier
direction scenario and in the case of sr = nt, the DoA matrix Φ is a unitary Fourier matrix and
has therefore no effect on Θsr×nt . However, in the random directions scenario, the non-unitary
steering matrix Φ has a correlation effect on matrix Θsr×nt . One of the conclusions of this
observation is that a better transmission occurs when the mobile is far from the scatterers and
the scatterers are located in distant positions.

5.3 SINR

*********** **************************

5.4 Remarks on the Directions of Departure based Model

Imagine now that the modeler is in a situation where it assumes (due to the fact that the antennas
are directional for example) that the signal goes from the transmitting antennas to a certain
number of randomly located scatterers. The waves then propagate from these scatterers to the
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receiving antennas in an erratic manner: multiple bounces over other scatterers are possible as
well as direct propagation to the receiving antennas. The modeler assumes that each steering
direction has a certain power. As previously, the modeler is not aware of correlation between the
scattering directions (especially the covariance structure). The modeler also assumes that the
channel H carries some energy. Based on this state of knowledge, what is the consistent model
the modeler can make knowing only the directions of departure, the number of scatterers, the
zero mean and the variance i.e

H =
1√
st

Θnr×st




√
P t

1 0 . . .

0
. . . 0

... 0
√

P t
st







ejψ1,1 . . . ejψ1,nt

...
. . .

...
ejψst,1 . . . ejψst,nt


?

Denoting H = 1√
st

Θnr×stP
t

1
2 Ψst×nt where Ψ is a st × nt matrix (st is the number of scat-

terers) which represents the directions of departure from the transmitting antennas to randomly
positioned scatterers with respective powers Pt. Θnr×st is an nr × st matrix which represents
the scattering environment between the receiving antennas and the scatterers. It can be shown
that the principle of maximum entropy will assign independent zero mean complex Gaussian
entries to the matrix Θnr×st .

For deriving the mutual information, it is straightforward to notice that the same result (due
to the duality between the directions of arrival and departure based model) as the DoA based
model is obtained if one:

• normalizes the mutual information with respect to the number of receive antennas.

• nt, sr, P r are exchanged with nr, st and P t.

• the SNR ρ is replaced by nr
nt

ρ.

In other words, the asymptotic Gaussian behavior remains valid and we have:

IM
dod(nt, nr, st, ρ) = IM

doa

(
nr, nt, sr,

nr

nt
ρ

)

In the high SNR regime, it can be easilly shown that the mean mutual information of the
DoD based model converges to:

lim
ρ→∞E(IM ) = min(nr, st

∫

λ>0
dSdod(λ))ln(ρ)

In the case of the DoD based model on Fourier directions (with equal powers), it can also
be shown that at high SNR:

ntµdod = min(st, nr)ln(ρ)

σ2
dod = −ln

(
1− min(st, nr)

max(st, nr)

)



Chapter 6

Knowledge of the Directions of
Arrival and Departure

6.1 Model

The modeler is now interested in deriving a consistent double directional model i.e taking into
account simultaneously the directions of arrival and the directions of departure. The motiva-
tion of such an approach lies in the fact that when a single bounce on a scatterer occurs, the
direction of arrival and departure are deterministically related by Descartes laws and therefore
the distribution of the channel matrix depends on the joint DoA-DoD spectrum. The modeler
assumes as a state of knowledge the directions of departure from the transmitting antennas to
the set of transmitting scatterers (1...st). The modeler also assumes as a state of knowledge the
directions of arrival from the set of receiving scatterers (1...sr) to the receiving antennas. The
modeler also has some knowledge that the steering directions have different powers. However,
the modeler has no knowledge of what happens in between. The set (1...st) and (1...sr) may
be equal, (1...st) may be included in (1...sr) or there may be no relation between the two. The
modeler also knows that the channel carries some energy. Based on this state of knowledge,
what is the consistent model the modeler can make of H

H =
1√
srst




ejφ1,1 . . . ejφ1,sr

...
. . .

...
ejφnr,1 . . . ejφnr,sr







√
P r

1 0 . . .

0
. . . 0

... 0
√

P r
sr




Θsr×st




√
P t

1 0 . . .

0
. . . 0

... 0
√

P t
st







ejψ1,1 . . . ejψ1,nt

...
. . .

...
ejψst,1 . . . ejψst,nt


?

In other words, how to model Θsr×st? As previously stated, the modeler must comply with
the following constraints:

• The channel has a certain energy.

• Consistency argument: If the DoD and DoA are unknown then 1√
srst

Φnr×srP
r 1

2 Θsr×stP
t

1
2 Ψst×nt

should be assigned an i.i.d zero mean Gaussian distribution.
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Φnr×sr Ψst×ntΘsr×st

Figure 6.1: Double directional based model.

Let us now determine the distribution of Θsr×st . The probability distribution of P (H) is
given by:

P (H) =
∫

P (ΦPr 1
2 ΘPt

1
2 Ψ | Φ,Ψ,Pr,Pt, sr, st)

P (Ψ,Φ | sr, st)P (Pr,Pt | st, sr)
P (st, sr)dsrdstdPrdPtdΨdΦ

• When Ψ,Φ, sr, st,Pr,Pt are known: P (ΦΨ | sr, st) = δ(Φ−Φ0)δ(Ψ−Ψ0), P (st, sr) =
δ(sr − s0

r)δ(st − s0
t),P (Pr,Pt | sr, st) = δ(Pr −P0r)δ(Pt −P0t) and

P (H) = P (Φ0P0r 1
2 ΘP0t

1
2 Ψ0)

• Suppose now that Ψ,Φ, sr, st are unknown, then each entry hij of H must have an i.i.d
zero mean Gaussian distribution. In this case, the following result holds:

Proposition 6 Θsr×st i.i.d zero mean Gaussian with variance 1 is solution of the consis-
tency argument and maximizes entropy.

Proof: Let us show that Θsr×st i.i.d zero mean Gaussian with variance 1 is solution
of the consistency argument and maximizes entropy. Since Φ and Ψ are unknown, the
principle of maximum entropy attributes i.i.d uniform distributed angles over 2π to the
entries φij and ψij . In this case, if one chooses θp,k to be i.i.d zero mean Gaussian
with variance 1 and knowing that hij = 1√

stsr

∑st
k=1

∑sr
p=1 θpk

√
Pk

t
√

Pp
rejψkjejφip , then:

P (hij | Ψ,Φ, sr, st) = N(0, 1
stsr

∑sr
p=1

∑st
k=1 |

√
Pp

rejφip

√
Pk

tejψkj |2= 1) = 1√
2π

e−
|hij |2

2

(since 1
sr

∑sr
k=1 Pk

t = 1 and 1
st

∑st
p=1 Pp

t = 1 (due to power normalization as we assume
the energy known).
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Therefore

P (hij) =
∫

1√
2π

e−
|hij |2

2 P (Φ,Ψ | st, sr)P (Pr,Pt | st, sr)P (st, sr)P (st, sr)dΦdΨ

dPrdPtdstdsr

=
1√
2π

e−
|hij |2

2

∫
P (Φ,Ψ | st, sr)P (Pr,Pt | st, sr)P (st, sr)dΦdΨdPrdPtdstdsr

=
1√
2π

e−
|hij |2

2

Moreover, we have :

EΦ,Ψ,Θ(hijh
∗
mn) =

1
stsr

st∑

k=1

sr∑

p=1

st∑

r=1

sr∑

l=1

EΘ(θpkθ
∗
lr)EΨ(e−jψrn+jψkj )EΦ(e−jφml+jφip)

√
Pk

t
√

Pr
t
√

Pp
r
√

Pl
r

=
1

stsr

st∑

k=1

sr∑

p=1

st∑

r=1

sr∑

l=1

δplδkrEΨ(e−jψrn+jψkj )EΦ(e−jφml+jφip)

√
Pk

t
√

Pr
t
√

Pp
r
√

Pl
r

=
1

stsr

st∑

k=1

sr∑

p=1

EΨ(e−jψkn+jψkj )EΦ(e−jφmp+jφip)Pk
tPp

r

= δimδjn
1

stsr

st∑

k=1

sr∑

p=1

Pk
tPp

r

= δimδjn

which proves that Θsr×st is solution of the consistency argument. Once again, instead of saying
that this model represents a rich scattering environment, it should be more correct to say that
the model makes allowance for every case that could be present to happen since we have imposed
no constraints besides the energy.

6.2 Mutual Information

In this part, we are interested in deriving the asymptotic mutual information per transmitting
antenna. We recall that: γ = nr

sr
, ξ = sr

nt
, γ1 = nr

st
, ξ1 = st

nt
. The asymptotic mutual information
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per transmitting antenna is given by:

µ =
1
nt

ln
[
det(Int +

ρ

nt
HHH)

]

=
1
nt

ln
[
det(Inr +

ρ

nt
HHH)

]

=
nr

ntnr
ln

[
det(Inr +

ρnr

ntnr
HHH)

]

= γξ
1
nr

nr∑

i=1

ln(1 + ργξλi)

= γξ

∫
ln(1 + ργξλ)dFnr(λ)

where λi are the eigenvalues of matrix 1
nr

HHH and Fnr(λ) is the empirical eigenvalue dis-
tribution of matrix 1

nr
HHH defined by: dFnr(λ) = 1

nr

∑nr
i=1 δ(λ− λi)

In order to derive the asymptotic mutual information per transmitting antenna, we will show
that the empirical eigenvalue distribution Fnr(λ) converges weakly to a non-random limiting
distribution FHHH (λ). More specifically, let

1
sr

PrHΦHΦPr = VφΛφV H
φ

and
1
st

PtΨΨHPtH = VψΛψV H
ψ

Vψ and Vφ are unitary matrices while Λφ and Λψ are diagonal matrices representing respec-

tively the eigenvalues of matrices 1
sr

Pr 1
2 ΦHΦPr 1

2 and 1
st

Pt
1
2 ΨΨHPt

1
2 .

The non-zero eigenvalues of matrix 1
nr

HHH = 1
nrsrst

ΦPr 1
2 ΘPt

1
2 ΨΨHPt

1
2 ΘHPr 1

2 ΦH are

the same as Θ1ΘH
1 = 1

nr
[Λ

1
2
Φ(VΦ

HΘVΨ)Λ
1
2
Ψ][Λ

1
2
Ψ(V H

Ψ ΘHVΦ)Λ
1
2
Φ]. Without loss of generality,

we will suppose that sr ≤ nr. Therefore, the spectra of 1
nr

HHH and Θ1ΘH
1 are related by:

fHHH (x) = (1− s

nr
)δ(x− 0) +

s

nr
fΘ1ΘH

1
(x)

and their Stieltjes transforms are related as:

mHHH (z) = (
1
γ
− 1)

1
z

+
1
γ

mΘ1ΘH
1

(z)

Matrix VφΘVΨ is an i.i.d zero mean Gaussian matrix with unit variance (only unitary trans-

forms are applied). Therefore, matrix Θ1 = 1√
nr

[Λ
1
2
Φ(VΦΘVΨ)Λ

1
2
Ψ] is a sr × st random matrix

composed of independent entries with zero mean and variances 1
nr

λi
φλj

ψ = 1
sr

λi
Φλj

Ψ

γ . The weak
convergence of the empirical eigenvalue distribution of Θ1ΘH

1 to a limiting distribution holds
under certain assumptions and is an application of a theorem due to Girko [128] (the theorem is
recalled in the appendix through Theorem 5). Note that this theorem was already used in [57]
for deriving the mutual information of MIMO wireless systems under correlated fading and in
[129] for analyzing CDMA Networks with Multiuser Receivers and Spatial Diversity.
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Proposition 7 Suppose that the empirical joint distribution λi
Φλj

Ψ converges to some joint
limit distribution fλΦλΨ as the size of the matrix Θ1 grows large but γ, γ1, ξ, ξ1 remains fixed,
the asymptotic mutual information per transmitting antenna is given by:

µ =
∫ ρ

0
ξEλφ

[
αjoint

1 + ραjoint

]
dρ (6.1)

with

αjoint = ξ1EλΨ

[
λΦλΨ

1 + ρα1
joint

]

and

α1
joint = ξEλΦ

[
λΦλΨ

1 + ραjoint

]

Proof: the proof is provided in Appendix1.
Note that when taking the expectations, λΦ depends on λΨ. In the case where the distribu-

tion of the angles of arrival are independent of the angles of departure, a simpler expression of
equation (6.1) can be provided2.

Proposition 8 Suppose that the empirical joint distribution λi
Φλj

Ψ is separable and converges
to a product of two limiting distribution, then as the size of the matrix Θ1 grows large but
γ, γ1, ξ, ξ1 remains fixed, the asymptotic mutual information per transmitting antenna is given
by:

µ = ξ1EλΨ(ln(1 + ρλΨαdod)) + ξEλΦ(ln(1 + ρλΦαdoa))− ραdoaαdod

with αdoa = ξ1EλΨ

[
λΨ

1+ρλΨαdod

]
and αdod = ξEλΦ

[
λΦ

1+ρλΦαdoa

]

Proof: the proof is provided in the appendix.
The formula is general enough to be applied for the i.i.d Gaussian case, the DoA based model

and the DoD based model. Hence, for example, in the DoA case, one has:

EλΨ (f) =
∫

f(λ)δ(λ− 1)dλ

Remark 1 Results of Free Probability Theory could also be used to prove Proposition (7). In-

deed, one has to derive the limiting eigenvalue distribution of 1
nr

[Λ
1
2
ΦΘΛΨΘHΛ

1
2
Φ] with Θ i.i.d

Gaussian and ΛΦ and ΛΨ diagonal. Since ΘΛΨΘH is unitarily invariant3 and asymptotically
free from ΛΦ, one can obtain straightforwardly the law using the free multiplicative convolution
of ΘΛΨΘH and ΛΦ. However, the result of Girko is more general as the entries of matrix Θ
need not be Gaussian.

Remark 2 Altough we have no formal on the uniqueness (the mean mutual information of
propostion 8 has in fact multiple solutions. Therefore, only some physical arguments can be
given to withdraw some solutions), it can be shown that the mean mutual information for the
double directional model scales at high SNR as:

E(IM ) = min(nt, nr, stEλΨ(1[λΨ>0]), srEλΦ(1[λΦ>0])ln(ρ)
1Note that in the double directional model, the Gaussian behavior is still an open issue.
2Physical measurements have already indicated that the correlation between the directions of arrival and the

directions of departure are negligible [130].
3A N ×N self-adjoint random matrix is called unitarily invariant if the probability measure of A as a random

matrix is equal to that of the matrix V AV H for any unitary constant matrix V .
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Figure 6.2: Simple case: scatterers positioned on special directions.

6.2.1 ULA and Fourier Directions Case

In this part, the modeler takes into account the geometry of the antennas to derive the steering
vectors. In the case of a uniform linear array, the MIMO channel matrix has the following form:

H =
1√
srst




1 . . . 1
...

. . .
...

ej2π
d(nr−1) sin(φ1)

λ . . . ej2π
d(nr−1) sin(φsr )

λ


Pr 1

2 Θsr×stP
t

1
2




1 . . . ej2π
d(nt−1) sin(ψ1)

λ

...
. . .

...

1 . . . ej2π
d(nt−1) sin(ψst )

λ




In order to have a tractable formula as in section 5.2.2, we will suppose that the steering vectors
are on Fourier directions.

Equal Power Case

We will suppose in this part that Pr = Isr and Pt = Ist .
As a consequence, the DoA and DoD steering matrices have the following limiting eigenvalue

distribution:
GΦHΦ(λ) = δ(λ− γ)

and
GΨΨH (λ) = δ(λ− 1

ξ1
)

Proposition 9 The asymptotic mutual information per transmitting antenna for the double
directional model in the equal power and Fourier directions case is given by:

µdouble = ξln(1 + ργ − ργαdouble) + ξ1ln(1 + ργ1 − ργαdouble)− ξ1αdouble

with

αdouble =
1
2

[
1 +

γ1

γ
+

1
ργ

−
√

(1 +
γ1

γ
+

1
ργ

)2 − 4
γ1

γ

]
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Proof 1 The result is an application of Proposition 8 and the proof is given in the appendix.

Note that in the equal power case, it is possible to derive the exact asymptotic distribution.
In particular, the asymptotic variance can be derived.

Proposition 10 The asymptotic variance of the mutual information in the equal power and
Fourier directions case for the double directional model is given by:

σ2
double = −ln

[
1− α2

doubleγ

γ1

]

Proof 2 One can notice that:

µ =
1
nt

lndet(Int +
ρ

nt
HHH)

=
1
nt

lndet(Int +
ργ

ntst
ΨHΘHΘΨ)

=
1
nt

lndet(Ist +
ργ

ntst
ΘHΘΨΨH)

=
1
nt

lndet(Ist +
ργnt

nt

1
st

ΘHΘ)

=
st

nt

1
st

lndet(Ist + ργ
1
st

ΘHΘ)

= ξ1
1
st

lndet(Ist + ργ
1
st

ΘHΘ)

Therefore, since Θ is an i.i.d Gaussian matrix, results of section 3.2.1 can be applied. In
particular, if one makes the variable change:

ρ −→ ργ

γ −→ γ1

γ

in the formulas of theorem 1 then the result is proven. By doing so, one can notice that by
this change of variable the same formula as in Proposition 9 (which was obtained with Girko’s
results) is obtained for the mean value.

