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1Institut Eurécom’s research is partially supported by its industrial members: Bouygues
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On the Average Course Length in Mobility Models for
Mobile Ad Hoc Networks

Jerome Haerri and Christian Bonnet

Abstract

In simulations of Manets, mobile nodes usually move in a random di-
rection until they reach their target, then stop and start heading to another
direction. We propose in this paper to study the average course length of
mobile nodes, from the moment they start moving to their respective destina-
tions, and the time they stop. Since the knowledge of the time nodes keep on
heading to their targets helps adjusting the refreshing period of ad hoc rout-
ing and topology control protocols, it becomes possible to obtain an insight
of the expected improvements these protocols can get from the use of ape-
riodic instead of periodical updates. We show in this paper that when using
fair metrics, the length of nodes movements following a Random-Waypoint
mobility model (RWM) or a Manhattan mobility model (ManM) is situated
around 10 seconds in the worst case scenario. Therefore, by fixing a refresh-
ing period to this time interval, it becomes possible to improve the global
performance of topology control and routing protocols.

Index Terms

Mobile Ad Hoc Networks, Course Length, Trajectory, Aperiodic Update,
Predictability, Prediction-based, Dead-Reckoning.
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1 Introduction

Routing protocols in mobile ad hoc networks must adapt to frequently chang-
ing topologies without generating significant overheads. Several strategies exist in
order to keep coherent topologies and valid routes. The first one is non-periodic
route maintenance. It is only triggered from an alert message punctually received
either from the physical layer or the network layer. Most reactive protocols use
such link maintenance. However, link losses happening unexpectedly, the exis-
tence of a particular link cannot be guarantied and make such approach unsuitable
for fault tolerance networks. The next strategy is periodic route maintenance. Pe-
riodically, with the help of beacon messages, the state of nodes neighborhoods,
links or routes is refreshed. This strategy is commonly used by proactive protocols
and topology control algorithms. Yet, it creates a large communication overhead,
decrease the network capacity and make this method non scalable for large scaled
networks. Therefore, a better solution should find its existence somewhere between
those two strategies. One possibility is to make updates being only triggered when
necessary. By the knowledge of a node’s position and velocity, it is possible to ob-
tain an area where it is expected to be moving. A recent extension to this approach,
called prediction-based[1] or dead-reckoning[2], adds a motion pattern to the
equation in order to extract a node’s expected trajectory. Then, whereas the former
method gives nodes expected motion area, this model is able to obtain nodes ex-
act positions, conditionally constrained to the hypothesis they did not reach their
destinations or unexpectedly changed their trajectories. These methods belong to
aperiodic route maintenance strategies and their performances, notably those of
the dead-reckoning model, highly depend on nodes mobility patterns determined
in simulations by mobility models.

Mobile ad hoc networks are often studied through simulations and their per-
formances depend heavily on the mobility model that governs the movement of
nodes. In most cases, nodes set initial locations then start moving following some
direction and velocity. After a certain time or when nodes have reached a prede-
fined position, they reconsider their situation and head to a new destination, in a
new direction and at a different speed. This movement pattern is then repeated un-
til the end of the simulation. Many mobility models have been proposed reflecting
particular motion patterns. The most popular one is the Random Waypoint Model
(RWM). Another one is the Reference Point Group Mobility Model (RPGM) which
tries to reflect group mobilities that can be noticed in human motion. Manhattan
and Freeway mobility models (ManM), also called City Section, is purposely de-
veloped to reflect mobility patterns found in urban areas. A description of these
models can be found in a survey on mobility models [4] or in [3] along with stud-
ies of hybrid approaches.

The time between two destination changes, called course length, can usually
be obtained by dividing the distance between two successive destinations by the
motion speed. Yet, the probability distribution of destination locations and veloci-
ties usually makes the respective course lengths random and unpredictable. How-
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ever, the performance of aperiodic maintenance strategies highly depends on those
course lengths. Should this course length known or precisely estimated, would
aperiodic strategies be optimal.

