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06904 Sophia Antipolis Cedex, FRANCE

Tel: +33 4 9300 2606; Fax: +33 4 9300 2627
dirk.slock@eurecom.fr

Abstract— A specular approach to model MIMO frequency-
selective channel variations, that yields a parsimonious channel
representation, is proposed. The specular structure is shown
to simplify linear estimation and prediction of the channel.
Identifiability of specular channels is studied, and an algorithm
achieving identification is proposed. The performance of the
proposed method is evaluated through computer simulations.

I. INTRODUCTION

The use of specular models for channel analysis and
tracking has been proposed by various authors seeking to
improve the ability to accurately estimate [1], represent and
transmit [2], or predict [3], [4] Channel State Information
(CSI). Specular methods constitue viable candidates for
channel tracking and prediction, since the insight they
provide into the actual channel structure – namely, separation
of the channel variation into its space and time components –
can improve the performance and decrease the complexity of
channel tracking and prediction. Various methods have been
proposed to estimate the underlying parameters, including
MUSIC in [3], ESPRIT in [4] and SAGE in [1].

In the present contribution, we propose to use a specular
(pathwise) approach in order to gain access to a reduced
parameter set representing the channel state, in order to
improve channel estimation (smoothing) and prediction.
After recalling the specular channel model in section II, and
outlining in section III how it makes channel estimation
and prediction easier, we provide sufficient conditions
for identifiability of a specular channel in section IV,
and an algorithm, based on simultaneous diagonalization
of the covariance matrices, that achieves identification is
proposed in section V. Section VII presents simulation results.

II. SPECULAR CHANNEL MODEL

Let us consider a Multiple-Input Multiple-Output (MIMO)
frequency-selective channel, with

���
transmit (Tx) and

���
receive (Rx) antennas. The impulse response of the channel
between the � ��� Tx antenna and the � ��� Rx antenna is denoted

by 	�

� ���
������� , where � is the time and � is the lag.

We will henceforth work under the assumption that the
channel state evolves according to a specular model. In such
a model, each impulse response 	�

� ���
����� � is the superposition
of a finite number � of discrete paths at lag ��� 

� ����  "! � 

� ����$#&% ,'  )(+*�*�* � , resulting from either line-of-sight propagation,
or one or several reflections. This model relies upon the fact
that the paths between all the Tx-Rx antenna pairs have most
of their characteristics in common, except for what happens
near the antenna arrays. Hence, they share some properties,
namely their speed w.r.t. the reflectors, and the reflection
characteristics (hence their Doppler and gain are the same
whatever antenna pair is considered). Each path coefficient
can be decomposed into a product of two components:, a space component -.� 

� ���� , which depends on the physical

properties of path ' between Tx antenna � and Rx antenna� , including antennas and reflectors position, path loss,
etc., a time component / � �
��� which includes the Doppler
due to reflectors motion and the relative speed of the
transmitter w.r.t. the receiver.

The time components / � �
��� are assumed to be independent
between paths, hence '10 '3254 687:9 / � �
���;/ ��< �
� 2 �>=  ?A@ �
����� 2 � . Note that we consider a time scale where they
evolve significantly during time, e.g. due to the Doppler
effect, and hence can be considered random processes,
whereas the physical properties of the problem, comprised of
the - � 

� ���� , do not vary.

In discrete time, the specular channel model yields

	�� 

� ���7 � BDC 	�

� ���
E #&% � !
#&% �  
FHG IKJ LNMO
��PHQ - � 

� ���� / 7 � �SR B G IKJ LNMT � ! �3� (1)

where we used the discretized version of the time component/ 7 � � C / � ��E #&% � where #&% is the sampling interval at the
receiver. Let us assume that the impulse response has finite
support, and consider its discretized versionU � 

� ���7 C WV 	�� 

� ���7 � X � *�*�* 	�� 

� ���7 � Y3Z Q�[S\ � (2)



with � chosen such that all the channel coefficients outside
the lag interval 9 ? *�*�* ����� ( � # % = are zero. Let us further stack
these into a row vector with

��� ��� � coefficientsU 7 C V U � Q � Q �7 \ *�*�* U � Q � �����7 \ � U � � � Q �7 \ *�*�* U � ��� � �����7 \ [ \ * (3)

We emphasize the fact that
U 7 consitutes a snapshot of all the

channel impulse response coefficients at time E #H% . With this
notation, (1) can be rewritten in more compact form asU 7  
	�� 7 (4)

where 
 � 

� ���� C -+� 

� ���� � R B G IKJ LNMT � ? � *�*�* R B G IKJ LNMT ����� ( ��� , 
 � C � 
 � Q � Q �� *�*�* 
 � Q � ������ ��
 � � � Q �� *�*�* 
 � ��� � ������ � \ , 	 C 9 
 Q � *�*�* ��
 F = ,
and � 7 C �
/ 7 � Q � *�*�* ��/ 7 � F � \ .