At high SNR, it can be easilly shown that:

ntµdouble = min(sr, st)ln(ρ)

σ2
double =

{
−ln

(
1− min(st,sr)

max(st,sr)

)
if st 6= sr

1
2 ln(ρ) if st = sr

(6.2)

Therefore, the limiting factor is only the number of scatters at the transmitting and receiving
side.

In Figure 6.3, simulations have been conducted with nr = nt = 8 antennas. Three cases
have been plotted:

• sr = 8 and st = 8
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Figure 6.3: Mutual information cumulative distribution in the case of the double directional
model with equal power on Fourier directions.

• sr = 4 and st = 4

• sr = 4 and st = 8

In each case, a close match between the theoretical predictions and the simulations occurs.
In order to determine the impact of the number of scatterers on the mutual information per
receiving antennas, we have plotted in Figure 6.4 the mutual information versus ξ = sr

nt
and

ξ1 = st
nt

for nr = nt. One can observe that due to the fact that nr = nt, the scatterers have the
same effect on both the receiving and transmitting side. The maximum rate is achieved when
sr = st = nr = nt.

Non-equal Power Case

We consider in this case that there is a finite set of Kr distinct powers Pi
r of the receiving steering

vectors with weight li
r (such as

∑Kr
i=1 li

r = 1) and Kt distinct powers Pi
tof the transmitting

steering vectors with weight li
t (such as

∑Kt
i=1 li

t = 1). As a consequence, the limiting eigenvalue
distribution Sdoa of 1

sr
Pr 1

2 ΦHΦPr 1
2 has the following expression:

Sdoa(λ) =
Kr∑

i=1

li
rδ(λ− γPi

r)
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tional model with equal power on Fourier directions.
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and the limiting eigenvalue distribution Gdod of 1
st

Pt
1
2 ΨΨHPt

1
2 has the following expression:

Gdod(λ) =
Kt∑

i=1

li
tδ(λ− Pi

t

ξ1
)

Proposition 11 In this case, µdouble is equal to:

µdouble = ξ1

Kt∑

i=1

li
tln(1 +

ρPi
tαdod

ξ1
) + ξ

Kr∑

i=1

li
rln(1 + ρPi

rγαdoa)− ραdoaαdod

with

αdoa =
Kt∑

i=1

li
tPi

t

1 + ρPi
tαdod
ξ1

and

αdod = ξ

Kr∑

i=1

li
r Pi

rγ

1 + ργPi
rαdoa

Proof 3 The proof is an application of the general Proposition 8 in the case of interest.

An important question concerns the power profile of the scatterers which optimizes the mean
mutual information. The following theorem provides the optimum power profiles.

Proposition 12 The mean of the mutual information in the case of the double directional model
with ULA and Fourier directions is maximized for Pr = Isr and Pt = Ist.

Proof 4 The proof is provided in the appendix.

In Figure 6.5, simulations have been conducted in the two power case with nr = nt = 8
antennas. We have chosen P1

t = 2−P2
t, P1

r = 2−P2
r, , l1

r = l2
r = l1

t = l2
t, s = 8 and s1 = 8.

In this case, we have (γ = nr
sr

= 1,ξ1 = st
nt

= 1,ξ = sr
nt

= 1):

αdoa =
1
2
(

P1
t

1 + ρP1
tαdod

+
2− P1

t

1 + 2ραdod − ρP1
tαdod

)

αdod =
1
2
(

P1
r

1 + ρP1
rαdoa

+
2− P1

r

1 + 2ραdoa − ρP1
rαdoa

)

and

µdouble =
1
2
(ln(1 + ρP1

tαdod) + ln(1 + 2ραdod − ρP1
tαdod))

+
1
2
(ln(1 + ρP1

rαdoa) + ln(1 + 2ραdoa − ρP1
rαdoa))− ραdoaαdod

The figure acknowledges the fact that the best throughput is obtained when all the steering
directions have the same power on both sides.
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Figure 6.5: Mean capacity per transmitting antenna versus P1
r and P1

t at 10dB for the double
directional model.

6.2.2 Fourier versus Random Directions: Equal Power Case

We would like to quantify the impact of random directions for the double directional based
model. For the random directions context, we will suppose that the entries of matrix Φ and Ψ
are a realization of independent and uniformly distributed exponential variables with zero mean
and unit variance. The limiting eigenvalue distribution of 1

sr
ΦHΦ and 1

st
ΨΨH are well known

in the literature ([131]) and Proposition 8 can be applied straightforwardly. However, we will
take Müller’s approach, as our framework is a particular case of [132]: in ”On The Asymptotic
Eigenvalue Distribution of Concatenated Vector-valued Fading Channels”, Müller introduces an
N fold scattering model as a product of N i.i.d random matrices H =

∏N
i=1 Mi. He proves the

almost sure convergence of the limiting eigenvalue distribution of matrix H and gives an explicit
form of its Stieltjes transform. In the case considered here, H = ΦΘΨ is the product of three
random matrices. Using the results in [132], it can be easily shown that the Stieltjes transform
mHHH(x) is solution of the following equation:

mHHH(−x)
(

xmHHH(−x)− 1 + ξ1

ξ1

xmHHH(−x)− 1 + ξ

ξ

xmHHH(−x)− 1 + γρ

γρ

)

+ xmHHH(−x) = 1

Since mHHH(−1
ρ ) = ρ(1−ρdµ

dρ ), the asymptotic mutual information per transmitting antenna
can be obtained by solving the following equation:

ρ(1− ρ
dµ

dρ
)
[
(1− ρ

ξ1

dµ

dρ
)(1− ρ

ξ

dµ

dρ
)(1− ρ

γξ

dµ

dρ
) +

1
ρ

]
= 1
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and numerical integration of dµ
dρ through:

µ =
∫

dµ

dρ
dρ

with the boundary condition :limρ→0 µ(ρ) = 0
We have plotted in Figure 6.6 the theoretical asymptotic mean mutual information per

receiving antenna of the random directions scenario at 10 dB for various ratio of scatterers
sr ( sr

nr
ranges from 0 to 1): as a matter of fact, since nr = nt, it does not matter whether

one plots the mutual information with respect to sr
nr

or st
nr

. st has been chosen to be equal
to nt. We have also plotted a simulated curve with a system of 8 × 8 antennas. The angles
of arrival were generated randomly according to a uniform distribution and kept fixed during
all the trials. A close match between the theoretical formula and the simulations is obtained.
We have also plotted the asymptotic mean mutual information of the far field ULA scenario
where the scatterers are given by Fourier directions (see section.6.2.1). One can observe that
scatterers on Fourier directions yield better performance than scatterers on random directions.
The same explanation as in the directional scenario can be provided: in the far field scenario
with uncorrelated scattering and in the case of sr = nt, the DoA matrix Φ and DoD matrix Ψ
are unitary Fourier matrices and have therefore no effect on Θsr×st . However, in the random
directions scenario, the non-unitary steering matrix Φ and Ψ have a correlation effect on matrix
Θsr×st . One of the conclusions of this observation is that a better transmission occurs when the
mobile is far from the scatterers and the scatterers are located in distant positions. Moreover,
one can observe that the mutual information of the double directional model in the random
directions scenario is less than the mutual information for the mono-directional models as shown
in Figure 5.10.

6.3 SINR

******** *******************************
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Chapter 7

Knowledge of the directions of
arrival, departure, delay, bandwidth,
power: frequency selective channel
model with time variance

7.1 Model

The modeler wants to derive a consistent model taking into account the direction of arrivals
and respective power profile, directions of departure and respective power profile, delay, Doppler
effect. As a starting point, the modeler assumes that the position of the transmitter and receiver
changes in time. However, the scattering environment (the buildings, trees,...) does not change
and stays in the same position during the transmission. Let vt and vr be respectively the vector
speed of the transmitter and the receiver with respect to a terrestrial reference (see Figure 7.1).
Let st

ij be the signal between the transmitting antenna i and the first scatterer j. Assuming that
the signal can be written in an exponential form (plane wave solution of the Maxwell equations)
then:

st
ij(t) = s0ej(kt

ij(vtt+dij)+2πfct)

= s0ej2π(
fcu

t
ijvt

c
t+fct)ejψij

Here, fc is the carrier frequency, dij is the initial vector distance between antenna i and
scatterer j (ψij = kt

ij .dij is the scalar product between vector kt
ij and vector dij), kt

ij is such as
kt

ij = 2π
λ ut

ij = 2πfc

c ut
ij. The quantity 1

2πkt
ijvt represents the Doppler effect.

In the same vein, if we define sr
ij(t) as the signal between the receiving antenna j and the

scatterer i, then:

sr
ij(t) = s0ej(2π(

fcvru
r
ij

c
t+fct))ejφij

In all the following, the modeler supposes as a state of knowledge the following parameters:

• speed vr.
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Figure 7.1: Moving antennas.

• speed vt.

• the angle of departure from the transmitting antenna to the scatterers ψij and power P t
j .

• the angle of arrival from the scatterers to the receiving antenna φij and power P r
j .

The modeler has however no knowledge of what happens in between except the fact that a signal
going from a steering vector of departure j to a steering vector of arrival i has a certain delay τij

due to possible single bounce or multiple bounces on different objects. The modeler also knows
that objects do not move between the two sets of scatterers. The sr × st delay matrix linking
each DoA and DoD has the following structure:

Dsr×st(f) =




e−j2πfτ1,1 . . . e−j2πfτ1,st

...
. . .

...
e−j2πfτsr,1 . . . e−j2πfτsr,st




The modeler also supposes as a given state of knowledge the fact that each path hij of matrix
H has a certain power. Based on this state of knowledge, the modeler wants to model the sr×st

matrix Θsr×st in the following representation:
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H(f, t) =
1√
srst




ej(φ1,1+2π
fur

11vr
c

t) . . . ej(φ1,s+2π
fur

1svr
c

t)

...
. . .

...

ej(φr,1+2π
fur1

rvr
c

t) . . . ej(φr,s+2π
fur

rsvr
c

t)







√
P r

1 0 . . .

0
. . . 0

... 0
√

P r
sr




Θsr×st

⊙
Dsr×st(f)




√
P t

1 0 . . .

0
. . . 0

... 0
√

P t
st







ej(ψ1,1+2π
fut

11vt
c

t) . . . ej(ψ1,nt+2π
fut

1nt
vt

c
t)

...
. . .

...

ej(ψs1,1+2π
fut

s11vt

c
t) . . . ej(ψs1,nt+2π

fut
s1nt

vt

c
t)




⊙
represents the Hadamard product defined as cij = aijbij for a product matrix C = A

⊙
B.

As previously stated, one has to comply with the following constraints:

• Each entry of H(f, t) has a certain energy.

• Consistency argument: if the DoA, DoD, powers, the delays, the Doppler effects are un-
known then matrix H should be assigned an i.i.d Gaussian distribution.

Proposition 13 Θsr×st i.i.d zero mean Gaussian with variance 1 is solution of the consistency
argument and maximizes entropy.1

Proof: We will not go into the details but only provide the guidelines of the proof. First,
remark that if Φ and Ψ are unknown, then the principle of maximum entropy attributes i.i.d
uniform distribution to the angles φij and ψij . But what probability distribution should the
modeler attribute to the delays and the Doppler effects when no information is available?

• Delays: The modeler knows that there is, due to measurements performed in the area,
a maximum possible delay for the information to go from the transmitter to the receiver
τmax. The principle of maximum entropy attributes therefore a uniform distribution to all
the delays τij such as P (τij) = 1

τmax
with τij ∈ [0, τmax]

• Doppler effect: The modeler knows that the speed of the transmitter and receiver can
not exceed a certain limit vlimit (in the least favorable case, vlimit would be equal to the
speed of light) but if the transmission occurs in a city, the usual car speed limit can
be taken as an upper bound. In this case, the speed vt and vr have also a uniform
distribution such as P (vt) = P (vr) = 1

vlimit
. Moreover, if vt = vt cos(αt)̃ı + vt sin(αt)̃,

vr = vr cos(αr )̃ı+vr sin(αr)̃, ut
ij = cos(βt

ij )̃ı+sin(βt
ij)̃ and ur

ij = cos(βr
ij )̃ı+sin(βr

ij)̃,
the modeler will attribute a uniform distribution over 2π to the angles αt, αr,βt

ij and βr
ij .

With all these probability distributions derived and using the same methodology as in the
narrowband (in terms of frequency selectivity) MIMO model proof, one can easily show that
Θsr×st i.i.d Gaussian is solution of the consistency argument and maximizes entropy.

1Why does normality always appear in our models? Well, the answer is quite simple. In all this monograph, we
have always limited ourselves to the second moment of the channel. If more moments are available, then normal
distributions would not appear in general.
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Note that in the case f = 0, vt = 0 and vr = 0, the same model as the narrowband model
is obtained. If more information is available on correlation or different variances of frequency
paths, then this information can be incorporated in the matrix Dsr×st , also known as the channel
pattern mask [55]. Note that in the case of a ULA geometry and in the Fourier directions, we
have ur

ij = ur
j (any column of matrix Φ has a given direction) and ut

ij = ut
i (any line of matrix

Ψ has a given direction). Therefore, the channel model simplifies to:

H(f, t) =
1√
srst




1 . . . 1
...

. . .
...

ej2π
d(nr−1) sin(φ1)

λ . . . ej2π
d(nr−1) sin(φsr )

λ


Θsr×st

⊙
Dsr×st(f, t)




1 . . . ej2π
d(nt−1) sin(ψ1)

λ

...
. . .

...

1 . . . ej2π
d(nt−1) sin(ψst )

λ




In this case, the pattern mask Dsr×st has the following form:

Dsr×st(f, t) =




√
P r

1

√
P t

1e−j2πfτ1,1ej2π ft
c (ur

1vr+ut
1vt) . . .

√
P r

1

√
P t

st
e−j2πfτ1,st ej2π ft

c (ur
1vr+ut

st
vt)

...
. . .

...√
P r

sr

√
P t

1e−j2πfτsr,1ej2π ft
c (ur

sr
vr+ut

1vt) . . .
√

P r
sr

√
P t

st
e−j2πfτsr,st ej2π ft

c (ur
svr+ut

st
vt)




Although we take into account many parameters, the final model is quite simple. It is the
product of three matrices: Matrices Φ and Ψ taking into account the directions of arrival and
departure; matrix Θsr×st

⊙
Dsr×st which is an independent Gaussian matrix with different

variances. The frequency selectivity of the channel is therefore taken into account in the phase
of each entry of the matrix Θsr×st

⊙
Dsr×st(f, t).

Remark: In the case of a one antenna system link (nr = 1 and nt = 1), we obtain:

H(f, t) =
1√
srst

[
ej(φ1+2π

fur
1vr
c t) . . . ej(φsr +2π

fur
sr

vr

c t)

]



√
P r

1 0 . . .

0
. . . 0

... 0
√

P r
sr




Θsr×st

⊙
Dsr×st(f)




√
P t

1 0 . . .

0
. . . 0

... 0
√

P t
st







ej(ψ1+2π
fut

1vt
c t)

...

ej(ψst+2π
fut

st
vt

c t)




=
1√
srst

[ ∑sr

k=1 θk,1

√
P r

k ej(φk+2π
fur

kvr
c t)e−j2πfτk,1 . . .

∑sr

k=1 θk,sR

√
P r

k ej(φk+2π
fur

kvr
c t)e−j2πfτk,sr

]




√
P t

1 0 . . .

0
. . . 0

... 0
√

P t
st







ej(ψ1+2π
fut

1vt
c t)

...

ej(ψst+2π
fut

st
vt

c t)




=
st∑

l=1

sr∑

k=1

ρk,le
j2πξk,lte−j2πfτk,l

where ρk,l (ρk,l = 1√
srst

θk,l

√
P r

k

√
P t

l e
j(φk+ψl)) are independent Gaussian variable with zero

mean and variance E(| ρk,l |2) = 1
srst

P r
k P t

l , ξk,l = f
c (ur

kvr − ut
lvt) are the doppler effect and τk,l
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are the delays. This previous result is a generalization of the SISO (Single Input Single Output)
wireless model in the case of multifold scattering with the power profile taken into account.

7.2 Some Remarks

In this section, we are interested in the ergodic mutual information of the frequency selective
channel. The mutual information per transmitting antenna with input covariance Q = I is given
by:

IM (t, f)) =
1
nt

log2 det(Int +
ρ

nt
H(f , t)HH(f, t))

Note that the mutual information depends on t due to the Doppler effect and has therefore
no real meaning. Indeed, the perfect channel knowledge assumption at the receiver is not valid
(since the channel varies) and a non-coherent mutual information should be calculated. This
is not an easy task and an open problem even for simple channel models. A first step in this
direction is the work of Marzetta and Hochwald [133] and the work of Zheng and Tsé [134]2. The
general focus is on an ideal setting where time is slotted in blocks of T symbols and within each
block, fading is constant independent from block to block. It is shown [133] that capacity does
not increase by having more antennas than T . The optimal strategy is to modulate orthogonal
T -vectors at each antenna. An even more difficult problem concerns the practical schemes for
achieving the non-coherent mutual information. In an interesting paper ”How much training is
needed in Multiple-antenna Wireless links” [135], Hassibi and Hochwald have shown that simple
on the shelf training schemes can be optimal at high SNR (for the i.i.d Gaussian model) which
circumvents therefore the need of using blind or semi-blind techniques in that regime3.

