
Protecting Applications and Devices in
Nomadic Business Environments

Laurent Bussard and Yves Roudier†

Institut Euŕecom , Corporate Communications
2229, route des Crêtes BP 193
06904 Sophia Antipolis (France)

This paper presents a pragmatic approach to protect the integrity of execution of an application in a nomadic business
environment. Applications run in such contexts are based on the federation of appliances collaborating through direct
communication as well as through the distribution of mobile pieces of code. Securing the operation of an application
means protecting mobile code since execution environments may misbehave as well as protecting the environments
because mobile pieces of code are potentially malicious. After reviewing several such protection techniques, an archi-
tecture for securing business-to-employee and business-to-business nomadic applications is drafted based on the trust
model that can be assumed in such a context.

Keywords: mobile code security, execution environment protection, attribute certificates, pervasive computing

Introduction
Computer users are increasingly mobile thanks to the deployment of wireless technologies and to the wide
availability of mobile personal devices. Nomadic computing makes it possible for a user to take advantage
not only of his handheld or even wearable devices, but also of the appliances in his immediate vicinity, even
if they do not belong to him. Enabling an application in such a system means accessing global and local
communication infrastructures. For instance, UMTS can be used for communications with remote servers
worlwide while Bluetooth will enable a pocket device to access surrounding appliances (e.g. printers,
screens, sensors).

Nomadic application thus range from over the air access to a classical distributed service provided by
a remote server to a set of mobile codes dispersed over close communicating devices, which is generally
called a federation of devices. The latter organization helps alleviate the limitations of on-site available
communication channels (i.e. restricted bandwidth, long round-trip time, or expensive cost) or the limita-
tions of mobile devices (i.e. lack of computational power or screen size). For instance, a user travelling with
a cell-phone will much more efficiently edit a document with a local public terminal than on the keyboard
and screen of his phone.

Nomadic computing is especially interesting for a mobile corporate workforce, like salesmen visiting
their customers, in which context security becomes a major concern. Indeed, access to the corporate re-
sources and data must be controlled. Furthermore, the safety of the operations performed by a user ulti-
mately depends on the integrity of execution of a program on devices that will not, for most of them, be
owned by the employee or his company, and that may potentially be malicious. This is for instance what
happens when a public terminal is used to edit a document that is subsequently signed with the employee’s
cell-phone (assuming the employee’s private key is held by his SIM card). To ensure thewhat you see is
what you signprinciple, it is necessary to verify the integrity of execution of the editor. Finally, it is neces-
sary to protect public appliances offering some service from hostile users uploading some malicious mobile

†This research was supported by European Union Project ’WiTness – Wireless Trust for Mobile Business’ [pro04] and by the Institut
Euŕecom.

Laurent Bussard and Yves Roudier

code in order to attack the environment hosting it. Otherwise, such appliances might be good candidates
for being Trojan horses of a new kind, unbeknownst to their owner.

Application and device protection have often been discussed in the literature about mobile code security
and have proven quite difficult to tackle [ST98, BV99, LBR02, NL98]. In contrast with these works, this
paper, which extends a previous work on data protection [BRKC03], suggests that both issues be addressed
in terms of trust relationships: Can the terminal trust this piece of code and give it access to resources? Can
the user trust this terminal to run some part of an application?

We propose a pragmatic way to evaluate the security level of pieces of code and devices in the very spe-
cific context of business-to-employee (B2E) and business-to-business (B2B) nomadic applications. Access
control as well as host and code protection can thus be defined jointly.

This paper is organized as follows: Section 1 first gives a description of existing approaches to protecting
environment and code parts. Section 2 presents the architecture of the nomadic business environments we
envision, including the security objectives pursued. Section 3 gives an overview of the proposed architecture
and how to specify relationships between entities. Section 4 describes possible enhancement of the Java
security mechanism in order to protect devices. Finally, Section 5 proposes a pragmatic approach to ensure
the integrity and confidentiality of execution of an application distributed on some surrounding devices.