III. SPECTRAL FACTORIZATION AND LINEAR ESTIMATION

In this section, we outline the possible improvements in
channel tracking that can be achieved by deconstructing a
specular channel, i.e. by separating the time and space proper-
ties as enounced in the previous section before doing any kind
of smoothing or prediction. We seek to model the discrete-
time random process � U 7�� from its noisy measurements�U 7  U 7���� 7 where the noise � � 7 � is white Gaussian, iid,
independent from � U 7�� . Assuming that both � U 7�� and � � 7��
are wide-sense stationary (WSS), let us define the (matrix)
covariances���� �� ����� C 687 V �U 7! #" �U $7 [ and

� � �� ����� C 687 V U 7! #" �U $7 [
where 687�9 � = is the expectation operator taken over E , and the% -transforms

& �� �� � % � C 
 ('O" P Z ' ���� �� ����� % Z

"
and

& � �� � % � C 
 ('O" P Z ' � � �� ����� % Z

" * (5)

The best linear estimator (in terms of mean square error) ofU 7! () �+*�, ? given � �U - � 7 - P Z ' is

.U 7! () C 
 ('O

 P Z '�/ 7 Z3


U 
 (6)

where the matrix filter coefficients / " are determined in the% -transform domain

/ � % � C 
 ('O" P Z ' / "�% Z

"
(7)

by [5]

/ � % �  10 % ) & � �� � % ��2 Z#3 � % Z#3 �54  �76 Z Q 2 Z Q � % ��� (8)

where 2.� % � and
�76

come from the spectral factorization& �� �� � % �  2.� % � �76 2 3 � % Z#3 � * (9)

In general, spectral factorization is hard to compute in the case
of vector-valued processes, and (8) is not feasible. Note that
due to the independence between � � 78� and � U 78� ,& � �� � % �  & � � � % � and

& �� �� � % �  & � � � % � � &:9 9 � % � * (10)

A. Specular model and spectral factorization

Under the assumption that the channel variations follow the
specular model (4), the covariances become���� �� �����  ;	 687 V<� 7! #" � $7 [ 	 $ � 687:= � 7! #">� $7@? (11) ;	 �7A A ����� 	 $ � � 9 9 ������� (12)� � �� �����  ;	 687 V � 7! #" � $7 [ 	 $  
	 �7A A ����� 	 $ * (13)

Note that in eqs. (11) and (13) the factor 	 is independent of
the lag � . Therefore, the % -transforms can be factored as& �� �� � % �  ;	 & A A � % � 	 $ � &:9 9 � % � and (14)& � �� � % �  ;	 & A A � % � 	 $ * (15)

Let us define

B � � �CDC � % � C 
 ('O" P Z ' 687 = / 7! #" � � / 37 � � ? % Z

"
for '  (+*�*�* � *

(16)
Note that

& A A � % � is diagonal, since we assume that the / � �����
are independent:& A A � % �  diag

� B � Q �CDC � % ��� *�*�* � B � F �CDC � % ��� * (17)

Note that this structure allows to obtain the spectral
factorization of

& �� �� � % � by performing � independent, scalar

spectral factorizations of the B � � �CDC � % � (equivalently, this means
that the random process � U 7�� can be acurately tracked by
tracking � scalar processes).

In the following sections, we will address the following
identifiability problem: assuming the knowledge of the
spectrum

& �� �� � % � , we show that if the B � � �CDC � % � are linearly
independent polynomials, it is possible to identify them up to
a permutation and a complex scalar coefficient. Fortunately,
this is sufficient for our needs, since all possible solutions
yield the same predictor / � % � . Then, we discuss an algorithm
that achieves this identification.

IV. IDENTIFIABILITY

In this section, we show that if the spectrums B � � �CDC � % � are
linearly independent polynomials, the spectral factorization
(15) is unique up to a permutation and a scalar coefficient
applied to the columns of 	 .