Therefore, in the following, only the mutual information with no Doppler effect will be
considered. In order to derive the mutual information, let us show that the spatial statistics of
H(f) are independent of f . Since H(f) is Gaussian, all the statistics are described by the mean
and the covariance matrix.

• Mean: Since the entries of matrix Θ have zero mean,

EΘ(hij) =
1√
srst

st∑

k=1

sr∑

p=1

E(θpk)
√

Pk
t
√

Pp
rej2πfτpkejψkjejφip = 0

for every i,j and is therefore independent of f .

• Covariance: Let us derive Cov(i, j,m, n, f) = EΘ(hij(f)h∗mn(f)):

Cov(i, j, m, n, f) =
1

srst

st∑

k=1

sr∑

p=1

st∑

q=1

sr∑

l=1

E(θpkθ
∗
ql)e

j2πf(τpk−τql)

√
P t

k

√
P t

q

√
P r

p

√
P r

l ej2π(ψkj−ψqn)ej2π(φip−φml)

2For contribution [134], Zheng and Tsé received the 2003 IEEE Information Theory Society paper award.
3In fact, transmitting strategies differ quite dramatically with the state of knowledge at the transmitter and

the receiver. There has been numerous papers since 2000 in this field [136]. For example, when the transmitter
knows the channel matrix, then it can in principle adjust its transmitted power so that no power is wasted in
signaling dimensions affected by severe fades[137]. Note that the optimum signaling in the low-power regime
concentrates all its energy in the maximal-singular-value eigenspace of the channel matrix.
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Since E(θpkθ
∗
ql) = δpqδkl, then :

Cov(i, j, m, n, f) =
1

srst

st∑

k=1

sr∑

p=1

P t
kP

r
p ej2π(ψkj−ψkn)ej2π(φip−φmlp)

which is independent of f .

Since the statistics of H(f) are independent of f , the ergodic mutual information over the
bandwidth W is given by:

IM =
W

nt
E

[
log2 det(Int +

ρ

nt
HH(0)H(0))

]

One can observe that frequency selectivity does not affect the mutual information per trans-
mitting antenna. Similar results have been reported in [55, 59] and these conclusions will be
assessed in chapter 11. In the wideband case with no Doppler effect, the ergodic mutual infor-
mation is the same as in the narrowband case and all the results of chapter 6 remain valid (ULA
and Fourier directions, random directions approximation..).



Chapter 8

Discussion

8.1 Müller’s Model

In a paper ”A Random Matrix Model of Communication via Antenna Arrays” [59], Müller
develops a channel model based on the product of two random matrices:

H = ΦAΘ

where Φ and Θ are two random matrices with zero mean unit variance i.i.d entries and A is a
diagonal matrix (representing the attenuations). This model is intended to represent the fact
that each signal bounces off a scattering object exactly once. Φ represents the steering directions
from the scatterers to the receiving antennas while Θ represents the steering directions from
the transmitting antennas to the scatterers. Measurements in [59] confirmed the model quite
accurately. Should we conclude that signals in day to day life bounce only once on the scattering
objects?

With the maximum entropy approach developed in this contribution, new insights can be
given on this model and explanations can be provided on why Müller’s model works so well. In
the maximum entropy framework, Müller’s model can be seen as either:

• a DoA based model with random directions i.e matrix Φ with different powers (represented
by matrix A) for each angle of arrival. In fact, the signal can bounce freely several times
from the transmitting antennas to the final scatterers (matrix Θ). Contrary to past belief,
this model takes into account multi-fold scattering and answers the following question from
a maximum entropy standpoint: what is the consistent model when the state of knowledge
is limited to:

– Random directions scattering at the receiving side.

– Each steering vector at the receiving side has a certain power.

– Each frequency path has a given variance.

• a corresponding DoD based model with random directions i.e matrix Θ with different
powers (represented by matrix A) for each angle of departure. The model permits also in
this case the signal to bounce several times from the scatterers to the receiving antennas.
From a maximum entropy standpoint, the model answers the following question: what is
the consistent model when the state of knowledge is limited to:
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– Random directions scattering at the transmitting side.

– Each steering vector at the transmitting side has a certain power.

– Each frequency has zero mean and a certain variance.

• DoA-DoD based model with random directions where the following question is answered:
What is the consistent model when the state of knowledge is limited to:

– Random directions scattering at the receiving side.

– Random directions scattering at the transmitting side.

– Each angle of arrival is linked to one angle of departure.

As one can see, Müller’s model is broad enough to include several maximum entropy direc-
tional models and this fact explains why the model complies so accurately with the measurements
performed in [138]

8.2 Sayeed’s Model

In a paper ”Deconstructing Multi-antenna Fading Channels” [139], Sayeed proposes a virtual
representation of the channel. The model is the following:

H = AnrSAnt
H

Matrices Anr and Ant are discrete Fourier matrices and S is a nr × nt matrix which represents
the contribution of each of the fixed DoA’s and DoD’s. The representation is virtual in the
sense that it does not represent the real directions but only the contribution of the channel
to those fixed directions. The model is somewhat a projection of the real steering directions
onto a Fourier basis. Sayeed’s model is quite appealing in terms of simplicity and analysis
(it corresponds to the Maxent model on Fourier directions). In this case, also, we can revisit
Sayeed’s model in light of our framework. We can show that every time, Sayeed’s model answers
a specific question based on a given assumption.

• Suppose matrix S has i.i.d zero mean Gaussian entries then Sayeed’s model answers the
following question: what is the consistent model for a ULA when the modeler knows that
the channel carries some energy, the DoA and DoD are on Fourier directions but one does
not know what happens in between.

• Suppose now that matrix S has a certain correlation structure then Sayeed’s model answers
the following question: what is the consistent model for a ULA when the modeler knows
that the channel carries some energy, the DoA and DoD are on Fourier directions but
assumes that the paths in between have a certain correlation.

As one can see, Sayeed’s model has a simple interpretation in the maximum entropy frame-
work: it considers a ULA geometry with Fourier directions each time. Although it may seem
strange that Sayeed limits himself to Fourier directions, we do have an explanation for this
fact. In his paper [55], Sayeed was mostly interested in the capacity scaling of MIMO channels
and not the joint distribution of the elements. From that perspective, only the statistics of the
uncorrelated scatterers is of interest since they are the ones which scale the mutual information.
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The correlated scatterers have very small effect on the information. In this respect, we must
admit that Sayeed’s intuition is quite impressive. However, the entropy framework is not limited
to the ULA case (for which the Fourier vector approach is valid) and can be used for any kind
of antenna and field approximation. One of the great features of the maximum entropy (which
is not immediate in Sayeed’s representation) approach is the quite simplicity for translating any
additional physical information into probability assignment in the model. A one to one map-
ping between information and model representation is possible. With the maximum entropy
approach, every new information on the environment can be straightforwardly incorporated and
the models are consistent: adding or retrieving information takes us one step forward or back
but always in a consistent way. The models are somewhat like Russian dolls, imbricated one
into the other.

8.3 The ”Kronecker” model

In a paper ”Capacity Scaling in MIMO Wireless Systems Under Correlated fading”, Chuah et
al. study the following Kronecker 1 model:

H = Rnr

1
2 ΘRnt

1
2

Here, Θ is an nr × nt i.i.d zero mean Gaussian matrix, Rnr

1
2 is an nr × nr receiving correlation

matrix while Rnt

1
2 is a nt × nt transmitting correlation matrix. The correlation is supposed to

decrease sufficiently fast so that Rnr and Rnt have a Toeplitz band structure. Using a software
tool (Wireless System Engineering [142]), they demonstrate the validity of the model. Quite
remarkably, although designed to take into account receiving and transmitting correlation, the
model developed in the paper falls within the double directional framework. Indeed, since Rnr

and Rnt are band Toeplitz then these matrices are asymptotically diagonalized in a Fourier basis

Rnr ∼ FnrΛnrF
H
nr

and
Rnt ∼ FntΛntF

H
nt

.

Fnr and Fnt are Fourier matrices while Λnr and Λnt represent the eigenvalue matrices of Rnr

and Rnt .
Therefore, matrix H can be rewritten as:

H = Rnr

1
2 ΘRnt

1
2

= Fnr

(
Λnr

1
2 Fnr

HΘFntΛnt

1
2

)
Fnt

H

= Fnr

(
Θ1

⊙
Dnr×nt

)
Fnt

H

1The model is called a Kronecker model because E(vec(H)Hvec(H)) = Rnr

N
Rnt is a Kronecker product.

The justification of this approach relies on the fact that only immediate surroundings of the antenna array impose
the correlation between array elements and have no impact on correlations observed between the elements of the
array at the other end of the link. Some discussions can be found in [140, 141].
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Θ1 = Fnr
HΘFnt is a nr×nt zero mean i.i.d Gaussian matrix and Dnr×nt is a pattern mask

matrix defined by:

Ds×s1 =




λ
1
2
1,nt

λ
1
2
1,nr

. . . λ
1
2
nt,ntλ

1
2
1,nr

...
. . .

...

λ
1
2
1,nt

λ
1
2
nr,nr . . . λ

1
2
nt,ntλ

1
2
nr,nr




Note that this connection with the double directional model has already been reported in [55].
Here again, the previous model can be reinterpreted in light of the maximum entropy approach.
The model answers the following question: what is the consistent model one can make when
the DoA are uncorrelated and have respective power λi,nr , the DoD are uncorrelated and have
respective power λi,nt , each path has zero mean and a certain variance. The model therefore
confirms the double directional assumption as well as Sayeed’s approach and is a particular case
of the maximum entropy approach. The comments and limitations made on Sayeed’s model are
also valid here. reference also [143, 144]

8.4 The ”Keyhole” Model

In [145], Gesbert et al. show that low correlation2 is not a guarantee of high capacity: cases
where the channel is rank deficient can appear while having uncorrelated entries (for example
when a screen with a small keyhole is placed in between the transmitting and receiving antennas).
In [147], they propose the following model for a rank one channel:

H = Rnr

1
2 grgt

HRnt

1
2 (8.1)

Here, Rnr

1
2 is an nr × nr receiving correlation matrix while Rnt

1
2 is a nt × nt transmitting

correlation matrix. gr and gt are two independent transmit and receiving Rayleigh fading
vectors. Here again, this model has connections with the previous maximum entropy model:

H =
1√
srst

Φnr×srΘsr×stΨst×nt (8.2)

The Keyhole model can be either:

• A double direction model with sr = 1 and Φnr×1 = Rnr

1
2 gr. In this case, gt

HRnt

1
2 =

Θ1×stΨst×nt where Θ1×st is zero mean i.i.d Gaussian.

• A double direction model with st = 1 and Ψ1×nt = gt
HRnt

1
2 . In this case, Rnr

1
2 gr =

Φnr×srΘsr×1 where Θsr×1 is zero mean i.i.d Gaussian.

As one can observe, the maximum entropy model can take into account rank deficient chan-
nels.

2”keyhole” channels are MIMO channels with uncorrelated spatial fading at the transmitter and the receiver
but have a reduced channel rank (also known as uncorrelated low rank models). They were shown to arise in
roof-edge diffraction scenarios [146].
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8.5 Conclusion

After analyzing each of these models, we find that they all answer a specific question based
on a given state of knowledge. All these models can be derived within the maximum entropy
framework and have a simple interpretation. Moreover, each time the directional assumption
appears which conjectures the correctness of the directional approach.



Chapter 9

Testing the Models

In all the previous chapters, we have developed several models based on different questions. But
what is the right model, in other words how to choose between the set {M0,M1, ...,MK} of K
models (note that M specifies only the type of model and not the parameters of the model)?

9.1 Conventional Methods

In the previous section, we have shown how probability theory can be used to rank the models.
However, the integrals derived in equation (9.1) and equation (9.2) are not easy to compute,
especially in the case of interest with a high number of antennas (8 × 8) since we have to
marginalize our integrals across a great number of parameters. But however difficult the problem
may be, it is not a reason to hide problems and the use of other methods should be clearly
explained. The reader must now know that one can rank models and that there is an optimum
number of parameters when representing information. The Bayesian framework gives us an
answer by comparing the a posteriori probability ratios: P (M |y,I)

P (M1|y,I)WHAT IS D?. If one is to
use other testing methods, then one has to clearly understand the limitations of these methods
and justify the use of the criteria. In the following, we explain two procedures used by the
channel modelling community and explain their limitations.

1- Parameter estimation methods
In this procedure, the data is cut into two parts, one for estimating the parameters, the
other to validate the model incorporating the parameters.

• For estimating the parameters such as the angles of arrival, non-parametric methods
such as the beamforming or the Capon method [148] can be used. In the case of
parametric methods such as Music [149], Min-Norm [150] or Esprit method [151],
they rely on properties of the structure of the covariance R = E(yyH) = ΦKΦH +
σ2I of the output signal. In this case, one has to assume that matrix K (K =
E(ΘΨxxHΨHΘH)) has full rank.

• Once the parameters of the model have been estimated, the other set of the data
is used to test the model. A mean square error is given. In general, a small mean
square error is acknowledged to yield a good model and one seeks the smallest error
possible.

81
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If one is to use this procedure, one has to understand that in no way will it lead into
judging the appropriateness of a model. Indeed, by adding more and more parameters to
the model, one can always find a way of achieving a low mean square error by adjusting
accordingly the parameters. This fact explains why some many models comply in the
literature with the measurements. If the model minimizes the mean square error, then it
is a possible candidate but the modeler can not conclude that it is a good candidate.
Moreover, since the testing method has no real justification, many problems arise when
using it.

• How does one cut the set of data? Do we use half the data to estimate the parameters
and half the data to test the model? Why not using one quarter and three quarter?
In the Bayesian viewpoint, this is not at all a problem as one takes into account all
the data available and does not make any unjustified transformation on the data.

• If one is to use a Music or Esprit algorithm, K has to be full rank. This is obviously
not the case for a double directional model where the steering DoD matrix Ψ is not
always full rank since K = E(ΘΨxxHΨHΘH).

2- Moment fitting:
Other authors [152] validate their model by finding the smallest error of a set of mo-
ments. They derive explicit theoretical formulas of the nth moment mn(f) of the matrix
HH(f)H(f) and find the optimal parameters in order to minimize:

1
N

N∑

n=1

| mn(f)
m̂n(f)

− 1 |

where

m̂n(f) =
Trace(HH(f)H(f))n

Trace(HH(f)H(f))

As previously stated, many models can minimize this criteria by adding more and more
parameters and one cannot obviously conclude in this case if a model is better then the
other or not. Moreover, how useful is it to have a channel that fits a certain amount of
moments?1.

The previous remarks show that when the abstract of a paper asserts: ”This paper finds
the theoretical predictions to accurately match data obtained in a recent measurement
campaign”, one has to be really cautious on the conclusions to be drawn.

1Note that if all the moments fit, then the criteria is sound in the sense that measures such as mutual
information or SINR (which are of interest in communications) will behave similarly.
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9.2 Bayesian Viewpoint

When judging the appropriateness of a model, Bayes2 rules derives the posterior probability of
the model. Bayes rule gives the posterior probability for the ith model according to: 3

P (Mi | Y, I) = P (Mi | I)
P (Y | Mi, I)

P (Y | I)

Y is the data (given by measurements), I is the prior information (ULA, far field scattering...).
For comparing two models M and M1, one has to compute the ratio:

P (M1 | Y, I)
P (M | Y, I)

=
P (M1 | I)
P (M | I)

P (Y | M1, I)
P (Y | M, I)

If P (M1 | Y, I) > P (M | Y, I), then one will conclude that model M1 is better than model
M . Let us now try to understand each term.
The first term, crucially important, is usually forgotten by the channel modelling community:
P (M1|I)
P (M |I) . It favors one model or the other before the observation. As an example, suppose that
the information {I = The scatterers are near the antennas } is given. Then if one has to compare
the model M (which considers ULA with far field scattering) and the model M1 (assuming near
field scattering ) then one should consider P (M1|I)

P (M |I) > 1. 4

For understanding the second term, let us analyze and compare the following two specific
models: the DoA based model Mdoa and the double directional model Mdouble.

Model Mdoa:

H(f, t) =
1√
sr

Φ
(
Θ

⊙
D(t, f)

)

with

D(t, f) =




e−j2πfτ1,1ej2π ft
c

(ur
1vr) . . . e−j2πfτ1,nt ej2π ft

c
(ur

1vr)

...
. . .

...
e−j2πfτsr,1ej2π ft

c
(ur

svr) . . . e−j2πfτsr,nt ej2π ft
c

(ur
svr)




deals with the DoA model taking into account the delays, Doppler effect (we suppose that the
transmitting antenna does not move but only the receiving one) for a ULA (s is the number of
scatterers). Let the information I on which is based the model be such that the powers of the
steering directions are identical and that the transmitting antennas do not move. We recall that
ur

ivr = (cos(βr
i)̃i + sin(βr

i)̃j)(vr cos(αr )̃i + vr sin(αr )̃j) = vr cos(βr
i − αr)

2This chapter is greatly inspired by the work of Jaynes and Bretthorst who have made the following ideas
clear.

3We use here the notations and meanings of Jaynes [21] and Jeffrey [19]: P (Mi | Y, I) is the ”probability that
the model Mi is true given that the data Y is equal to the true data y and that the information I on which is
based the model is true”. Every time, ” (|” means conditional on the truth of the hypothesis I. In probability
theory, all probabilities are conditional on some hypothesis space.