1 Approaches to Environment and Code Protection
Nomadic computing requires distributing data and pieces of code in a federation of devices that are not
always controlled by the user. The problem addressed in this paper is twofold: on one hand, attacks may
be performed by mobile programs against the execution environment and its resources; on the other hand,
mobile code and data may be subverted by a malicious execution environment. This section describes
different mechanisms to tackle both problems. More details can be found in research report [BR04].

Protection of execution environments has been widely addressed [LMR00]:VM approachessuch as the
sandbox model, the security model of Java 2 [GMPS97], and JavaSeal [BV99] protect the environment
through the isolation of potentially malicious code;Proof-carrying code[NL98] relies on a proof that the
code respects some security policy. Two security requirements specific to nomadic systems are not fulfilled
by those approaches: defining rights of a piece of code in a distributed way should make it possible to
delegate rights between entities in charge of certifying pieces of code; a mechanism to dynamically change
the rights of an application is also necessary. Section 4 proposes an extension of the Java 2 security model
addressing these needs.

Protecting a piece of code against the environment that executes it is notoriously difficult, especially
without dedicated hardware. Code can be protected by atrusted hardware, be it neutral like in the Trusted
Computing Group (TCG) [TCG04], or owned, like when mobile network operators provide SIM cards to
their customers. [ST98] suggests the use of encrypted functions, yet this is not enough for encrypting an
application. [Yee99] suggests the use of proof based techniques. Obfuscation [CTL96] aims at transforming
an application into a functionally identical, but much more complex program, yet its security cannot be
evaluated in usual terms.

Rather than focusing on mechanisms to tackle either the mobile code side or the environment side, this
paper proposes a system-wide and pragmatic mechanism common to the protection of both code and en-
vironment. The approach proposed deals with trust defined as authorizations and/or roles of application
developers and users and security level of runtime environments. Some works similarly deal with trust by
devising distributed policies for managing its definition [KFP01, BFK99]; however, they do not take into
account the security-level of execution environments.

2 Nomadic Business Systems: A Security Architecture
We propose a framework for protecting the pieces of code, i.e. verifying the security level of environments
before allowing code distribution, and protecting the environment, i.e. verifying that pieces of code are
authorized do access resources, be they a remote database or a network connection.

Protecting Applications and Devices in Nomadic Business Environments

2.1 Nomadic System Organization
Figure 1 shows how code distribution is done: different parts of an application are tagged according to the
security requirements, and the security level (SL) of each device is evaluated (see Section 5 and [BRKC03]).
For instance, the signature related operation of an application has to be performed in a trusted enough
environment. Each piece of code receives a short-term authorization to access resources (see Section 4),
like say, a word processor can call the signature function but a game cannot.

GUIverif Sign

GUI

verif

Sign

Keys

Certified Device

Certified piece of code Resource

Method call

My smart card, SL = high

My cell-phone,
SL = medium

A public terminal,
SL = low

Fig. 1: General overview: certified pieces of code within certified devices

Servers such as public terminals, which are not managed by the user and whose trustworthiness may be
questioned, may anyway have to deal with confidential data. Moreover, in order to enable flexible services,
it is necessary to let users upload pieces of code (which will be calledappletsin this paper) to servers. Using
trust information when deploying the application implies new constraints when distributing data and code.
This paper focuses on the implications of this environment for satisfying todata integrity, data confidential-
ity, integrity of executionandconfidentiality of execution. In this model, integrity of execution means that
servers do not alter the execution of the application and surreptitiously modify its results. Confidentiality
of execution aims at preventing the disclosure of program semantics.