Let us assume that 	 has full column rank, and let��E Q � *�*�* ��E F � be an orthonormal base of the column subspace
of 	 . Let F C 9 E Q � *�*�* ��E F = . Let G denote the representation
of 	 in this base, such that 	  F�G . Let us assume that& � �� � % � has an alternative factorization& � �� � % �  IH & A < A < � % � H $ � (18)



and show that 	 and H are identical up to a permutation and a
linear scaling of their columns. Using the fact that F $ F  �� F ,
the decomposition in (15) yields& A A � % �  G Z Q F $ & � �� � % ��F�G Z $ * (19)

Hence, using (18) and defining the ��� � matrix � C G Z Q F $ H , & A A � % �  & & A < A < � % � & $ * (20)

Therefore we need to prove that
&

is the product of a
permutation matrix and a diagonal matrix. Let � 
 ���  (+*�*�* �
denote the columns of � . The diagonal structure of

& A < A < � % �
lets us rewrite

& A A � % �  FO

 PHQ � 
 � $
 B � 
 �A < A < � % � * (21)

This implies that each � 
 � $
 is diagonal, otherwise the
off-diagonal terms would yield an identically zero linear
combination of B � 
 �A < A < � % � ’s, which contradicts the linear
independence assumption. This implies that each � 
 has at
most one non-zero coefficient, which is equivalent to saying
that

&
represents the product of a permutation matrix and a

diagonal matrix.

V. PRACTICAL IDENTIFICATION METHOD

The previous discussion has shown that any factorization
of the form of (18) is an equally good way of decomposing� U 78� into scalar, independent processes. In this section, we
present an algorithm to find one of these decompositions.

Let us assume that the noise level is known, or has been
estimated, hence

& � � % � is known, or equivalently,
� � � �����

is known for ���	� . The algorithm that we present here
provides a matrix 
 that decomposes

& � � % � into independent
processes, i.e. 
 & � � % ��
 $ is diagonal. We restrict the problem
to the signal subspace, and consider F $ � � � � ? ��F . Since it is
positive semi-definite, it can be decomposed according to its
eigenstructure:

F $ � � � � ? ��F  ��	
�� $ � (22)

where � is a ��� � unitary matrix, and 
 is diago-
nal, and contains the (non-negative) eigenvalues. Notice that� ��� 
 �:� ��� 
 � $ constitutes a Cholesky decomposition ofF $ � � � � ? ��F . Since � G�� �7A A � ? ����� G�� �7A A � ? ��� $ is also a
Cholesky decomposition of the same matrix, they are unitarily
similar [6], i.e. there exist an unitary matrix � s.t.� G�� �7A A � ? ��� $  � � � � 
 � $ * (23)

Obviously, finding � would let us identify G up to the scalar
uncertainties contained in � �7A A � ? � . In order to find it, we
use the fact that� � � 
 � Z Q F $ � � � ������F � � � 
 � Z $ � $ �7A A ����� �7A A � ? � Z Q � @ ����� * (24)

Under our assumptions, there is a unique way (up to a
permutation � ) of diagonalizing the spectrum matrix, as
demonstrated in section IV, hence if � is a unitary matrix
that diagonalizes � � 
 Z Q � $ F $ � � � ������F � � 
 Z Q � $ for
all ����� , then �  � \ � . Finding � is the well-known
simultaneous diagonalization problem [7], and can be solved
efficiently using an algorithm based on Jacobi angles [8].
It follows that � U 7�� is transformed into an arbitrary vector
process �! 7 � , with

 7 C � � 
 Z Q � $ F $ U 7  �"� �7A A � ? � Z Q � 7 � (25)

and
&$# � % � is diagonal: � � 
 Z Q � $ F $ is a possible 
 . The

uncertainties outlined in section IV appear clearly in (25):
each component of �! 7 � is normalized to unitary variance,
and the permutation � is unknown.

Obviously, the theoretical identifiability outlined in
section IV, is not realistic in practice, since implementation
constraints would restrict the knowledge of

� � � ����� to
a limited range of � . Also, the requirement of linear
independence of the columns of 	 , as well as the linear
independence of the % -spectrums of the time coefficients,
are not guaranteed to be fulfilled in real life. However, our
simulations show that these limitations do not seem to incur
significant problems in practice.