4The term P (M1|I)
P (M|I)

can be seen as the revenge of the measurement field scientist over the mathematician. It
shows that modelling is both an experimental and theoretical science and that the experience of the field scientist
(which attributes the values of the prior probabilities) does matter.
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The set of parameters on which the model is defined is

pdoa = {Φ, sr, τ, vr,Θ, αr, β
r}

and the parameters lie in a subspace Spdoa
. We recall here the DoA based model for a given

frequency:

y(t, f) =
1√
sr

Φ
(
Θ

⊙
D(t, f)

)
x(f) + n(f)

The term of interest P (y | Mdoa, I) can be derived the following way:

P (y | Mdoa, I) =
∫

P (y, pdoa | Mdoa, I)dpdoa =
∫

P (y | pdoa, Mdoa, I)P (pdoa | Mdoa, I)dpdoa

Let us derive each probability distribution separately: P (y | pdoa,Mdoa, I) =

1

(2πσ2)
N1Nr

2

e
− 1

2σ2

PN
i=1

PN1
j=1

�
y(tj ,fi)− 1√

sr
Φ(Θ

J
D(tj ,fi))x(fi)

�H�
y(tj ,fi)− 1√

sr
Φ(Θ

J
D(tj ,fi))x(fi)

�

and

P (pdoa | Mdoa, I) = P (Φ, sr, τ, β
r, vr, αr,Θ | Mdoa, I)

= P (Φ | sr,Mdoa, I)P (sr | Mdoa, I)P (vr | Mdoa, I)P (τ | Mdoa, I)
P (Θ | Mdoa, sr, I)P (αr | Mdoa, I)P (βr | I, Mdoa)

since all the priors are taken independent in the case of uninformative priors. The values of
these priors have already been provided (the proof is given in chapter 7) and only the prior on
Θ and sr remain to be given. We give these two priors now (and also the prior on the power
although in the two models introduced for comparison, the power distribution is not needed):

• If only the mean and variance of each path is available then using maximum entropy
arguments, one can show that:

P (Θ | sr,Mdoa, I) =
1

(
√

2π)nt×sr
e−
Psr

i=1

Pnt
j=1|θi,j |2

=
1

(
√

2π)nt×sr
e−trace(ΘΘH)

• How can we assign a prior probability P (sr | Mdoa, I) for the unknown number of scat-
terers? The modeler has no knowledge if the measurements were taken in a dense area or
not. The unknown number of scatterers could range from one (this prior only occurs in
model that have a single bounce) up to a maximum. But what is the maximum value?
There are N ×N1 data values and if there were N ×N1 scatterers, the data could be at
most fit by placing a scatterer at each data value and adjusting the direction of arrivals.
Because no additional information is available about the number of scatterers, N × N1

may be taken as an upper bound. Using the principle of maximum entropy, one obtains a
uniform distribution for the number of scatterers P (sr | Mdoa, I) = 1

N×N1
.

Note that in the general case, if one has precise available information then one has to take
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it into account. But how can the modeler translate the prior on the scatterers due to the
fact that the room has three chairs and a lamp in the corner? This is undoubtedly a diffi-
cult task and representing that information in terms of probabilities is not straightforward.
But difficult is not impossible. The fact that there are several chairs (with respect to the
case where there is no chairs) is a source of information and will lead to attributing in the
latter case a peaky prior shifted around a higher number of scatterers.

• Power: The transmitter is limited in terms of transmit power to an upper bound value
P t

max. Therefore, the principle of maximum entropy attributes a uniform distribution to the
different amplitudes P (Pi

t) = 1
P t

max
, Pi ∈ [0, P t

max]. In the same vein, the receiver cannot,
due to the amplifiers, process a receiving amplitude greater then P r

max. In this case, the
principle of maximum entropy attributes a uniform distribution such as P (P r

i ) = 1
P r

max
,

Pi ∈ [0, P r
max]

With all the previous priors given, one can therefore compute:

P (y | Mdoa, I) =
∫

1

(2πσ2)
N1Nr

2

e
− 1

2σ2
PN

i=1
PN1

j=1

�
y(tj ,fi)− 1√

sr
Φ(Θ

J
D(tj ,fi))x(fi)

�H�
y(tj ,fi)− 1√

sr
Φ(Θ

J
D(tj ,fi))x(fi)

�

P (Φ | sr,Mdoa, I)P (sr | Mdoa, I)P (vr | Mdoa, I)P (αr | Mdoa, I)P (βr | Mdoa, I)
P (τ | Mdoa, I)P (Θ | Mdoa, I)dΦdΘdsrdτdvrdαrdβr

which gives:

P (y | Mdoa, I) =
1

N ×N1

N×N1∑

sr=1

∫ 2π

0

∫ ∞

0

∫ vlim

0

∫ τmax

0

1

(2πσ2)
N1Nr

2

N∏

i=1

N1∏

j=1

e
− 1

2σ2

�
y(tj ,fi)− 1√

sr
Φ(Θ

J
D(tj ,fi))x(fi)

�H�
y(tj ,fi)− 1√

sr
Φ(Θ

J
D(tj ,fi))x(fi)

�

(
1

τmax
)sr×nt

1
vlim

(
1
2π

)nr×sr
1
2π

(
1
2π

)sr

dφ11...dφnrsrdθ11...dθsrntdτ11...dτsrntdvrdαrdβr
1...dβr

sr
(9.1)

As one can see, the numerical integration is tedious but it is the only way to rank the models
in an appropriate manner.

Model Mdouble:
Let us now derive model Mdouble:

H(f, t) =
1√
srst

Φ
(
Θ

⊙
D(t, f)

)
Ψ

with

D(t, f) =




e−j2πfτ1,1ej2π ft
c

(ur
1vr) . . . e−j2πfτ1,st ej2π ft

c
(ur

1vr)

...
. . .

...
e−j2πfτsr,1ej2π ft

c
(ur

srvr) . . . e−j2πfτsr,st ej2π ft
c

(ur
srvr)




deals with the double directional model for which the set of parameters is

pdouble = {Φ, sr,Ψ, st, τ, vr, , αr, βrΘ} = {pdoa,Φ, st}
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by adding two new parameters Ψ and st and going to the new subspace Spdouble
in such a way

that Ψ = Fnt (nt = st) represents model Mdoa. Indeed, in this case, we have:

(
Θ

⊙
D(t, f)

)
Fnt

=




∑nt

i=1 θ1ie
−j2πfτ1,iej2π ft

c (ur
1vr) . . .

∑nt

i=1 θ1ie
−j2πfτ1,iej2π ft

c (ur
1vr)ej2π

(nt−1)i
nt

...
. . .

...∑nt

i=1 θsrie
−j2πfτsr,iej2π ft

c (ur
svr) . . .

∑nt

i=1 θsrie
−j2πfτsr,iej2π ft

c (ur
sr

vr)ej2π
(nt−1)i

nt




=




∑nt

i=1 θ1ie
−j2πf(τ1,i−τ1,1) . . .

∑nt

i=1 θ1ie
−j2πf(τ1,i−τ1,nt )ej2π

(nt−1)i
nt

...
. . .

...∑nt

i=1 θsrie
−j2πf(τsr,i−τsr,1) . . .

∑nt

i=1 θsrie
−j2πf(τsr,i−τsr,nt )ej2π

(nt−1)i
nt




⊙
D(t, f)

= Θ1

⊙
D(t, f)

Where Θ1 is a matrix with i.i.d Gaussian entries.
We recall here the model for a given frequency:

y(f, t) =
1√
srst

Φ
(
Θ

⊙
D(t, f)

)
Ψx(f) + n(f)

The same methodology applies and we have:

P (y | Mdouble, I) =
∫

1

(2πσ2)
N1Nr

2

e
− 1

2σ2
PN

i=1
PN1

j=1

�
y(tj ,fi)− 1√

srst
Φ(Θ

J
D(tj ,fi))Ψx(fi)

�H�
y(tj ,fi)− 1√

srst
Φ(Θ

J
D(tj ,fi))Ψx(fi)

�

P (Φ | sr, Mdouble, I)P (sr | Mdouble, I)P (Ψ | st,Mdouble, I)P (st | Mdouble, I)
P (vr | Mdouble, I)P (αr | Mdouble, I)P (βr | Mdouble, I)P (τ | Mdouble, I)
P (Θ | Mdouble, I)dΦdΨdΘdsrdstdτdvrdαrdβr

and

P (y | Mdouble, I) = (
2

N ×N1
)2

N×N1
2∑

sr=1

N×N1
2∑

st=1

∫ 2π

0

∫ ∞

0

∫ vlim

0

∫ τmax

0

1

(2πσ2)
N1Nr

2

N∏

i=1

N1∏

j=1

e
− 1

2σ2

�
y(tj ,fi)− 1√

srst
Φ(Θ

J
D(tj ,fi))Ψx(fi)

�H�
y(tj ,fi)− 1√

srst
Φ(Θ

J
D(tj ,fi))Ψx(fi)

�

(
1

τmax
)sr×st

1
vlim

(
1
2π

)nr×sr(
1
2π

)st×nt
1
2π

(
1
2π

)sr

dφ11...dφnrsrdψ11...dψ1ntdθ11...dθsrntdτ11...dτsrntdvrdαrdβr
1...dβr

sr
(9.2)

A common problem in the modelling process is the following: suppose, when testing the
models with the data, that both models M and M1 have the same maximum likelihood, in other
words:

P (y | pdoa
max, Mdoa, I) = P (y | pdouble

max, Mdouble, I)

Which model should we choose? Hereafter, we give an example to show that Bayesian
probability will choose the model with the smallest number of parameters.
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First of all, we will suppose that the information I available does not give a preference to
model before seeing the data: P (Mdouble | I) = P (Mdoa | I).
As previously shown,

P (y | Mdoa, I) =
∫

P (y, pdoa | Mdoa, I)dpdoa

=
∫

P (y | pdoa,Mdoa, I)P (pdoa | Mdoa, I)dpdoa

and

P (y | Mdouble, I) =
∫

P (y, pdouble | Mdouble, I)dpdouble (9.3)

=
∫

P (y | pdouble,Mdouble, I)P (pdouble | Mdouble, I)dpdouble (9.4)

Since

P (pdouble | Mdouble, I) = P ([pdoa,Ψ, st] | Mdouble, I)
= P (pdoa | Ψ, st,Mdouble, I)P (Ψ, st | Mdouble, I)

From equation (9.3), we have:

P (y | Mdouble, I) =
∫ ∫

P (y | [pdoa,Ψ, st],Mdouble, I)P (pdoa | Ψ, st,Mdouble, I)

P (Ψ, st | Mdouble, I)dpdoadΨdst

In the following, we will suppose that the likelihood function P (y | [pdoa,Ψ, st],Mdouble, I)
is peaky around the maximum likelihood region and has near zero values elsewhere. Oth-
erwise, the measurement data Y would be useless in the sense that the data does not pro-
vide any information. Suppose now that with model Mdouble, the maximum likelihood P (y |
[pdoa,Ψ, st]Mdouble, I) occurs at a point near Ψ = Ft and st = nt for the parameters Ψ and st

in other words P (y | [pdoa,Ψ, st],Mdouble, I) is always null except for the value of Ψ = Ft and
st = nt then:

P (y | Mdouble, I) =
∫ ∫ ∫

P (y | [pdoa,Ψ, st],Mdouble, I)P (pdoa | Ψ, stMdouble, I)

P (Ψ, st | Mdouble, I)dpdoadΨdst

≈
∫

P (y | [pdoa,Ψ = Fnt , st = nt],MDouble, I)

P (pdoa | [Ψ = Fnt , st = nt]Mdouble, I) (9.5)
P ([Ψ = Fnt , st = nt] | Mdouble, I)dpdoa (9.6)

One has to notice that P (pdoa | [Ψ = Fnt , st = nt],Mdouble, I) = P (pdoa | Mdoa, I) and
P (y | [pdoa,Ψ = Fnt , st = nt],Mdouble, I) = P (y | pdoa,Mdoa, I) since both models are the same
when Ψ = Fnt and st = nt. We also have P (Ψ = Fnt , st = nt | Mdouble, I) ≤ 1 (In fact, we
can derive the exact value. Indeed, since we have no knowledge of the directions of arrival,
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P (Φ = Fnt , st = nt | Mdouble, I) = 1
(2π)nr×st

). Using equation (9.5), Bayesian probability shows
us that:

P (y | Mdouble, I) ≤
∫

P (y | [pdoa,Ψ = Fnt
, st = nt],MDouble, I)

P (pdoa | [Ψ = Fnt , st = nt]Mdouble, I)P ([Ψ = Fnt , st = nt] | Mdouble, I)dpdoa

=
∫

P (y | pdoa,Mdoa, I)P (pdoa | Mdoa, I)P ([Ψ = Fnt
, st = nt] | Mdouble, I)dpdoa

≤
∫

P (y | pdoa,Mdoa, I)P (pdoa | Mdoa, I)dpdoa

=
∫

P (y, pdoa | Mdoa, I)dpdoa

P (y | Mdoa, I)

Since Mdoa has less parameters then Mdouble, Bayesian probability will favor the model Mdoa

with less parameters and therefore shows that ”the best explanation is always the simplest”5. It
is therefore wrong to think that by increasing the number of parameters one can always find a
good model: one can indeed better fit the data to the model (expression P (y | pdoa,Mdoa, I)) but
the prior probability P (pdoa | Mdoa, I) will spread over a larger space and assign as a consequence
a lower value to P (y | Mdoa, I).

But how does the a posteriori computation compare with the usual methodology of maxi-
mizing the likelihood P (y | p, M, I)?

Following [21], let us expand log P (y | p,M, I) around the maximum likelihood point p̂ =
{p1

max, ..., p
m

max}

log P (y | p,M, I) = log P (y | pmax, M, I) +
1
2

m∑

i,j=1

d2 log(P )
dpidpj

(pi − pi
max)(p

j − pj
max) + O()

then near the peak a good approximation is a multivariate Gaussian such as:

P (y | p,M, I) = P (y | pmax,M, I)e−
1
2
(p−pmax)∆−1(p−pmax)

with the inverse covariance matrix defined as:

∆−1
ij =

(
d2 log(P )
dpidpj

)

π=πmax

Therefore,

P (y | M, I) = P (y | pmax,M, I)
∫

e−
1
2
(p−pmax)∆−1(p−pmax)P (p | M, I)dp

= P (y | pmax,M, I)G(M, I)
5In statistical inference, this is known as Occam’s razor. William of Occam was a theologian of the 14th

century who wrote against the papacy in a series of treatise in which he tried to avoid many established pseudo
explanations. In his terms, the logic of simplicity was stated in the following form ”Causes shall not be multiplied
beyond necessity” [100]. Note that Occam’s razor has been extended to other fields such as metaphysics where it
is interpreted as ”nature prefers simplicity”.
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All the tools are now provided to better understand what is happening. Suppose we want
to compare two models M and M1. The a posteriori probability ratio for model M over M1 is:

P (M | y, I)
P (M1 | y, I)

=
P (M | I)
P (M1 | I)

P (y | M, I)
P (y | M1, I)

=
P (M | I)
P (M1 | I)

P (y | pmax, M, I)
P (y | p1

max,M1, I)
G(M, I)
G(M1, I)

In the conventional methods, M is better than M1 if P (y|pmaxM,I)
P (y|p1

maxM1,I) > 1 which is only one
part of the three terms to be computed. In fact, in order to compare two models, three terms
have to be calculated and

the mistake persists thinking that any model M1 versus M is good as long as we increase
the number of parameters: indeed, the fitting will get better and the ratio P (y|pmax,M,I)

P (y|p1max,M1,I) will
decrease but this is only looking at one part of the problem. First of all, one has to consider
P (M |I)
P (M1|I) and moreover G(M,I)

G(M1,I) . This last term depends on the prior information about the
internal parameters and as the number of parameters increases this term decreases due to the
fact that we add more and more uninformative priors.

The previous discussion shows that different methodologies can be used for model validation
with various limitations (complexity, adequacy,...). In the following, we propose a metric based
on mutual information and SINR compliance and discuss its features.