2.2 Enforcing Distributed Access Control with Nomadic Applications
The very nature of nomadic computing, in which interactions vary with the user location and environment,
generally excludes any type of organization, hence ofprior trust assumptions about the servers accessed.
This paper specifically addresses thebusiness-to-employee(B2E) andbusiness-to-business(B2B) contexts,
which makes it simpler to construct a workable trust model. First of all, public key based authentication
is possible and meaningful since employees are directly managed by their corporation. In contrast, in an
open trust model, there will generally be no authentication (or trust) infrastructure shared by all entities.
Secondly, trust may be based on the partnership established between companies. The trust expectations
regarding every partner’s tasks and behaviors are contractual and can be translated into a security policy.
Trust may also be based on the certification of devices, more specifically their level of tamper-resistance.
Again compared with the open trust model, this assumption enables the automation of secure data and code
distribution to different devices.

Basic hypothesis in B2E and B2B contexts can be stated as: each corporation has a local public key
infrastructure (PKI); each employee has his/her own asymmetric key pair protected by a tamper-resistant
token (e.g. smart card, SIM card); each device that can be part of a federation has its own asymmetric key
pair, attribute certificates can be delivered to employees so that they can prove to other entities their role
or that they received some authorizations; attribute certificates can be delivered to devices so that a device

Laurent Bussard and Yves Roudier

can prove who it belongs to or whether it is tamper-resistant; as an extension of signed applets, a set of
authorizations can be associated to each piece of code.

In order to protect corporate resources, it is necessary to define access control policies. For instance, the
rights of an employee to access corporate data or to use services offered by the environment are easy to
implement with public key infrastructures like X.509v3 or SPKI. Relationship agreements between corpo-
rations and rights of devices may also be similarly specified.

The approach described in this paper makes use of those relationships to define the rights of pieces of
code and to distribute data and mobile codes according to the trustworthiness of surrounding devices.

3 Specifying Trust Relationships
As explained in the previous section, B2E and B2B applications make it possible to rely on existing trust
relationships between companies, employees, and devices to specify a protection adapted to an application.
This section shows how those relationships can be defined and verified.

3.1 Attribute Certificates
Attribute certificates have been chosen to formally define relationships and authorizations between the
involved actors in an extensible way. The proposed framework uses a proprietary format of attribute cer-
tificates. It is an extension of the simple public key infrastructure (SPKI) [EFL+99] that allows to securely
associate a capability with an employee or with a device. A public key is embedded in each certificate,
and only the user or the device that is in possession of the corresponding private key can use the capability.
Rights can be delegated if the certificate allows so and delegation can be performed locally without the need
to connect to a central authority, each user behaving as a local authority for attribute certificates. Using a
short lifetime for delegated credentials makes it possible to render the use of centralized revocation lists
unnecessary, yet permit a local validation of the certificate chain. For long-lasting capabilities however,
revocation lists should be envisaged. Attribute certificates are used to store different types of information:
for an employee, it can consist of his role or personal rights; for a device, information about its security
level and the company it belongs to may be provided.

Notations

X
A,.,�−→ Y means that the entityX certifies some attributesA = a1, · · · ,an of the entityY. For instance,

attributes can define sets of authorizations, security levels, or roles. In case of authorizations,. specifies
whether those authorizations can be delegated. The clock symbol (�) refers to short-term certificates. A
chain of certificates is defined as follows:

X
A1,�
=⇒ Z : X

A,.−→Y
A1,�−→ Z whereA1 ⊆ A

It means thatX gives authorizationsA = {a1,a2,a3} to Y and allows their delegation.Y delegates part
of those rightsA1 ⊆ A to Z for a short time, e.g.A1 = {a1,a3}. This is implemented as a set of SPKI-like
attribute certificates:

X
A,.−→Y : SIGNX(PKY, r = {a1,a2,a3},d=true, · · ·)

Y
A1,�−→ Z : SIGNY(PKZ, r = {a1,a3},d=false, · · ·)

Section 3.2 defines more precisely the structure of two types of certificate chains: security level certifi-
cates and authorization certificates.