VI. APPLICATIONS

One of the interest of a specular channel model is its long-
term validity. Since it closely follows the physical channel
structure, and hence separates the spatial and temporal prop-
erties of the channel, estimation or prediction of the time
coefficients only (the / � �
��� ) together with the knowledge of	 provides knowledge of the channel state, following fromU 7  F�G � 7 (26) F � � 
 � $ � �7A A � ? � Z Q � 7 (27) F � � 
 � $ � Z Q  7 (28) F � � 
 � $  7 (29)

where we used successively (4), (23), (25), and the definition
of � . Note that these matrices need to be estimated first,
and in particular the choice of the number of independent
components to consider. In practice, this parameter can be
chosen as the number of non-noise eigenvalues of

� �� �� � ? � .
Then, F can be obtained by orthogonalizing the corresponding
set of eigenvectors. Subsequently, the channel estimate can be
obtained through %U 7  F � � 
 � $'& 7 �
where & 7 is obtained by any estimation method (for instance
smoothing, linear prediction...) from the

% 7 . Since the
coefficients in  7 are independent processes, the burden of
the estimation method is greatly decreased. Several kinds
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Fig. 1. SIR of the process separation

of processings can be applied at this point, for instance
smoothing if the goal is to increase channel estimation
acuracy. Prediction can be useful in systems relying on
Channel State Information (CSI) at the Transmitter (CSIT) to
enhance the link quality: since duplex systems mainly rely on
a feedback scheme to transmit the channel state information
from the receiver, and since the channel state information
can not be fed back in a negligible amount of time, the
ability for the transmitter to extrapolate CSI from past values
can therefore be an important asset in the actual use of a
CSIT-exploiting transmission scheme [9]. The nature of the
underlying processes must also be considered. For instance,
pure Doppler effect would yield an autoregressive process of
order 1.

VII. SIMULATION RESULTS

The algorithm proposed in section V has been proven in
section IV to identify perfectly the system in the noiseless
case. We present here some results obtained in a more practical
simulation setting. We simulated a setting with � ��� antennas,
and a delay spread limited to �  �� samples. The channel is
an actual specular channel with �  �� paths, where each path
is determined by randomly generated integer lags, uniform
DoD and DoAs, a Gaussian gain and a random AR3 process.
The algorithm works with approximate covariance matrices
estimated from a finite-length measurement interval of

�
successive realizations of � U 7�� . The number � 2 of estimated
independent random processes to estimate is set artificially,
and several cases ( � 2�� � , � 2	� � , � 2  � ) are presented
here.

The figure of merit used in these simulations is derived
from the fact that in the absence of noise, with the notations
of section V, ��
 � � 
 Z Q � $ F $ 	  � �7A A � ? � Z Q , i.e. it
is a diagonal matrix. When noise is present, this matrix is
computed from the true 	 and the specular model as estimated

by the proposed algorithm, hence it is not perfectly diagonal.
Hence, denoting 9 � 

� ��= 

� � C ��
 � � 
 Z Q � $ F $ 	 , � � � � is
the amount of energy from � / 7 � � � 7 that is correctly attributed
to the ' th estimated process, and the � 

� � ��� 0 ' represents
the crosstalk from other processes. Thus, we define a global
signal-to-interference ratio (SIR) as


���� C 
� F��PHQ � �� � �

� F��PHQ � 
��P�� � �� � 
 * (30)

This value is plotted on Figure 1 for various configurations,
with respect to the SNR of the raw channel estimates

�U 7 .
These results clearly show the influcence of the the quality

of estimation of the covariances: increasing the number of
realizations used for estimating the channel statistics from�  � ? to

�  ( ? ? , then ( ? ? ? , has a relatively bigger
influence than the SNR variations over the range pictured
here. The influence of overestimating the number of paths
can be estimated by comparing the � 2  �  �� to the� 2  �� case. Overestimation of the number of paths yields
an almost negligible decrease in the SIR of the � correctly
identified paths. The case where � 2�� � is interesting in that
it represents the resilience of the identification algorithm to
model mismatch, i.e. when the signal does not conform to the
assumptions that support our method. In this case, the SIR
criterion is only computed on the � 2 separated processes,
which are statistically the strongest. This explains the fact that
we observe a slight SIR increase in this case, for low input
SNR values, and goes to prove that the � 2 strongest paths are
correctly identified. However, this metric is hiding the fact that
the channel is not fully analyzed, and hence not as predictable.
Evidencing this would require a more involved simulation
setup, where the modeling error variance would be considered.

VIII. CONCLUSION

We presented a channel modeling method based on the
assumption that the channel follows a specular structure.
We showed how this structured model, by separating space
and time-components, lends itself to simplified tracking,
including smoothing and prediction, once the underlying
space and time characteristics are separated. We showed that
under mild assumptions on the channel characteristics, these
components are identifiable, and proposed a method based on
simultaneous diagonalization of the covariance matrices that
achieves the identification. We evaluated the performance of
the proposed method through simulations.
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