9.3 Mutual Information Complying Models

In usual communications systems, engineers are interested in models that fulfill a certain criteria.
The fact that the model is adequate or not is not an issue as long as it reproduces in an accurate
manner the same performance as measurements in the simulated chain. The criteria range
from BER, Signal to interference ratio to mutual information. The mutual information is an
interesting criteria from a network planning perspective.
In the previous chapters, we have derived the mutual information distribution of many models
and shown that in many cases, the cumulative distribution function of the mutual information
has the following form:

F (IM ) = 1−Q(
IM − ntµ

σ
)

In each case (i.i.d, DoA based, DoD based and double directional), expressions of µ and σ
have been provided.
For a given frequency f , a model will be called mutual information complying if it minimizes:

∫ ∞

0
| F (IM )− Fempirical(IM , f) |2 dIM (9.7)

Here Fempirical(IM , f) is the empirical CDF given by measurements.
Note that we could also minimize the Kullback distance between the two distributions:

D(P, Pempirical) =
∫

P (IM ) log
(

P (IM )
Pempirical(IM )

)
dIM (9.8)
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where P and Pempirical are respectively the theoretical and empirical probability distribution
of the mutual information. From a practical point of view, expression (9.8) is quite easy to
optimize. Indeed, let µempirical and σempirical be respectively the empirical mean and empirical

variance of Pempirical(IM ). Writing Pempirical(IM ) = 1q
2πσ2

empirical

e
− (IM−µempirical)

2

2σ2
empirical (chapter 11 will

show that Pempirical is indeed Gaussian) , one has to find the parameters µ and σ which minimize
the following expression:

D(P, Pempirical) = −1
2

log(2πeσ2)−
∫

P (IM ) log
(
Pempirical(IM )

)
dIM

= log(
σempirical

σ
) +

(µ− µempirical)
2σ2

empirical

.
In general (except for the i.i.d Gaussian case where there is nothing to do), for minimizing the

criteria in the directional cases, one has to optimize criteria (9.7) with respect to the eigenvalue
distribution of the steering matrix (since µ and σ depend on the limiting eigenvalue distribution
of the steering matrix. This is not an easy task. However, since we are interested in mutual
information issues, only the non-correlated scatterers (called here the dominant scatterers) scale
the mutual information and therefore we can use (as a first approximation) the Fourier models
developed previously (which correspond to Sayeed’s model since we are interested in capacities
issues). In this case, let us review each model (ρ is the SNR):

I.I.D Gaussian model. There is no optimization to perform in this case and µ and σ are equal
to:

µ(nr, nt, ρ) =
nr

nt
ln(1 + ρ− ρα(nr, nt, ρ)) + ln(1 + ρ

nr

nt
− ρα(nr, nt, ρ))− α(nr, nt, ρ)

and

σ2(nr, nt, ρ) = −ln[1− ntα
2(nr, nt, ρ)

nr
]

with

α(nr, nt, ρ) =
1
2
[1 +

nr

nt
+

1
ρ
−

√
(1 +

nr

nt
+

1
ρ
)2 − 4

nr

nt
]

DoA based model. In this case, one has to optimize criteria (9.7) with respect to the number
of scatterers s for which the expression of µdoa and σdoa are given by:

µdoa(nr, sR, nt, ρ) =
sr

nt
ln(1+ρ

nr

sr
−ρ

nr

sr
αdoa(nr, sr, nt, ρ))+ln(1+ρ

nr

nt
−ρ

nr

sr
αdoa(nr, sr, nt, ρ))−αdoa(nr, sr, nt, ρ)

and

σ2
doa(nr, sr, nt, ρ) = −ln[1− ntα

2
doa(nr, sr, nt, ρ)

sr
]
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with

αdoa(nr, sr, nt, ρ) =
1
2
[1 +

sr

nt
+

1
ρnr

sr

−
√

(1 +
sr

nt
+

1
nr
sr

ρ
)2 − 4

sr

nt
]

Since sr will depend on the frequency, we will define as in [152] the richness spectrum as:
Rdoa = sr(f)

nr

DoD based model. In this case, one has to optimize criteria (9.7) with respect to the number
of scatterers st for which the expression of µdod and σdod are given by:

µdod(nr, st, nt, ρ) =
st

nt
ln(1 + ρ

nr

st
− ραdod(nr, st, nt, ρ)) +

nr

nt
ln(1 + ρ− ραdod(nr, st, nt, ρ))

− st

nt
αdod(nr, st, nt, ρ)

and
σ2

dod(nr, st, nt, ρ) = −ln[1− st

nr
α2

dod(nr, st, nt, ρ)]

with

αdod(nr, st, nt, ρ) =
1
2
[1 +

nr

st
+

1
ρ
−

√
(1 +

nr

st
+

1
ρ
)2 − 4

nr

st
]

Since st will also depend on the frequency, we can also define the richness spectrum as:
Rdod = st(f)

nt

Double Directional model. In this case, one has to optimize criteria (9.7) with respect to sr

(scatterers at the receiving side) and st (scatterers at the transmitting side) for which the
expressions of µdouble and σdouble are given by:

µdouble(nr, sr, st, nt, ρ) =
sr

nt
ln(1 + ρ

nr

sr
− ρ

nr

sr
αdouble(nr, sr, st, nt, ρ))

+
st

nt
ln(1 + ρ

nr

st
− ρ

nr

sr
αdouble(nr, sr, st, nt, ρ))

− st

nt
αdouble(nr, sr, st, nt, ρ)

and

σ2
double(nr, sr, st, nt, ρ) = −ln(1− α2

doublest

sr
)

with

αdouble(nr, sr, st, nt, ρ) =
1
2

[
1 +

sr

st
+

sr

ρnr
−

√
(1 +

sr

st
+

sr

ρnr
)2 − 4

sr

st

]

As previously, the richness spectra can be defined independently on both sides. Note that
having a model that gives the same mutual information as measurements does not validate at
all the model but gives a model tool for simulating a capacity network. If the criteria changes,,
the model may be completely inadequate even though it complies with mutual information
measurements. As matter of fact, the mutual information criteria as several drawbacks as
many models can give the same mutual imformation compliance. Many models can give the
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same mutual information compliance. For instance, the DoA based model always gives the
same mutual information compliance as the DoD based model, since mutual information is a
symmetric measure with respect to channel input x and channel output y, since

I(x;y) = I(y;x). (9.9)

In other words: We can exchange transmitter and receiver without any change of mutual infor-
mation. Of course, DoAs then become DoDs and vice versa. In fact, more crucially, if one is
interested in mutual information compliance, then the double directional model will always give
a better result than the i.i.d, DoA or DoD based. Why? The reason is simple to understand: the
entropy framework was developed in this paper in order to provide consistent models. Retrieving
or adding parameters takes us one step back or forward. As an example, suppose that the DoA
based model complies quite accurately with the mutual information for a given parameter of
scatterers. Then, immediately, the double directional model will also be a good candidate if one
takes the same optimized parameter sr and st = nt. As one can see, the mutual information
compliance criteria will never be able to discriminate between a well parameterized and an over
parameterized model. This is mainly due to the fact that the models are consistent but not
the criteria (see section 9.5). The mutual information compliance criteria is a necessary but not
sufficient condition. The misunderstanding occurs as one uses a mono-dimensional measure to
validate a multi-dimensional model. In other words, one is only validating a functional of the
model and not the model itself. Therefore, many models can give the same mutual information
compliance. Therefore, if the model gives accurate mutual information results, we will not pre-
tend that the model is good (as many papers do) but only that it fulfills our mutual information
criteria. Of course, other quality measures can be given.

Remark 3 The measurement scientist, which is mostly interested in practical models, may
have got bored, when reading the document, with all the previous chapters dedicated to derive
theoretical formulas of the mutual information. Indeed, what are the theoretical formulas useful
for since one can simulate the models derived and test them? There are many answers to give but
the author will only focus here on one. As the reader can see from our formulas, the optimization
is extremely easy to perform as we have clearly, thanks to the previous analysis, derived the
parameters of interest. There is only a one dimensional search over sr and st to perform and
one can therefore, for each scenario, find the number of scatterers in a computational efficient
way. The other aspects which are related to the information theoretical transmission limits have
already been detailed previously.

9.4 SINR complying Models

*************** ***********************************************

9.5 Clearing up Mysteries

In the previous chapters, we have derived the mutual information based on the assumption that
the channel model is adequate with reality. For example, knowing that the frequency paths
are Gaussian i.i.d and the noise is additive white Gaussian, the transmitter will design codes
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Capacity
(1) (2)

(3)

ModelState of Knowledge

Figure 9.1: Channel modelling approach and derivation of capacity.

to ensure a reliable transmission on such channels. But whenever we are misrepresenting the
channel with our state of knowledge, the formula

IM = log2det
(
Int +

ρ

nt
HHH

)
(9.10)

will misestimate the rate. Indeed, a surprising fact in our maximum entropy approach is that
although it gives us a consistent model with our state of knowledge, it will also lead to misesti-
mating the rate with formula (9.10). The problem is formulated in Figure 9.1.

• Transition (1): the modeler creates a model maximizing entropy.

• Transition (2): The modeler misestimates the real achievable rate because even though the
model he creates is the best he can base on his state of knowledge, he derives the mutual
information of the channel based on the assumption that the model is reality.

• Transition (3): A new measure of information rate should be derived based only on our
state of knowledge, taking into account the fact that the model does not represent reality,
but only our knowledge (which is scarce) of reality

As a matter of fact, for deriving the mutual information, a channel model is not required
but only the state of knowledge. One can derive more useful information rate criteria which
circumvent the need of a channel model such as the ”worst case mean channel capacity”:

IM (H) = minP (H):H∈∆{maxQ

∫ (
log2det

(
Int +

ρ

nt
HHQH

))
P (H)dH}

∆ is the infinite set of matrices H with the same initial physical constraints (mean and variance
for example). Of course, other measures of capacity performance can be derived.
So, is there a contradiction in our maximum entropy modelling approach? No, as long as we
understand the meaning of transition (2) in Figure 9.1. With the maximum entropy approach,
we derive a channel model having as much degrees of freedom as possible (but still with the
constraints of our state of knowledge) in order to cope with all the cases when they happen.
We do this because we need a unique model consistent with our state of knowledge. Any other
approach will add unjustified constraints. Suppose, for sake of simplicity, that each frequency
path of the channel has a zero mean and a given variance (the mean and variance are here our
state of knowledge). Transition (1)+(2) will give us a measure of the rate one can transmit on
a ”maximum entropy channel state knowledge”.
The problem stems from the fact that although models are consistent, functionals of the model
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are not. Indeed, consider the DoA based model: H = ΦΘ, (Θ is i.i.d Gaussian) then using
Jensen’s Inequality:

EΦ

(
log det(Int +

ρ

nt
(ΘHΦHΦΘ)

)
6 log det(Int +

ρ

nt
EΦ(ΘHΦHΦΘ))

For example, when the directions of arrival are unknown, the mutual information averaged
across the unknown directions of arrival (here EΦ

(
log det(Int + ρ

nt
(ΘHΦHΦΘ)

)
) does not yield

the mutual information of the Gaussian i.i.d. model (log det(Int + ρ
nt
EΦ(ΘHΦHΦΘ)) which is

equal to log det(Int + ρ
nt

(ΘHΘ))): the model is consistent but not the functional. A remarkable
feature of the previous result is that whenever we have more information (and therefore more
constraints on the channel model), mutual information will be reduced as it constraints the
degrees of freedom.

This explains why, under the same initial constraints (as an example the mean and the
variance of each path), correlated fading reduces the mutual information with respect to the
completely i.i.d case. As an example, the fact that we take into account the DoA, mean,
variance will reduce the mutual information compared with the case where only the same mean
and same variance are taken into account6.

In fact, if one is interested only in one or some functions of the model, then the modler should
construct a model which is consistent with those functionals and not in itself. A consistent model
is for the case where we do not know which functions we (or others who we construct the model
for) are interested in.

6A question to which we still did not find an answer was whether there is a relationship between entropy and
the notion of diversity order and degrees of freedom as used in [58, 153, 85].



Chapter 10

Measurements Description

10.1 Measurement Set-up

In this section1, we describe the wideband outdoor measurement campaign carried out in Oslo
during summer 2002 and summer 2003 [156]. The measurements were performed at a center
frequency of 2.1 GHz and 5.2 GHz with a bandwidth of 100 MHz in three different urban
scenarios: a regular street grid scenario, an open city place and an indoor cell site. In each
scenario, many routes have been measured: at 2.1 GHz, 150 routes have been measured (and
in each case, many snapshots have been measured) whereas at 5.2 GHz, 79 routes have been
measured. The measurements performed at 2.1 GHz are relevant for UMTS whereas those at
5.2 GHz are valuable for IEEE 802.11a. Measuremens have also bee conducted at 5.2
Ghz [157]

• The street grid scenario is in Oslo downtown and corresponds to Concrete/Brick buildings.
The buildings are around 20-30 m high (see Figure 10.1). In this scenario, two different
receiver positions were tested, one high position on a roof terrace and the other one, a low
position on street level. The area is often referred as ”Kvadraturen” (Urban Regular in
the following).

– For the low base station at 2.1 GHz, route Kvadraturen 01 01 15 has been studied.

– For the high base station at 2.1 GHz, route Kvadraturen 02 01 14 has been studied.

– For the low base station at 5.25 GHz2, route Kvadraturen 03 05 09 has been studied.

• The urban open place is also in downtown Oslo and corresponds to an almost quadratic
open market square of approximatively 100×100 meters. In Oslo, the square is called
”Youngstorget”. The square is partly filled with market stalls especially during the summer
months (see Figure 10.2). The surrounding buildings are of variable size. In this scenario,
the receiver was placed above some arcades.

– At 2.1 GHz, route Youngstorget 01 02 02 has been studied.
1The author is grateful to Helmut Hofstetter and P.H. Lehne for useful discussions and providing the mea-

surements. A comprehensive introduction to the measurement set-up can be found in [154] and [155]. For the
different scenario routes, notations of [154] and [155] will be used.

2At 5.25 GHz, only the case where the receiver was at the street level was considered and not the high base
station case.
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Figure 10.1: Urban Regular site.

Figure 10.2: Urban Open Place.

– At 5.25 GHz, route Youngstorget 03 02 03 has been studied.

• For the indoor scenario, the measurements were performed in a modern office building
with open indoor areas. The building (Telenor headquarters building at Fornebu) has
a irregular structure and is mostly of glass and steel. Measurements were taken in two
different parts of the building. Inside a work zone (see Figure 10.3 and 10.4) and in a
common area called the ”Atrium” (see Figure 10.5).

– For the indoor scenario at 2.1 GHz, route Fornebu In 01 01 19 has been studied.

– For the ”Atrium” scenario at 2.1 GHz, route Fornebu Atrium 01 01 12 has been
studied.

– For the indoor scenario at 5.25 GHz, route FornebuIn 02 01 16 has been studied.

– For the ”Atrium” scenario at 5.25 GHz, route Fornebu Atrium 02 01 15 has been
studied.

In all the measurement set-up, a wideband channel sounder with synchronized switching between
transmitter and receiver was used. The transmitter was placed arbitrarily and used as the mobile
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Figure 10.3: Telenor Headquarters: work zone.

Figure 10.4: Telenor Headquarters: work zone.
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Figure 10.5: Telenor Headquarters: ”Atrium”.



99

Figure 10.6: Antenna: The receiver is the 8 × 4 planer array while the transmitter is the 8
element uniform linear array

part, mounted on a trolley. Both transmitter and receiver antennas are broadband patch arrays
with integrated switching networks.

10.2 2.1 GHz

10.2.1 Channel Sounder

The transmitter is an 8 element uniform linear array (ULA) while the receiver antenna is an
8 × 4 planar array, i.e two dimensional with 8 elements horizontally and 4 vertically, giving a
total of 32 elements (see Figure 10.6). In all the cases, the receiver acted as the base station and
only 8 elements were used. The transmitter antenna was connected using the 4 center elements
with both polarizations. The multiplexing was the following:

H2− V 2−H3− V 3−H4− V 4−H5− V 5

The main channel sounder specification are listed on the following Table (10.1). The sounder
was manufactured by SINTEF Telecom and Informatics in Trondheim, Norway, on assignment
from Telenor.

10.2.2 State of Knowledge

According to the specifications in table (10.1) and the measurement set-up, our state of knowl-
edge is the following:
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Measurement frequency 2.1 GHz
Measurement bandwidth 100 Mhz

Delay resolution 10ns
Sounding signal linear frequency chirp

Transmitter antenna 8 element ULA
Element spacing 71.4 mm (0.5 λ)
Receiver antenna 32 (8× 4) element
Element spacing 73.0 mm (0.51 λ)

Table 10.1: Channel sounder specification at 2.1 GHz.

• Uniform Linear Array.

• Far field Approximation.

• Antenna spacing 0.5λ.

• 4 dual-polarized transmit antenna elements.

• 8 single-polarized receive antenna elements.

Since there is no LOS between the transmitter and receiver, we can assume that the channel
has zero mean and a certain energy (as recalled previously, this is at the heart of our inference
methodology: if the model does not comply with the measurements, then we will retrieve that
hypothesis and take the outcome of the measurement test as some new information evidence on
how the model behaves when zero mean is assumed). We will also make the hypothesis that
the models are directional. Moreover, since we are mainly concerned with mutual information
issues, one can use the uncorrelated scattering model where the steering vectors are on Fourier
directions. Indeed, as far as mutual information is concerned, only the uncorrelated scatterers
will scale the throughput. We will also use as a first approximation the model with equal
powers. Let us derive the mutual information when polarization is taken into account. The fact
that polarization is used exclusively at the transmitter side, raises some concerns whether the
symmetry of mutual information (9.9) still applies to our setup, since exchanging transmitter
and receiver might influence the scattering environment if some scatterers scatter only one of
the polarization modes. Let us, therefore, look at the mutual information when polarization is
taken into account in greater detail.