3.2 Authorization and Trust Mechanisms
A B2E or B2B context simplifies the trust model and makes it possible to envisage a decentralized access
control mechanism able to take into account users, companies, and devices. For instance, when an employee

Protecting Applications and Devices in Nomadic Business Environments

accesses a corporate resource from a partner terminal, it is necessary to verify whether this user is authorized
to access this resource and whether this device is trusted enough to deal with this resource. It is thus possible
to ensure that a potentially malicious terminal cannot be used to access confidential data. When a piece of
code runs on a terminal, it is necessary to verify that the code cannot attack this device.

Authorization Capabilities
Authorization certificates ensure that a given entity can access a resource when the security level is suffi-
cient. The set of attributes defines authorizations, i.e. rights (R). The following authorization certificates
may be defined:

- Ci
R,.e−→ Cj : CompanyCi authorizes companyCj to access some resourcesR = {r1, · · · , rn}. Those

rights can be delegated to employees (.e). For instance, an agreement betweenCi andCj defines that
employees ofCj can use some applications ofCi .

- Ci
R,<.e,d>−→ ECj ,m: CompanyCi authorizes employeeECj ,m, who works for companyCj , to access

some resourcesR. Those rights can be delegated to other employees (.e) and/or to devices (.d).
Wheni = j the company delegates rights to its own employee.

- Ci
R−→ PCi ,m: CompanyCi certifies a piece of code and authorizes it to access some resourcesR. In

this case, there is no public key in the certificate but a digest of the code.

- ECi ,m
R,<�>−→ ECj ,n: EmployeeECi ,m delegates some rights to employeeECj ,n. For instance, a secretary

welcomes a visitor and provides him some rights to use local facilities.

- ECi ,m
R,�−→ DCj ,n: EmployeeECi ,m delegates some rights to deviceDCj ,n. For instance, an employee

authorizes a public terminal to access a corporate document in order to display it.

- ECi ,m
R,�−→ PCi ,m: EmployeeECi ,m certifies a piece of code and authorizes it to access some local

resourcesR.

A valid chain of authorization certificates is defined as follows:

X1
R=⇒ Xn : {Xi

Ri ,.ti−→ Xi+1 | 1 < i < n−1}
whereRi+1 ⊆ Ri 1 < i < n−1 and R= Rn−1

whereti ∈ {e,d} corresponds toXi+2 1 < i < n−2

C1
R1,.e−→ E1

R2−→ E2 whereR2 ⊆ R1 is a valid chain. It can mean that companyC1 authorizes its secretary
E1 to delegate some rights, be it using printers or accessing some office, to any visitor. VisitorE2 received
a subset of those rights (e.g. accessing a given meeting room).

Security Level Capabilities
Security level certificates are necessary to define the security level of involved devices that will host code
and data. The following security level certificates may be specified:

- Ci
SL−→ Cj : CompanyCi trusts devices of companyCj to deal with resources whose classification

corresponds to security level SL. For instance, all devices of a partner company can deal with con-
fidential data related to a given project. It does not mean that devices are authorized to access the
resource but that an authorized user can use those devices to access the resource.

- Ci
SL−→ DCi ,m: CompanyCi authorizes deviceDCi ,m to deal with resources whose classification corre-

sponds to security level SL. For instance, a terminal physically protected can be certified to deal with
confidential data.

Laurent Bussard and Yves Roudier

A valid chain of security level certificates is defined as follows:

Ci
SL=⇒ D : Ci

SLCj−→ Cj
SLD−→ D where SL= SLCj ∩SLD

C1
SL1−→C2

SL2−→ D2 is a valid chain. It can mean that companyC1 trusts a partner companyC2. C1 accepts
that its employees use devices ofC2 to access some type of resourceSL1 e.g. confidential and unclassified
data. CompanyC2 certifies that a terminal is physically protected and able to deal with some type of
resourceSL2.

4 Trust for Resource Protection
Protecting the integrity and confidentiality of resources from potentially malicious code has been widely
addressed. However, in nomadic computing systems, new devices can be discovered at any time. It thus
becomes necessary to be able to delegate rights when mobile codes, which are parts of an application, are
distributed. This section presents an extension of the Java security model that allows defining authorizations
in a dynamic and distributed way.