In the general case, the received signal can be written as

y =
√

ρ

nt
Hhxh +

√
ρ

nt
Hvxv + n. (10.1)

Here, Hh
3 and Hv are nr × nt

2 matrices whereas xh and xv are nt
2 × 1 vectors. nr = 8 and nt,

which represents the equivalent number of antennas, is equal to 8, as well.
3Hh stands for a matrix with horizontal polarization whereas Hv stands for a vertical polarization
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• DoA case: In this case, the received signal can be written as

y =
√

ρ

ntsr
(Φnr×srΘhxh + Φnr×srΘvxv) + n (10.2)

=
√

ρ

ntsr
Φnr×sr [ΘhΘv]

[
xh

xv

]
+ n (10.3)

=
√

ρ

ntsr
Φnr×srΘh+vxh+v + n. (10.4)

where Θh+v is an sr × nt i.i.d Gaussian matrix and xh+v is an nt × 1 vector. Therefore,
all the results of section 9.3 can be used without any change. In the DoA based model,
polarization at the transmitter does not change anything with respect to a system without
polarization and a doubled number of transmitting antennas.

• DoD based model: In this case, the number of scatterers at the transmitter side might be
different for the two polarization modes. We denote them by sv

t and sh
t , with sh

t + sv
t = st,

and write the received signal in the form

y =
√

2ρ

ntst

(
ΘhΨsh

t ×nt
2
xh + ΘvΨsv

t×nt
2
xv

)
+ n (10.5)

where Θh and Θv are nr × sh
t and nr × sv

t i.i.d Gaussian matrices which represent the
horizontal and the vertical polarization, respectively. Note that neither sh

t nor sv
t can be

greater than nt
2 in the Fourier framework.

The mutual information is given by

IM (nt, nr, st, ρ) = log2 det
(
Inr +

2ρ

ntst

(
ΘhΨΨHΘh

H + ΘvΨΨHΘv
H

))
(10.6)

= log2 det
(
Inr +

ρ

st

(
ΘhΘh

H + ΘvΘv
H

))
(10.7)

= log2 det
(
Inr +

ρ

st
Θh+vΘh+v

H

)
(10.8)

where Θh+v is an nr×st matrix. We observe that all the results of section 9.3 can be used
without change. Note that one of the other drawbacks of the mutual information criteria
is that the metric is not able to determine sh

t and sh
v but only there sum.

• In the double directional model, the received signal has the form

y =
√

2ρ

ntsrst

(
Φnr×srΘhΨsh

t ×nt
2
xh + Φnr×srΘvΨsv

t×nt
2
xv

)
+ n. (10.9)
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Figure 10.7: Antenna at 5.25 GHz.

The mutual information in the double directional case is given by:

IM (nt, nr, sr, st, ρ) = log2 det
(
Inr +

2ρ

ntsrst

(
ΦΘhΨΨHΘh

HΦH + ΦΘvΨΨHΘv
HΦH

))

= log2 det
(
Inr +

ρ

srst

(
ΦΘhΘh

HΦH + ΦΘvΘv
HΦH

))
(10.10)

= log2 det
(
Inr +

ρ

srst
Φ

(
ΘhΘh

H + ΘvΘv
H

)
ΦH

)
(10.11)

= log2 det
(
Inr +

ρ

srst
Φ

(
Θh+vΘh+v

H
)
ΦH

)
(10.12)

= log2 det
(
Ist +

ρ

srst
Θh+v

HΦHΦΘh+v

)
(10.13)

= log2 det
(
Ist +

ρnr

srst
Θh+v

HΘh+v

)
(10.14)

where again Θh+v is an sr × st i.i.d Gaussian matrix. Therefore, all the results of section
9.3 can be used without change.

In all the following figures, the SNR will be fixed at 10 dB.

10.3 5.25 GHz

10.3.1 Channel Sounder

In this case, broadband antennas, vertically patch arrays were used at the transmitter and the
receiver. They were designed and manufactured by the Instituto Superior Técnico, Instituto of
Telecommunicacões in Lisbon, Portugal on assignment by Telenor. Both antennas are 8 element
Uniform Linear Arrays (ULA). The center frequency is 5.255 GHz. The element spacing is 28.54
mm corresponding to 0.5 λ at 5.255 GHz.

The main channel sounder specification are listed on the following Table (10.2).
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Measurement frequency 5.255 GHz
Measurement bandwidth 100 Mhz

Sounding signal linear frequency chirp
Transmitter antenna 8 element ULA

Element spacing 28.54 mm (0.5 λ)
Receiver antenna 8 element ULA

Table 10.2: Channel sounder specification at 5.255 GHz.

10.3.2 State of Knowledge

According to the specifications in table (10.2) and the measurement set-up, our state of knowl-
edge is the following:

• Uniform Linear Array.

• Far field Approximation.

• Antenna spacing 0.5λ .

• 8× 8 antenna system.

As previously, all the framework with mono-polarization developed in section.9.3 can be used
if one takes the following values nr = 8 and nt = 8. Note that in all the figures, the SNR is be
fixed at 10 dB.



Chapter 11

Validity of the Maximum Entropy
Approach

11.1 2.1 GHz Results

11.1.1 Mutual Information Results

Are the Meaured Mutual Information Gaussian?

Before trying to see if the models derived within this paper are mutual information complying,
one has to verify that the measured mutual information has a Gaussian behavior. In Figure
11.1, we have plotted respectively the measured mutual information for the scenarios of inter-
est, namely the urban open place, the urban regular low antenna position, the urban regular
high antenna, the indoor and the Atrium scenario. We have also plotted the Gaussian pdf of
each scenario based on the first and second measured moment i.e if µempirical and σempirical are
respectively the measured mean and variance then for each scenario:

P (IM ) =
1√

2πσ2
empirical

e
− (IM−µempirical)

2

2σ2
empirical

As one can see, the mutual information has a Gaussian behavior and therefore, the models
derived in this paper can be considered as candidates for the mutual information compliance
criteria 1. In the following section, we will see how close are the measured capacities from the
maximum entropy models.

What About Frequency Selectivity?

In the model derived in [158], we argued that frequency selectivity does not affect the mutual
information. In Figure 11.2, we have plotted the mutual information for various frequencies
(ranging from 2.05 to 2.15 GHz) in the urban open place scenario, the urban regular low antenna

1Actually, from all the 150 routes available in [154], only 8 routes (Kvadraturn 02 04 01, Kvadra-
turen 02 07 18, Kvadraturn 02 08 28, Fornebu In 01 02 16, Fornebu In 01 02 15, Fornebu InOut 01 07 13,
Fornebu InOut 01 07 15, Fornebu InOut 01 08 03) did not have a Gaussian behavior. We don’t know if this
is due to measurements errors or something else.
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Figure 11.1: Are the measured mutual information Gaussian

position, the urban regular high antenna position, the indoor and Atrium scenario.2. As one
can observe, for the different frequencies, the mutual information does not really vary which
is adequate with our model structure: the highest variation occurs for the urban regular high
antenna position and is about 0.3 b/s/Hz which makes a relative variation of (19.85−19.55

19.55 = 0.015)
around 1.5%.

One can observe that in all the cases, frequency selectivity does not affect mutual information.
Note that the mutual information is smaller in the urban regular high antenna position than in
the low antenna scenario. This maybe due to the fact that there is less scattering objects when
the antenna is high. Note also that the mutual information in the indoor scenario is slightly
higher than the outdoor case due to a possibly higher number of scattering objects.

Parameter Optimization

In Figure 11.3, we have plotted the measured CDF of the Urban Open place scenario with
respect to the optimized DoA, DoD and double directional models. The curves were plotted at
an average SNR of 10 dB.

• I.I.D model: The Gaussian i.i.d model is too optimistic and overestimates the achievable
rate. An average gap with measurements of 3 b/s/Hz exists.

• DoA model: The DoA based model gives the same performance as the DoD one. The best
fitting is obtained for a number of scatterers sr equal to 6.

2Note that the CDF has been averaged over different time snapshots but at the same frequency.



106

2.04 2.06 2.08 2.1 2.12 2.14 2.16
19.5

20

20.5

21

frequency in Ghz

b/
s/

H
z

Frequency selectivity at 2.1Ghz

Indoor 

Urban low antenna 
Atrium 

Urban Open place 

Urban High Antenna 

Figure 11.2: Frequency selectivity for many scenarios at 2.1 GHz

• Double directional model: The double directional model fits accurately the data with a
number of scatterers equal to sr = 7 and st = 7. It seems that the equal power case
is sufficient to comply with the mutual information measurements. Therefore, the urban
open place scenario can be fully described by a double directional model. One can observe
that the number of scatterers is quite high. This may be explained by the fact that the
open place site has quite a diverse building topography.

In Figure 11.4, we have plotted the measured CDF of the Urban Regular Low Antenna
Position scenario with respect to the optimized DoA, DoD and double directional models.

• I.I.D model: The i.i.d Gaussian model does not at all represent this scenario and a gap of
more than 4 b/s/Hz is revealed.

• DoA model: The DoA based model fits quite accurately the data with a number of scat-
terers equal to sr = 6. However, the results are not so tight as for the Urban Open Place.
But even when this mismatch, to our knowledge, no model was shown to fit so accurately
the data.

• Double directional model: The double directional model gives similar results as the DoA
based model with a number of scatterers equal to sr = 6 and st = 8. Moreover, one can
observe that there are more scatterers on the receiving side than the transmitting side
(sr > st). This is maybe due to the fact that the receiving antenna is low and therefore,
many reflections occur at the receiving side. Note that one would get a better fitting curve
if the power of the steering vectors are taken into account.
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Figure 11.3: Urban Open Place at 2.1 GHz.
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Figure 11.4: Urban Regular, Low Antenna Position at 2.1 GHz.
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Figure 11.5: Urban Regular, High Antenna Position at 2.1 GHz.

In Figure 11.5, we have plotted the measured CDF of the Urban Regular High Antenna
Position scenario with respect to the optimized DoA, DoD and double directional models.

• I.I.D model: In this case, a gap of 4 b/s/Hz appears.

• DoA model: In this case, the optimal number of scatterers is sr = 7. A gap still appears
at the lower tail of the curve.

• Double directional model: The double directional model fits with sr = 7 and st = 8 but
the power profile should be taken into account to have a more accurate fitting.

In Figure 11.6, we have plotted the measured CDF of the indoor scenario with respect to
the optimized DoA, DoD and double directional models.

• I.I.D model: In this case, a gap of more than 1 b/s/Hz is revealed.

• DoA model: In the DoA case, sr = 7 provides quite accurate results. However, better
results could be obtained if the the power of the steering directions is to be taken into
account.

• Double directional model: For sr = 7 and st = 8, the same performance as the DoA model
is achieved. As previously, the power of the steering vectors should be taken into account
to achieve better results.
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Figure 11.6: Indoor scenario at 2.1 GHz.

In Figure 11.7, we have plotted the measured CDF of the Atrium scenario with respect to
the optimized DoA, DoD and double directional models.

• I.I.D model: In this case, a gap of more than 1 b/s/Hz is revealed with the measurements.

• DoA model: The best fit is obtained with sr = 7 and the results are quite accurate. Only
a little mismatch appears at the edges of the curve.

• DoD model: The DoD based model gives the same performance as the i.i.d one and a gap
of more than 1 b/s/Hz appears. The best fitting is obtained for st = 4.

• Double directional model: The double directional model gives the same performance as
the DoA based. The best fitting is obtained for sr = 7 and st = 4.

In summary, the maximum entropy Fourier directional models give accurate results in
nearly all the cases. Note that for improving the results, one can take into account the
following parameters:

– The non-zero mean of the different paths

– The power profile of the steering directions.

– Retrieve the hypothesis of far field scattering and use the near field models derived.
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Figure 11.7: ”Atrium” scenario at 2.1 GHz.

11.1.2 SINR Results

What About Frequency Selectivity

In the model derived in [158], we argued that frequency selectivity does not affect the mutual
information. In Figure 11.8, we have plotted the SINR for various frequencies (ranging from
2.05 to 2.15 GHz) in the urban open place scenario, the urban regular low antenna position,
the urban regular high antenna position, the indoor and Atrium scenario.. As one can observe,
for the different frequencies, the SINR does not vary muc which is adequate with our model
structure: the highest variation occurs for the Urban Open Place with relative variation of
(4.4881−3.9859

3.9859 = 0.125) around 12.5%.

Parameter Optimization

In Figure ??, we have plotted the measured CDF of the Indoor scenario scenario with respect
to the optimized DoA, DoD and double directional models.

• I.I.D model:

• DoD model: The DoD model does not fit the data. The best result is obtained for st = 8.

• DoA model: In this case, the optimal number of scatterers is sr = 7. A gap still appears
at the lower tail of the curve.

• Double directional model: The double directional model fits with sr = 7 and st = 8
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Figure 11.8: Frequency selectivity of the SINR of many scenarios at 2.1 GHz.

In Figure ??, we have plotted the measured CDF of the Indoor scenario scenario with respect
to the optimized DoA, DoD and double directional models.

• I.I.D model:

• DoD model: The DoD model does not fit the data. The best result is obtained for st = 7.

• DoA model: In this case, the optimal number of scatterers is sr = 7. A gap still appears
at the lower tail of the curve.

• Double directional model: The double directional model fits with sr = 7 and st = 8

In Figure ??, we have plotted the measured CDF of the Indoor scenario scenario with respect
to the optimized DoA, DoD and double directional models.

• I.I.D model:

• DoD model: The DoD model does not fit the data. The best result is obtained for st = 7.

• DoA model: In this case, the optimal number of scatterers is sr = 7. A gap still appears
at the lower tail of the curve.

• Double directional model: The double directional model fits with sr = 7 and st = 8

In Figure ??, we have plotted the measured CDF of the Indoor scenario scenario with respect
to the optimized DoA, DoD and double directional models.
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• I.I.D model:

• DoD model: The DoD model does not fit the data. The best result is obtained for st = 7.

• DoA model: In this case, the optimal number of scatterers is sr = 7. A gap still appears
at the lower tail of the curve.

• Double directional model: The double directional model fits with sr = 7 and st = 8

In Figure ??, we have plotted the measured CDF of the Indoor scenario scenario with respect
to the optimized DoA, DoD and double directional models.

• I.I.D model:

• DoD model: The DoD model does not fit the data. The best result is obtained for st = 8.

• DoA model: In this case, the optimal number of scatterers is sr = 7. A gap still appears
at the lower tail of the curve.

• Double directional model: The double directional model fits with sr = 7 and st = 8

11.2 5.25 GHz Results

11.2.1 Mutual Information Results

Are the Measured Mutual Information Gaussian?

Before trying to see if the models derived within this paper are mutual information complying at
5.25 GHz, one has to verify as previously that the measured mutual information have a Gaussian
behavior. In Figure 11.9, we have plotted respectively the measured mutual information for four
scenarios of interest, namely the urban open place, the urban regular low antenna position, the
indoor and the Atrium scenario. We have also plotted the Gaussian pdf of each scenario based
on the first and second measured moment

As one can see, the mutual information has a Gaussian behavior (not as accurate as in the 2.1
GHz campaign) and therefore, the models derived in this paper can be considered as candidates
for the mutual information compliance criteria 3. In the following section, we will see how close
are the maximum entropy models from the measurements.

What About Frequency Selectivity?

In the models derived in [158], we argued that frequency selectivity does not affect the mutual
information. In Figure 11.10, we have plotted the mutual information for various frequencies
(ranging from 5.205 to 5.305 GHz) in the urban open place scenario., the urban low antenna
scenario, the indoor and the ”Atrium” scenario. As one can observe, for the different frequencies,

3Actually, from all the 79 routes available in [155], 18 routes (Kvadraturn 03 03 01, Kvadraturn 03 04 05,
Kvadraturn 03 06 03, Kvadraturn 03 13 07, Kvadraturn 03 03 01, Younstoget 03 02 02, Younstoget 03 08 16,
Fornebu In 02 03 04, Fornebu In 02 04 06, Fornebu In 02 05 10, Fornebu In 02 05 11, Fornebu In 02 05 12,
Fornebu In 02 07 15, Fornebu In 02 08 03, Fornebu Atrium 02 02 19, Fornebu Atrium 02 04 06,
Fornebu Atrium 02 08 02, Fornebu Atrium 01 08 03) did not have a Gaussian behavior. As previously,
we don’t know if this is due to measurements errors or something else.
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Figure 11.9: Are the measured mutual information Gaussian

the mutual information does not really change which is adequate with our model structure: the
highest variation occurs in the indoor scenario and is about 0.16 b/s/Hz which makes a relative
variation of (20.3−20.14

20.14 = 0.0079) around 0.8%.

Parameter Optimization

In Figure 11.11, we have plotted the measured CDF of the urban open place scenario with
respect to the optimized DoA, DoD and double directional models. The curves were plotted at
an average SNR of 10 dB.

• I.I.D model: The Gaussian i.i.d model is too optimistic and overestimates the achievable
rate. An average gap with measurements of 1 b/s/Hz exists at the edge of the curve.

• DoA model: The DoA based model does not fit accurately the data. The best fitting is
obtained with sr = 8 and gives the same performance (this is due to the fact that our
models are consistent) as the i.i.d Gaussian case.

• Double directional model: The double directional model does not fit accurately the data
with a number of scatterers equal to sr = 8 and st = 8. It seems that the equal power
case is not sufficient to comply with the mutual information measurements. One has to
take into account the power of the steering directions or the non-zero mean of each path.

In Figure 11.12, we have plotted the measured CDF of the Urban Regular Low Antenna
Position scenario with respect to the optimized DoA, DoD and double directional models.
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Figure 11.10: Frequency selectivity for various scenarios at 5.2 GHz
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Figure 11.12: Urban Regular, Low Antenna Position at 5.2 GHz.

• I.I.D model: The i.i.d Gaussian model does not at all represent this scenario and a gap of
more than 1 b/s/Hz is revealed.

• DoA model: The DoA based model fits the data with a number of scatterers equal to
sr = 7.

• Double directional model: The double directional model gives accurate results with a
number of scatterers equal to sr = 8 and st = 7. One can also notice that the number of
scatterers at 5.2 GHz is higher than at 2.1 GHz.

In Figure 11.13, we have plotted the measured CDF of the indoor scenario with respect to
the optimized DoA, DoD and double directional models.

• I.I.D model: In this case, a gap of more than 2b/s/Hz is revealed.

• DoA model: The DoA based model fits the data with a number of scatterers equal to
sr = 6

• Double directional model: The double directional model gives accurate results with sr = 7
and st = 7.

In Figure 11.14, we have plotted the measured CDF of the Atrium scenario with respect to
the optimized DoA, DoD and double directional models.
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Figure 11.13: Indoor scenario at 5.2 GHz.

• I.I.D model: The i.i.d model does not fit at all the data and a gap of more than 2.5 b/s/Hz
appears.

• DoA model: The DoA model fits the data for sr = 6. However, a little mismatch appears
at the lower edge of the curve.

• Double directional model: The double directional fits the data for sr = 6 and st = 8 and
gives the same performance as the DoA based model. Better matching could be obtained
if one takes into account the power of the steering directions.

11.2.2 SINR Results

What About Frequency Selectivity

In the model derived in [158], we argued that frequency selectivity does not affect the mutual
information. In Figure 11.15, we have plotted the SINR for various frequencies (ranging from
5.205 to 5.305 GHz) in the urban open place scenario, the urban regular low antenna posi-
tion, the urban regular high antenna position, the indoor and Atrium scenario.. As one can
observe, for the different frequencies, the SINR does not vary muc which is adequate with our
model structure: the highest variation occurs for the Indoor scenario with relative variation of
(4.6494−4.3656

4.3656 = 0.065) around 6.5%.
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Figure 11.14: ”Atrium” scenario at 5.2 GHz.
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Figure 11.15: Frequency selectivity of the SINR of many scenarios at 5.2 GHz.
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Parameter Optimization

In Figure ??, we have plotted the measured CDF of the Indoor scenario scenario with respect
to the optimized DoA, DoD and double directional models.

• I.I.D model:

• DoD model: The DoD model does not fit the data. The best result is obtained for st = 8.

• DoA model: In this case, the optimal number of scatterers is sr = 4. A gap still appears
at the lower tail of the curve.

• Double directional model: The double directional model fits with sr = 4 and st = 8

In Figure ??, we have plotted the measured CDF of the Indoor scenario scenario with respect
to the optimized DoA, DoD and double directional models.

• I.I.D model:

• DoD model: The DoD model does not fit the data. The best result is obtained for st = 7.

• DoA model: In this case, the optimal number of scatterers is sr = 7. A gap still appears
at the lower tail of the curve.

• Double directional model: The double directional model fits with sr = 7 and st = 8

In Figure ??, we have plotted the measured CDF of the Indoor scenario scenario with respect
to the optimized DoA, DoD and double directional models.

• I.I.D model:

• DoD model: The DoD model does not fit the data. The best result is obtained for st = 7.

• DoA model: In this case, the optimal number of scatterers is sr = 7. A gap still appears
at the lower tail of the curve.

• Double directional model: The double directional model fits with sr = 7 and st = 8

In Figure ??, we have plotted the measured CDF of the Indoor scenario scenario with respect
to the optimized DoA, DoD and double directional models.

• I.I.D model:

• DoD model: The DoD model does not fit the data. The best result is obtained for st = 7.

• DoA model: In this case, the optimal number of scatterers is sr = 7. A gap still appears
at the lower tail of the curve.

• Double directional model: The double directional model fits with sr = 7 and st = 8

In Figure ??, we have plotted the measured CDF of the Indoor scenario scenario with respect
to the optimized DoA, DoD and double directional models.
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• I.I.D model:

• DoD model: The DoD model does not fit the data. The best result is obtained for st = 7.

• DoA model: In this case, the optimal number of scatterers is sr = 7. A gap still appears
at the lower tail of the curve.

• Double directional model: The double directional model fits with sr = 7 and st = 8

11.3 Environment Classification

An important question raised by the model proposed within this contribution is whether the
modelling environment is independent of the antennas or not: indeed, one would like to repre-
sent each environment independently of the antennas and only through the parameters (sr, st):
Depending on their value, these numbers would characterize entirely the environment as shown
in Figure 11.164. A quick look at the theoretical mutual information equations of section. 9.3
show that the number of scatterers depend on the number of transmitting and receiving an-
tennas. Therefore, a question arises naturally: What are we modelling exactly? The answer
depends on the type of simplification one does:

• With the general maximum entropy framework developed in contribution [158], the number
of scatterers are defined as the number of distinct reflecting waves and are independent of
the number of antennas. We have decided to take into account every object however

4Note that the notion of poorly or highly scattering environment depends on the number of antennas. Indeed,
for a 2 × 2 MIMO system, 2 scatterers will be considered as a highly scattered environment whereas for a 8 × 8
system, the environment will be poorly scattered.
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small the object may be (and this is also a justification of the asymptotic analysis). Within
an object, there may be millions of waves reflected and therefore our model will consider
millions of scatterers (in this case, the asymptotic analysis is even more appealing). In
fact, the notion of scatterer is meaningless (how does one define a scatterer? The result
will obviously depend on the resolution) and only the limiting power profile matters (which
represents the distinct objects with their angular spread).

• With the maximum entropy framework on Fourier directions (which is a particular case
of the virtual representation of Sayeed [139] where the inner matrix is i.i.d Gaussian), one
assumes that the scatterers are on Fourier directions. The higher the number of anten-
nas one has, the higher the resolution will be. Therefore, for the same environment the
number of ”virtual scatterers” depends crucially on the number of antennas. There is no
relationship between the virtual scatterers and the real ones unless the number of antennas
is high enough to capture with a good resolution all the environment. We conjecture that
the number of virtual scatterers will depend on the number of antennas until a certain
resolution where increasing the number of antennas will not yield an increase of scatterers.
To confirm the variation of the number of scatterers with the number of antennas in the
same environment, we have plotted in Figure 11.18 the optimal number of scatterers for
the Urban Open Place scenario with 5 × 5, 6 × 6, 7 × 7 and 8 × 8 antennas (different
antennas have been used for the same scenario) at 2.1 GHz. As one can observe, for the
same environment, the number of scatterers with the Fourier representation changes. To
confirm that the Fourier model is good for a high number of antennas5 (for which all the
scatterers can be captured), we have plotted in Figure (11.17) the CDF of the mutual
information for 5 × 5, 6 × 6, 7 × 7 and 8 × 8 system. As one can see, as the number of
antennas increases, the double directional model fits better and better the measurements.
There are two explanations to this observation:

– as the number of antennas increases, the resolution increases and one is able to capture
all the scatterers. The Fourier representation is then similar to the general maximum
entropy representation where the steering directions can be anywhere.

– As the number of antennas increases, the Gaussian approximation becomes realistic.

Hence, although quite simple, the maximum entropy model on Fourier direction is a good model
but for a high number of antennas (8 antennas seems enough). Otherwise, one should use the
general maximum entropy model (where the directions are not Fourier ones).

11.4 Conclusion

The maximum entropy based model has been proved to be mutual information complying and is
a good candidate to model the MIMO link based on other criteria such as BER. Although case
depend, some general trends on the difference between the 5.2 GHz and 2.1 GHz measurements
can be provided:

• In general, for each scenario, the number of scatterers is higher at 5.2 GHz than at 2.1
GHz.

5We insist on the fact that the maximum entropy Fourier model is good for high number of antennas. However,
the general maximum entropy model is good for any number of antennas.
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Figure 11.17: Various number of antennas for the Urban Open Place at 2.1 GHz.

• The mutual information seems to be higher at 5.2 GHz than at 2.1 GHz

• At 5.2 GHz and 2.1 GHz, frequency selectivity does not affect the mutual information.

• Indoor scenarios provide higher throughput than outdoor scenarios.

• When the receiving base station is low, the mutual information is higher than when the
base station is high.

• The i.i.d model always overestimates the mutual information.

• At 2.1 GHz and 5.2 GHz, the measured mutual information has a Gaussian behavior.
However, the curves fit better the Gaussian distribution at 2.1 GHz than at 5.2 GHz.

• The maximum entropy model with zero mean and equal power on the steering directions
fits quite accurately the data at 2.1 GHz.

• At 5.2 GHz, the maximum entropy model with zero mean and equal power on the steering
directions is not so accurate. The power of the steering directions should be taken into
account. But even with this mismatch, to our knowledge, no model was shown to fit so
accurately the data with only two free parameters.

As a conclusion, if one is interested in mutual information compliance, then the maximum
entropy model with Fourier directions gives quite good results. The models are still being tested
for other criteria.
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Chapter 12

Antenna Design

********* In october ************

12.1 Antenna Allocation

A common question that arises in MIMO systems concernes the allocation of the antennas
between transmitter and receiver, in other words suppose that one has a total number n =
nt + nr of antennas. What is the optimal proportion γ = nr

nt
that optimize the average mutual

information for example [85]. Such considerations depend of course on the sate of knowledge at
hand and a as a consequence on the type of model derived.

12.1.1 i.i.d Gaussian Model

Consider for example the case of the i.i.d Gaussian model. The mean mutual information,
normalized to the total number of antennas is given by:

E(
IM

n
)(γ, ρ) =

1
1 + 1

γ

ln(1 + ρ− ρα) +
1

1 + γ
ln(1 + ργ − ρα)− 1

1 + γ
α

with

α =
1
2
[1 + γ +

1
ρ
−

√
(1 + γ +

1
ρ
)2 − 4γ]

E( IM

n ) is a function of γ and ρ. In general, the previous equation as no analytical expression
of for its maximum value. For each ρ, one has to search for the optimum value of this function.
Note that in the case where ρ → ∞, the optimum value is γ = 1. This mainly due to the fact
that the mutual information scales as min(nr, nr)ln(ρ). For low values of the SNR, it can be
easy easily shown that the

IM =
γρ

1 + γ
+ O(ρ)

For low values of the SNR, the optimum value is γ → ∞. The shift toward the receiving
antennas can be understood intuitively: in this regime, the mutual information scales linearly
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Figure 12.1: Mean Mutual Information versus γ for i.i.d Gaussian model.

with the SNR (and not with the degrees of freedom) and therefore one should focus on increasing
the total received SNR (which can be done by increasing the number of receiving antennas).

For the general case, we have plotted in Figure 12.1 the mean mutual information versus γ
for several values of the SNR ρ. In each case, a maximum value occurs which depends on ρ (The
maximum value is between 1 and ∞) as shown in Figure 12.2.

12.1.2 Double directional model

Similarly to section 12.1.1, let us now consider the double directional model. In this case,

E(
IM

n
)(γ, ρ) =

sr

n
ln(1 + ρ

1
1 + 1

γ

n

sr
− ρ

1
1 + 1

γ

n

sr
α)

+
st

n
ln(1 + ρ

n

st

1
1 + 1

γ

− ρ
n

sr

1
1 + 1

γ

α)

− st

n
α

and

α =
1
2

[
1 +

sr

st
+

sr

ρn
(1 +

1
γ

)−
√

(1 +
sr

st
+

sr

ρn
(1 +

1
γ

))2 − 4
sr

st

]
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Figure 12.2: Optimum γ versus SNR for i.i.d Gaussian model.

It can also be shown that at very low SNR,

IM =
γρ

1 + γ
+ O(ρ)

which favors a shift towards the number of receiving antenna in this regime. In the general
case, there is no explicit expression for the optimum value of γ.

In Figure 12.3, we have plotted the optimum γ versus sr and st at 10 dB. In fact, γ is
only a function of sr. This is due to the fact that st ≤ nt and therefore nt as no effect on
the multiplexing gain (st being te limiting factor). As sr decreases, γ increases to increase the
received SNR (since the multiplexing gain is any case limited by min(sr, st). Note that the
values of γ are between 1 and ∞.

12.2 Antenna Geometry

Theorem ?? of section ?? (a revoir pour le theoreme) is extremely useful as it shows that
only the limiting eigenvalue distribution of the steering directions and their respective powers
matters: in other words, two antenna configuration can yield the same throughput as long as
they give rise to the same eigenvalue distribution for the steering matrix. Based on this result,
a future mobile scenario the author would like to advocate is the following: imagine a set of
reconfigurable antennas that can move on a grid. The antennas are at the beginning displayed
with a Uniform Linear Array geometry. Once the transmission starts, the angles of arrival and
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Figure 12.3: Optimum γ versus sr and st for the double directional mdeol model.

the distances of the scatterers to the antennas are determined. The position of the antennas
(for fixed scatterers) on the grid are then optimized in order to increase mutual information
using the previous formulas. This is once more a viable scenario from a software defined radio
perspective and gives means for future research in the field of antenna design. The antenna
design problem can therefore be related to an eigenvalue optimization problem. What really
governs the transmission limits of different scenarios are only the properties of the eigenvalues
of the steering matrix.



Chapter 13

Conclusion

Where do we stand on channel modelling ?1 This question is not simple to answer as many
models have been proposed and each of them validated by measurements. Channel models are
not getting better and better but they only answer different questions based on different states
of knowledge2. The crucial point is not creating a model but asking the right question based
on a given state of knowledge (raw measurement data, prior information, are we in a urban
area? is it a fixed network?..). A generic method for creating models based on the principle of
maximum entropy has been provided and proved to be theoretically sound. At every step, we
create a model incorporating only our prior information and not more! The model achieved is
broad as it complies as best it can with any case having more constraints (but at least includes
the same prior constraints). The channel modelling method is summarized hereafter:

• H(p) =
∫ −plogp +

∑
i λi{prior information}i

• Argument of consistency

The consistency argument is extremely important as it shows that two channel modelling
methods based on the same state of knowledge should lead to the same channel model. This
fact has not always been fulfilled in the past. Our models are logical consequence of the use
of the principle of maximum entropy and need not to be assumed without deeper justification.
The models proposed may seem inadequate to reality for some readers: we argue as in [21]
that the purpose of channel modelling is not to describe reality but only our information about
reality. The model we achieve are consistent and any other representation is obviously unsound
if based on the same state of knowledge. However, one must bear in mind that the less things
are assumed as a priori information the greater are the chances that the model complies with
any mismatched representation.

But what if the model fails to comply with measurements? The model is not to blame as
it is a logic consequence of information theoretic tools [21]. With the methodology introduced,
failure is greatly appreciated as it is a source of information and the maximum entropy approach

1This question has to be taken in light of a talk ”Where do we stand on maximum entropy?” made by E.T.
Jaynes in 1978 at MIT [159].

2This point of view is not new and the misconception persists in many other fields. Descartes, already in
1637, warned us when stating in the first lines of the French essay ”Le discours de la méthode”:” la diversité de
nos opinions ne vient pas de ce que les uns sont plus raisonnables que les autres, mais seulement de ce que nous
conduisons nos pensées par diverses voies, et ne considérons pas les mêmes choses”.
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is avid of information: the result of non-compliance is automatically taken into account as some
new information evidence to be incorporated in the question. It only means that the question
asked was not correct (double directional rather than directional for example) and should be
adjusted accordingly in order to imply a new model (based on some new source of information);
and as it is well known, finding the right question is almost finding the right answer.



Chapter 14

Appendix

14.0.1 Preliminaries

Lemma 1 Consider the t× t matrix (see Bai & Silverstein [27]):

Bt =
1
t
Hs×t

HAs×sHs×t

• Hs×t = (hij)is an s× t matrix with i.i.d complex standardized entries having finite fourth
moments, E(hij

2) = 0 and E(| hij |4) = 2 with limt→∞ s
t = c.

• As×s is an s×s non-random Hermitian non-negative definite matrix, with empirical eigen-
value distribution that converges in distribution almost surely to a fixed G, and the sequence
of spectral norms ‖As×s‖ is bounded.

• f is continuously differentiable with a bounded first derivative and analytic on an open
interval containing [(max(0, 1 − √c))2 lim inf λAmin, (1 +

√
c)2 lim sup λAmax] with λAmin

and λAmax respectively the smallest and the largest eigenvalues of As×s.

Then as t →∞ and s
t → c,

t(f(Bt)− µt) → N(0, σ2) in distribution.

In other words, the empirical spectral distribution of Bt is shown to have a Gaussian limit.