The Java 2 security model is identity-based and thus only provides mechanisms similar to access control
lists to protect resources. [MR00] suggests that instead of signing pieces of code and associating per-
missions with signers, manipulating capabilities such as chain of authorization certificates associated with
pieces of code is required to handle multiple domains in a manageable manner.

4.1 Resource Protection with Multiple Domains
Authorization certificates are defined as follows: when companyC1 allows companyC2 to display data on
its terminals andC2 delegates this right to its employeeE2. WhenE2 is visitingC1 he can use the display
with the following authorization chain:

C1
display,.e−→ C2

display−→ E2

When employeeE2 has to upload codeP2 to display some data, he provides:

C1
display,.e−→ C2

display−→ E2
display,�−→ P2

This chain is verified and converted into Java permissions that are associated with the piece of code. The
enforcement of the authorization is thus done by the security manager. Finding a common language to
exchange authorizations between companies complicates the setup of this mechanism. At this time, only
Java permissions can be encapsulated into certificates. However, Java allows programmers to define their
own permissions and it is thus possible to define a common framework that extends this scheme with new
permissions such as accessing smart cards or displaying data.

4.2 Reflection-Based Access Control Mechanisms
When a piece of code is loaded, its associated certificate chain must be validated. A meta-object protocol
(MOP) [KdRB91] was used to intercept all method calls done by this piece of code and enforce access
control for new types of authorizations. The load time MOP ”byte code engineering library” (BCEL)
[Dah01] was chosen for this purpose. Each method call is redirected to a ”proxy” object that is associated
with a protection domain created according to the authorization defined by the certificate chain. This makes
it easy to dynamically modify the authorizations when a new certificate chain is available. The renewal
mechanism works as follows: when a piece of code is uploaded, it comes with some short-term rights
defined by the certificate chain. Before the validity end of the certificate, a request for a new chain is sent
and the rights of the mobile code are updated according to the new chain.

Reflection-based access control might allow more complex interactions where, for instance, a piece of
code run by a terminal can access local resources (e.g. communication, intranet access, temporary files) as
long as the user (or his cell-phone) is in front of the terminal.

Protecting Applications and Devices in Nomadic Business Environments

5 Trust for Execution Protection
This sections discusses how to distribute data and code according to the security level of federated de-
vices. Securing federations thus becomes evaluating the security level of each platform that participates to
a federation.

5.1 Security Levels in B2E/B2B Applications
This evaluation is not easy to achieve in general: if a person makes use of a terminal in a public place, it is
impossible to assume that the terminal is trusted in any way without some additional information that makes
up the trust model. B2E and B2B applications provide a clear trust model and allow validating whether a
given device is trustworthy (e.g. managed by a partner company, patches are regularly applied, etc.). This
information is useful for distributing code and data according to the security level of each federated device.

The security level of a given device depends on the service provider (in B2E or B2B scenarios, a corporate
backend server). For instance, a device can be trusted to deal with secret data of the company it belongs
to while the same device can only deal with unclassified data when accessing corporate data of another
company.

For the sake of simplicity, only three security levels are used in this sectionSL= {uncl,conf,secr} where
unclassified (uncl)defines a device that can only run pieces of code tagged as unclassified and only deal
with unclassified data,confidential (conf)gives access to code and data tagged as confidential, andsecret
(secr)enables a full access.

Security levels are defined by a chain of authorization certificates. It is possible to increase the granularity
of security levels by defining new semantics taking into account project names, groups, etc.

5.2 Verification of the Security Level
We use security level capabilities defined in Section 3.2 to provide the functionality described above. For
instance, deviceD is owned and managed by companyC (say for instance a wall display in a physically

protected meeting room). CompanyC provides deviceD with a capabilityC
SLD−→ D.

Agreements between companies are necessary to formally define trust relationships. Such agreements
are finally implemented through the issuance of certificates. CompanyC2 is a partner ofC1. Employees of
C2 frequently need to work inC1’s offices and use local facilitiesD1. BecauseC2 trustsC1, they can have

the following trust relationship:C2
SLC1−→C1. WhenSLC1 = {uncl,conf}, it means that employees ofC2 can

use devices owned byC1 to deal with confidential and unclassified data.
The security level of each federated device is evaluated thanks to the chain:

C2
SLC1−→C1

SLD1−→ D1

The security level ofD1 is defined asSLC1 ∩SLD1. It is important to note that there is no delegation
between certificates of this chain and thusSLD1 * SLC1. Moreover, the length of this chain is restricted
because agreements are signed partner by partner and cannot be delegated, that is, such agreements do not
form a web of trust.

In the previous example, only the owner of a device is involved in the certification process. It is however
possible to define more precise trust relationships involving other parameters such as tamper-resistance,
location, etc. This mechanism makes it possible to take into account the availability of trusted platforms

in corporate security policy. For instance, suppose that the owner certifies the deviceC
conf−→ D and the

manufacturerM certifies its tamper-resistanceM
TR−→ D where TR is the tamper-resistance level. The secu-

rity policy could define that confidential data can be read only on devices owned by partners with a given
security level or by any neutral tamper-resistant device (e.g. a TCG public terminal).

5.3 Fine-Grained Application Deployment
On one hand, employees would like to transparently use any surrounding appliance such as a larger dis-
play embedded in a plane seat, a printer in an airport lounge, or location services offered in a corporation

Laurent Bussard and Yves Roudier

headquarters. On the other hand, the corporation has to protect its resources and prevent that an employee
unintentionally reveal corporate data to untrusted and potentially malicious devices. Our approach makes
it a tradeoff between flexibility and security possible. The deployment of pieces of code is based on the
corporate security policy that defines whether a device certified by a given entity can be involved when
getting access to non-public data or can run some part of an application. Such an open federation, in which
devices owned by different entities are used, will have to be restricted to secure interactions, yet remain
fully usable.

Fig. 2: Distribution of code, data, and keys

Figure 2 illustrates a simple example: UserE1 is an employee ofC1 and extends his cell-phone (D1) with
a wall display (D2). The wall display is owned and managed by another companyC2. The cell-phone is
certified byC1 and can deal with confidential resources. The wall display is certified byC2 and can also deal
with confidential data. However, the trust relationship between both companies define that only unclassified
data ofC1 can be displayed on devices managed byC2. As a result,D1 can deal with confidential resources
butD2 can only deal with unclassified resources.

In order to process data (e.g. in a corporate workflow), it is necessary to download data and code (P1 and
P2). The user authorizes the wall display to get the necessary pieces of code. Both pieces of code are sent
to the wall display in an encrypted form.P1 is tagged as unclassified and can thus be decrypted byD1 and
D2. P2 is confidential and can only be decrypted byD1. In other words, part of the data and part of the
code cannot be used byD2 because it is not trusted enough. For instance, the wall display cannot generate
session keys, cannot ask for an employee’s signature, cannot display confidential data, etc. Encryption
on the corporate server side ensures the enforcement of mandatory access control to corporate resources
(access control in Figure 2).

5.4 Key distribution

Key distribution ensures that only devices with a sufficient security level can access (i.e. decrypt) some data
and pieces of code that have a given classification. Suppose that a set of pieces of codeP = {P1,P2, · · · ,Pn}
are requested fromC1’s server by an employeeE1 using a federationF = {D1,D2, · · · ,Dm}.