• µ =
∫

f(λ)dF (λ), F is the limiting distribution of FBt, solution of the implicit equation

z = − 1
m(z)

+ c

∫
τ

1 + m(z)τ
dG(τ)

through its Stieltjes Transform

m(z) =
∫

1
λ− z

dF (λ)

• N(0, σ2) is a real valued, zero mean Gaussian random variable with asymptotic variance:

σ2 = − 1
4π2

∫

Cx

∫

Cy

f(x)f(y)
(m(x)−m(y))2

m′(x)m′(y)dxdy

and Cx and Cy are any closed positive contours that enclose the support of F.
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Theorem 5 (see Girko [128]) Let the N × K random matrix H be composed of independent
entries (H)ij with zero mean and variances wij

N such as all wij are uniformly bounded from
above. Assume that the empirical joint distribution of variances w: [0, 1] × [0, β] → R defined
by w(x, y) = wij for i, j satisfying:

i

N
≤ x ≤ i + 1

N

and
j

N
≤ y ≤ j + 1

N

converges to a bounded joint limit distribution w(x, y) as K = βN → ∞. Then, almost
surely, the empirical eigenvalue distribution of HHH converges weakly to a limiting distribution
whose Stieltjes transform is given by:

mHHH (s) =
∫ 1

0
u(x, s)dx

and u(x, s) satisfies the fixed point equation:

u(x, s) =

[
−s +

∫ β

0

w(x, y)dy

1 +
∫ 1
0 u(x′, s)w(x′, y)dx′

]−1

(14.1)

The solution to equation (14.1) exists and is unique in the class of functions u(x, s) ≥ 0,
analytic for Im(s) > 0 and continuous on x ∈ [0, 1].

14.0.2 Proof of Theorem 1

The proof can also be found in [62]. In the case of the i.i.d Gaussian channel, we have:

Giid(τ) = δ(τ − 1).

Therefore, the Stieltjes transform mfiid
(z) is solution of:

z =
−1

mfiid
(z)

+
γ

1 + mfiid
(z)

which yields:

mfiid
(z) =

√
(
1
2

+
1− γ

2z
)2 − 1

z
− 1

2
− 1− γ

2z

and the limiting distribution has the following density:

fiid(x) = (1− γ)δ(x) +
1

2πx

√
((1 +

√
γ)2 − x)(x− (1−√γ)2)

defined in the interval [(1−√γ)2, (1 +
√

γ)2].
Let us now derive µiid. The asymptotic mean value is therefore equal to:
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µiid(γ, ρ) =
∫ (1+

√
γ)2

(1−√γ)2
ln(1 + ρλ)f(λ)dλ

= γln(1 + ρ− ρα(γ, ρ)) + ln(1 + ργ − ρα(γ, ρ))− α(γ, ρ)

with

α(γ, ρ) =
1
2
[1 + γ +

1
ρ
−

√
(1 + γ +

1
ρ
)2 − 4γ]

For the explicit form of the integral, we have used the result of Proposition 8.
Let us now derive the asymptotic variance σiid

2 (the proof follows the same step as [27]):

σiid
2 =

−1
4π2

∫

Cx

∫

Cy

log(1 + ρx) log(1 + ρy)
(mfiid

(x)−mfiid
(y))2

m′
fiid

(x)m′
fiid

(y)dxdy

If we apply the change of variable: x(m) = −1
m(x) + γ

1+m(x) then:

σiid
2 =

−1
4π2

∫

Cmx

∫

Cmy

log(1 + ρx(mx)) log(1 + ρy(my)))
(mx −my)2

dmxdmy

Since Cx and Cy are positive contours that enclose the support of F , then we can choose
them to cross the real axis in the intervals (−1

ρ , 0) (the point −1
ρ is due to the logarithm) and

((1 +
√

γ)2, 0), the Cy contour encloses the Cx contour. Therefore, the contours Cmx and Cmy

cross the real axis in the intervals (m(−1
ρ ), 0) and (m((1 +

√
γ)2), 0).

For a fixed my, let us calculate:

1
j2π

∫
log(1 + ρx(mx))

(mx −my)2
dmx =

1
j2π

∫ log(1− ρ
mx

+ γρ
1+mx

)
(mx −my)2

dmx

=
1

j2π

∫ ρ
(mx)2

− ργ
(1+mx)2

1− ρ
mx

+ ργ
1+mx

1
mx −my

dmx

=
1

j2π

∫
(1 + mx)2ρ− (mx)2ργ

mx(1 + mx)(mx −my)(mx − a)(mx − b)
dmx

=
1

j2π

∫ −1
a

(1 + mx)2ρ− (mx)2ργ

(1 + mx)(mx −my)(mx − b)
(

1
mx

− 1
mx − a

)dmx

=
−ρ

ab

1
my

− 1
a

(1 + a)2ρ− a2ργ

(1 + a)(a− b)
1

my − a

with
a =

1
2
[−1 + ρ(1− γ) +

√
(1− ρ(1− γ))2 + ρ] = mfiid

(
−1
ρ

)

and
b =

1
2
[−1 + ρ(1− γ)−

√
(1− ρ(1− γ))2 + ρ]

The contour Cx is chosen to enclose 0 and a but not -1 and b.
One can easily show that −ρ

ab = 1 and 1
a

(1+a)2ρ−a2ργ
(1+a)(a−b) = 1 Therefore, the asymptotic variance

is equal to:
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σiid
2 =

1
j2π

∫
log(1 + ρy(m))(

1
m
− 1

m− a
)dm

=
1

j2π

∫
log(1− ρ

m
+

γρ

m + 1
)(

1
m
− 1

m− a
)dm

=
1

j2π

∫
log(

(m− a)(m− b)
m(m + 1)

)(
1
m
− 1

m− a
)dm

=
1

j2π

∫
log(

m− a

m
)(

1
m
− 1

m− a
)dm

+
1

j2π

∫
log(

m− b

m + 1
)(

1
m
− 1

m− a
)dm

= log(−b)− log(
(a− b)
1 + a

)

The first integral is zero since the integrand has primitive:

−1
2

[
log(

m− a

m
)
]2

which is single valued along the contour.
Therefore, the asymptotic variance is equal to:

σiid
2 = log(−b)− log(

(a− b)
1 + a

)

− log(1− (
(a− b)
(1 + a)b

+ 1))

= − log(1− (
a(1 + b)
(1 + a)b

))

= − log(1− a− ρ

b− ρ
)

The last equation comes from the fact that a and b are solution of:

m2 + m(1− ρ + ργ)− ρ = 0

Therefore, ab = −ρ and a + b = −(1− ρ + ργ).
We have therefore:

σiid
2 = − log(1− a− ρ

b− ρ
)

= log(1− (a− ρ)(a− ρ)
(b− ρ)(a− ρ)

)

= log(1− (a− ρ)2

ρ2γ
)

Since a−ρ
ρ = −1

2 [1 + γ + 1
ρ −

√
(1 + γ + 1

ρ)2 − 4γ] = −α(γ, ρ), we have proved the result.
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14.0.3 Proof of Proposition 7

Since mHHH (z) = ( 1
γ − 1)1

z + 1
γ mΘ1ΘH

1
(z) and µ = γξ

∫
log2(1 + ργξλ)dF (λ), it can easily be

shown that
dµ

dρ
=

1
γ

(
ξγ

ρ
− 1

ρ2
mΘ1ΘH

1
(− 1

ργξ
)
)

Using theorem 5, we have:

mΘ1ΘH
1

(− 1
ργξ

) = Eλφ

[
1

1
ργξ + αjoint

γξ

]

= ργξEλφ

[
1

1 + ραjoint

]

with (since γξ = γ1ξ1)

αjoint =
γ

γ1

γξ

γ
Eλψ

[
λφλψ

1 + ρα1
joint

]
= ξ1Eλψ

[
λφλψ

1 + ρα1
joint

]

and

α1
joint = ξEλφ

[
λφλψ

1 + ραjoint

]
.

Therefore,

dµ

dρ
=

1
γ

(
ξγ

ρ
− 1

ρ2
ργξEλφ

[
1

1 + ραjoint

])

= ξEλφ

[
αjoint

1 + ραjoint

]

which proves the result.

14.0.4 Proof of Proposition 8

In this case,

mΘ1ΘH
1

(− 1
ργξ

) = ργξEλφ

[
1

1 + ρλφαdoa

]

with αdoa = ξ1Eλψ

[
λψ

1+ρλψαdod

]
and αdod = ξEλφ

[
λφ

1+ρλφαdoa

]

and
dµ

dρ
= ξEλφ

[
λφαdoa

1 + ρλφαdoa

]

= αdoaαdod

which integrates as:

µ = ξ1Eλψ(ln(1 + ρλψαdod)) + ξEλφ(ln(1 + ρλφαdoa))− ραdoaαdod
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14.0.5 Proof of Proposition 9

In the equal power case, let us apply the result of Proposition 8 when Gλφ(λ) = δ(λ − γ) and
Gλψ(λ) = δ(λ − 1

ξ ) (note that in all the following derivation, we will often use the fact that
γξ = γ1ξ1). In this case,

µdouble = ξ1ln(1 +
ραdod

ξ1
) + ξln(1 + ργαdoa)− ραdoaαdod (14.2)

with

αdoa =
ξ1

1
ξ1

1 + ραdod
ξ1

=
1

1 + ραdod
ξ1

(14.3)

and

αdod =
γξ

1 + ργαdoa
(14.4)

Notice that in this case, we have:

ραdoaαdod = ξ1(1− αdoa) (14.5)

Using equation (14.3) and equation (14.4), αdoa is given by:

αdoa =
1

1 + ρξγ
ξ1(1+ργαdoa)

⇐⇒ αdoa(1 +
ργ1

1 + ργαdoa
) = 1

which yields:

α2
doa + αdoa(

1
γρ

+
γ1

γ
− 1)− 1

ργ
= 0

which has the following solution:

αdoa =
1
2

[
(1− γ1

γ
− 1

γρ
) +

√
1− γ1

γ
− 1

γρ
)2 +

4
γρ

]

Since
(1− γ1

γ
− 1

γρ
)2 +

4
γρ

= (1 +
γ1

γ
+

1
γρ

)2 − 4γ1

γ

then αdoa = 1− αdouble where

αdouble = 1− αdoa

=
1
2

[
(1 +

γ1

γ
+

1
γρ

)−
√

(1 +
γ1

γ
+

1
γρ

)2 − 4γ1

γ

]
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Now let us derive αdod:
We have

αdod =
γξ

1 + γρ

1+ρ
αdod

ξ1

and
⇐⇒ αdod(1 +

γρ

1 + ραdod
ξ1

) = γξ

which yields:

α2
dod + αdod(

ξ1

ρ
+ γξ1 − γξ)− γξξ1

ρ
= 0

The solution to this equation is:

αdod =
1
2

[
(γ1ξ1 − γξ1 − ξ1

ρ
) +

√
γ1ξ1 − γξ1 − ξ1

ρ
)2 +

4γξξ1

ρ

]

It can be easily shown that:

αdouble =
1

γξ1
(γ1ξ1 − αdod)

We have therefore:

αdoa = 1− αdouble (14.6)

and

αdod = γ1ξ1 − γξ1αdouble (14.7)

Using eq.(14.2), eq.(14.5), eq.(14.6) and eq.(14.7), one can show that:

µdouble = ξln(1 + ργ − ργαdouble) + ξ1ln(1 + ργ1 − ργαdouble)− ξ1αdouble

with

αdouble =
1
2

[
1 +

γ1

γ
+

1
ργ

−
√

(1 +
γ1

γ
+

1
ργ

)2 − 4
γ1

γ

]

14.0.6 Proof of Proposition 5

Let us first derive µdoa. In the DoA based model, one can apply straightforwardly Proposition
11 if γ = nr

sr
, ξ = sr

nt
, γ1 = nr

nt
= γξ,ξ1 = st

nt
= 1,Kt = 1,Pi

t = 1. Therefore,

µdoa = ln(1 + ραdod) + ξ

Kr∑

i=1

li
rln(1 + ρPi

rγαdoa)− ραdoaαdod



136

with
αdoa =

1
1 + ραdod

and

αdod = ξ

Kr∑

i=1

li
rPi

rγ

1 + ργPi
rαdoa

Notice that
αdoa(1 + ραdod) = 1

and therefore:

αdod =
1
ρ
(

1
αdoa

− 1) (14.8)

and
ραdoaαdod = 1− αdoa

We can therefore rewrite µdoa as:

µdoa = ln(1 + ρ
1
ρ
(

1
αdoa

− 1)) + ξ

Kr∑

i=1

li
rln(1 + ρPi

rγαdoa)− (1− αdoa)

which yields:

µdoa = −ln(αdoa) + ξ

Kr∑

i=1

li
rln(1 + ρPi

rγαdoa)− (1− αdoa)

We also have using eq.(14.8):

1
ρ
(

1
αdoa

− 1) = ξ

Kr∑

i=1

li
rPi

rγ

1 + ργPi
rαdoa

which can be simplified to:

Kr∑

i=1

li
r

1 + ργPi
rαdoa

=
αdoa

ξ
+ 1− 1

ξ
.

Let us now derive σdoa
2 : To this end, we will apply theorem 4. Since Sdoa(λ) =

∑Kr
i=1 li

rδ(λ−
γPi

r), we have:

z =
−1

m(z)
+ ξ

Kr∑

i=1

li
r

m(z) + 1
γPi

r

The asymptotic variance is therefore equal to:

σdoa
2 =

−1
4π2

∫

Cmx

∫

Cmy

log(1 + ρx(mx)) log(1 + ρy(my)))
(mx −my)2

dmxdmy

For fixed my, let us calculate:
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1
j2π

∫ log(1− ρ
m + ρξ

∑Kr
i=1

li
r

m+ 1
γPi

r
)

(m−my)2
dm

=
1

j2π

∫ ρ
m2 − ρξ

∑Kr
i=1

li
r

(m+ 1
γPi

r )2

1− ρ
m + ρξ

∑Kr
i=1

li
r

m+ 1
γPi

r

1
m−my

dm

=
1

j2π

∫ ∏Kr
i=1 ρ(m + 1

γPi
r )2 − ρξm2

∏Kr
i=1(m + 1

γPi
r )2

∑Kr
i=1

li
r

(m+ 1
γPi

r )2

m
∏Kr

i=1(m + 1
γPi

r )
(∏Kr

i=1(m + 1
γPi

r )(m− ρ + ρξm
∑Kr

i=1
li

r

m+ 1
γPi

r
)
) 1

m−my
dm

=
1

j2π

∫
− 1

m(1
ρ)

∏Kr
i=1 ρ(m + 1

γPi
r )2 − ρξm2

Kr

∏Kr
i=1(m + 1

γPi
r )2

∑Kr
i=1

1
(m+ 1

γPi
r )2

∏Kr
i=1(m + 1

γPi
r )

∏Kr
i=1(m−mi)(m−my)(

1
m
− 1

m−m(−1
ρ)

)
dm

=
1

my
− 1

my −m(−1
ρ)

The result stems from the fact that the contour Cmx is chosen to include 0 and m(−1
ρ) but

not 1
γPi

r and mi for all i.
For notation sake, define P (m) as::

P (m) =
Kr∏

i=1

(m +
1

γPi
r )(m− ρ +

ρmξ

Kr

Kr∑

i=1

1
m + 1

γPi
r

)

= (m−m(
−1
ρ

))
Kr∏

i=1

(m−mi)

Notice that:

P ′(m(
−1
ρ

)) =
Kr∏

i=1

(m(−1
ρ
)−mi) (14.9)

=
Kr∏

i=1

(m(−1
ρ
) +

1
γPi

r )

(
1 +

ρξ

Kr

Kr∑

i=1

1
m(−1

ρ) + 1
γPi

r

− ρξ

Kr

Kr∑

i=1

1
(m(−1

ρ) + 1
γPi

r )2

)

=
Kr∏

i=1

(m(−1
ρ
) +

1
γPi

r )

(
ρ

m(−1
ρ)
− ρξ

Kr∑

i=1

li
r

(m(−1
ρ) + 1

γPi
r )2
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(14.10)

The last equation comes from the fact that:

m(−1
ρ
)(1 + ρξ
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Therefore,
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The first integral is zero since the integrand has a primitive :

−1
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[
log(
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m
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]2

Therefore, the asymptotic variance is equal to:

σdoa
2 = log

(∏Kr
i=1−mi

∏Kr
i=1

1
γPi

r

)
− log

( ∏Kr
i=1(m(−1

ρ)−mi)
∏Kr

i=1(m(−1
ρ) + 1

γPi
r )

)

Since m(−1
ρ)

∏Kr
i=1−mi = −ρ

∏Kr
i=1

1
γPi

r (product of the roots of polynomial P (m) which is
equal to P (0)) and

∏Kr
i=1(m(−1

ρ)−mi)
∏Kr

i=1(m(−1
ρ) + 1

γm(− 1
ρ
)
)

=
ρ

m(−1
ρ)
− ρξ

Kr∑

i=1

li
r

(m(−1
ρ) + 1

γPi
r )2

The previous result comes from equation (14.9) and equation (14.10).
we have therefore:
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The last equation stems from the fact that m(−1
ρ) = ραdoa.1

1Note that in the i.i.d Gaussian channel case, Kr = 1, nr = sr and therefore γ = 1 and ξ = nr
nt

. Therefore,
one can verify immediately that we obtain the same variance as in chapter 3.1.



139

14.0.7 Proof of Proposition 12

In this proof, we show that the optimal power profile which maximizes the mean mutual infor-
mation in the case of the double directional model with ULA and Fourier directions is Pr = Isr

and Pt = Ist .
Let us maximize µdouble with respect to Pj

t with the constraints
∑Kt
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tPi
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r = 1
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Therefore,
lj

tραdod

1 + ρPj
tαdoa

ξ1

+ λ1lj
t = 0

and

ραdod

1 + ρPj
tαdoa

ξ1

= −λ1

The last inequality holds for every j. Therefore, all Pj
t are equal (to 1 due to the nor-

malization constraint). The same proof holds for Pj
r by takin the derivative with respect to

Pj
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