Data and code are tagged with a different classification cl(Pi) ∈CL, 1< i < n. For the sake of simplicity,
a direct mapping between security levels and classification has been chosen in this example. For instance,
CL = SL= {uncl,conf,secr}. A symmetric keyKcli has to be defined for each classificationcl ∈CL:

for all cl ∈CL : Server generates symmetric keyKcl

Code and data are encrypted according to their classification using the corresponding symmetric keyKcl :

for all p∈ P : Server encrypts piece of codêp = EKcl(p)(p)

The backend server has received the credentials of the user and of each federated device. The security
level of each federated deviceDi is defined as tl(Di). A chain of certificates has to be resolved for each

Protecting Applications and Devices in Nomadic Business Environments

device in order to verify their security level and distribute keys. Symmetric keys are encrypted with public
keys of devices:

for all d ∈ F and for allcl ∈CL : if cl ∈ tl(d) : Server computesEPKd(Kcl(d))

The result is that each federated device can potentially receive any encrypted data or any encrypted
piece of code. However, it only receives keys for decrypting the parts it is authorized to deal with (Figure
2). For instance, a terminal that is trusted enough to deal with confidential data will receiveKcon f idential

andKunclassi f iedbut will not receiveKsecret. Data confidentiality, data integrity, integrity of execution, and
confidentiality of execution are enforced by key distribution. Code, data, and key distribution is done
simultaneously in an XML document.

Discussion and Conclusion
Protecting the integrity of execution of a program in a distributed and potentially malicious environment has
long been recognized as difficult, which might appear as a major issue now that nomadic systems promote
the use of these very techniques for implementing applications. Fortunately enough, the assumptions of B2E
and B2B applications help solving many of the issues encountered for they introduce trust relationships that
make it possible to implement pragmatic security mechanisms.

The core of the framework described in this paper has been implemented. Attribute certificates, which
define authorizations and security levels, are signed XML documents that can be reified as Java objects.
Personal Java, which we use on Pocket PC (iPAQ) with Bluetooth, offers the same security features as Java
2.

The environment protection mechanism (Section 4), which relies on Java 2, associates rights with a set of
Java classes and makes it possible to change those rights dynamically based on a new chain of authorization
certificates. This approach however requires that rights be associated with classes, and it might be fruitful
to allow object-specific rights. A class loader defining distributed and dynamic rights based on short-term
certificates has to be finalized. Extending this work in order to associate rights to objects would however
mean modifying the virtual machine and thus loosing portability.

The protection of data and code (Section 5) is based on the relationships between device owners. In
the current implementation, each device keeps its private key in a key store. Employees’ private keys are
protected by a trusted device, for instance the employee’s PDA. To enforce a mandatory access control, we
use a SIM card, which can be seen as a ubiquitous security token in nomadic scenarios. The protection of
the user’s keys (private key and distribution secret keys) by a SIM card has been implemented but is not
integrated. The data and key distribution mechanism has been successfully tested within a prototype that
aimed at selectively accessing corporate e-mails from federated terminals according to their security level,
as discussed in [BRKC03].

This framework also enables the distribution of parts of an application under the form of mobile code by
providing the support to writing explicitly independent modules with different security requirements. We
are currently studying how a meta object protocol [KdRB91] could be used to provide language support to
automatically split and distribute parts of an application according to policy-based security requirements.

The distribution of certificates is a difficult issue: currently certificates are pre-fetched to devices that
can create new certificates by delegation. There is a tradeoff between the computational cost of generating
certificates on a PDA (i.e. XML parsing, signature) and the communication and storage cost of requesting
certificates from a server. We are studying web services (WS-Federations) in order to define protocols for
distributing and managing capabilities.

The integration of those different security components is under way and our current focus is on higher
level policies to render the creation and management of certificates more flexible. For instance, some users
could be authorized to define whether a partner is trustworthy in terms of code creation and/or code hosting.
Hardware tamper-resistance certification might also be taken into account when evaluating the security level
of a device.

Laurent Bussard and Yves Roudier

References
[BFK99] Matt Blaze, Joan Feigenbaum, and Angelos D. Keromytis. The Role of Trust Management in

Distributed Systems Security. InSecure Internet Programming, pages 185–210, 1999.

[BR04] L. Bussard and Y. Roudier. Protecting Applications and Devices in Nomadic Business Envi-
ronments. Technical Report RR-04-101, Institut Eurécom, 2004.

[BRKC03] L. Bussard, Y. Roudier, R. Kilian Kehr, and S. Crosta. Trust and Authorization in Pervasive
B2E Scenarios. InProceedings of the 6th Information Security Conference (ISC’03), LNCS.
Springer, 2003.

[BV99] Ciaran Bryce and Jan Vitek. The JavaSeal Mobile Agent Kernel. InFirst International Sympo-
sium on Agent Systems and Applications (ASA’99)/Third International Symposium on Mobile
Agents (MA’99), Palm Springs, CA, USA, 1999.

[CTL96] C. Collberg, C. Thomborson, and D. Low. A Taxonomy of Obfuscating Transformations. Tech-
nical Report Technical Report 148, Department of Computer Science, University of Auckland,
1996.

[Dah01] M. Dahm. Byte Code Engineering with the BCEL API. Technical Report B-17-98, Freie
Universiẗat Berlin, Institut f̈ur Informatik, 2001.

[EFL+99] C. Ellison, B. Frantz, B. Lampson, R. Rivest, B. Thomas, and T. Ylonen. RFC 2693 – SPKI
Certificate Theory, 1999.

[GMPS97] L. Gong, M. Mueller, H. Prafullchandra, and R. Schemers. Going Beyond the Sandbox: An
Overview of the New Security Architecture in the Java Development Kit 1.2. InUSENIX
Symposium on Internet Technologies and Systems, pages 103–112, Monterey, CA, 1997.

[KdRB91] Kiczales, des Rivieres, and Bobrow.The Art of the Metaobject Protocol. MIT Press, 1991.

[KFP01] L. Kagal, T. Finin, and Y. Peng. A Framework for Distributed Trust Management. InWorkshop
on Autonomy, Delegation and Control, 2001.

[LBR02] S. Loureiro, L. Bussard, and Y. Roudier. Extending Tamper-Proof Hardware Security to
Untrusted Execution Environments. InProceedings of the Fifth Smart Card Research and
Advanced Application Conference (CARDIS’02) - USENIX - IFIP working group 8.8 (smart
cards), 2002.

[LMR00] S. Loureiro, R. Molva, and Y. Roudier. Mobile Code Security. InISYPAR 2000, (4̀eme Ecole
d’ Informatique des Systèmes Parall̀eles et Ŕepartis), 2000.

[MR00] R. Molva and Y. Roudier. A Distributed Access Control Model for Java. In6th European Sym-
posium on Research in Computer Security (ESORICS), number 1895, pages 291–308, 2000.

[NL98] George C. Necula and Peter Lee. Safe, Untrusted Agents Using Proof-Carrying Code.Lecture
Notes in Computer Science, 1419, 1998.

[pro04] WiTness project. Wireless Trust for Mobile Business, 2004. IST-2001-32275,
http://www.wireless-trust.org.

[ST98] Tomas Sander and Christian F. Tschudin. On Software Protection via Function Hiding.Lecture
Notes in Computer Science, 1525:111–123, 1998.

[TCG04] Trusted Computing Group TCG, 2004. https://www.trustedcomputinggroup.org/home.

[Yee99] Bennet S. Yee. A Sanctuary for Mobile Agents. InSecure Internet Programming, pages 261–
273, 1999.

	Approaches to Environment and Code Protection
	Nomadic Business Systems: A Security Architecture
	Nomadic System Organization
	Enforcing Distributed Access Control with Nomadic Applications

	Specifying Trust Relationships
	Attribute Certificates
	Authorization and Trust Mechanisms

	Trust for Resource Protection
	Resource Protection with Multiple Domains
	Reflection-Based Access Control Mechanisms

	Trust for Execution Protection
	Security Levels in B2E/B2B Applications
	Verification of the Security Level
	Fine-Grained Application Deployment
	Key distribution