In this paper, we provide a fair insight on nodes’ course length in a Random
Waypoint, a Modified Random Waypoint mobility model and a Manhattan mo-
bility model. We also propose a theoretical model for expected course lengths
in general mobility models. The Random Waypoint and the Manhattan models
represent trajectory changes in two different manners. The Random Waypoint
uses a distance-based strategy while Manhattan uses a probability-based trajectory
change strategy. Indeed, nodes moving following the Random Waypoint mobility
model change course every time they reach their destination, while in Manhattan
networks, nodes only change their trajectories with a certain probability. Therefore,
by varying this probability and increasing the number of destinations, we can sim-
ulate a whole range of movement patterns. By using these two models, we manage
to show that nodes course lengths using fair metrics never decrease below 10 sec-
onds on average. This result is confirmed by the theoretical model and motivates
the use of an aperiodic route maintenance strategy, since updating routes every 10
seconds on average makes the number of maintenance messages drop dramatically.
Accordingly, it becomes conceivable to consider prediction-based models to reach
optimal aperiodic maintenances.

The rest of the paper is organized as follows. In Section 2, we develop a the
theoretical model describing nodes average course lengths. Section 3 shows sim-
ulation results and confront them with the theoretical approach. In Section 4, we
identify parameters course lengths are depending on and analyze promising im-
provements to routing protocols in the light of our results . Finally, Section 5
draws some concluding remarks and future works.

2 Theoretical Model

In this section, we expose a theoretical model for nodes’ average trajectory
length. We divide the global motion of nodes into block-wise linear movements.
From the beginning of each block to its end, nodes are moving at constant speed
in a known direction. After reaching a block’s end, a node changes course with
a probability � or keeps its actual trajectory with a probability ����� . The course
length, or trajectory length, is then defined as the total number of blocks crossed
before a node changes its trajectory. We first define a theoretical model for the
Manhattan Mobility Model then extend it to the Random Waypoint, and finally
propose a theoretical model for general mobility models.

2.1 Manhattan Mobility Model

In the Manhattan model (ManM), nodes move along the grid of horizontal
and vertical streets on the map. At an intersection of a horizontal and a vertical
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street, mobile nodes can turn left, right or go straight with certain probability. The
length of a block, called ��������� 	 , is defined as the distance between two successive
intersections and is assumed constant. Therefore, we define the time to cross a
block of length ��������� 	 at a velocity 
����� as��������� ��� ��������� 	��� ���

The expected number of blocks crossed during the total simulation time ��������� �������
is defined as  ����������!"� # � #�$ � #�%'& ���������� �
Defining ()���+*-, . as a random variable representing the block reached by a node
and /102()���+*-, .3�4��5 as the probability to reach the

%7698
block, then the average

course length is defined as:

�:�<;>=?! � 	A@'BC�DE� ��������� � FHG:I �?J�K?LM N OQP �ARS/102()���+*-, .T�U��5
� ��������� � V

�XW FHG:I
�?J�K?LM N OHY �)0 � � �Z5 N �\[

2.2 Modified Random Waypoint Mobility Model

The Random Waypoint model (RWM) is the most commonly used mobility
model in the research community. In the current implementation, at every instant,
a node randomly chooses a destination and moves toward it with a velocity chosen
uniformly between [V min,V max], where V min and V max are the minimum
and maximum allowable velocity for every mobile node. After reaching the desti-
nation, the node stops for a duration defined by the pause-time parameter. Then, it
again chooses a random destination and repeats the whole process again until the
simulation ends. We define here a block as the interval between two successive
destination points.

In order to be able to compare the RWM with the ManM, we modified the way
nodes determine their speed. We therefore define a Modified Random Waypoint
Model ( ����� ���

	
) as a modification of the regular RWM where] The initial velocity is defined as :��� ���<^ _:^ 6 ��`�aZ��bQ��c+�ed ��� ����f�g �ehji ��� ����f�gkWlhZm ,

where h varies from n to ��� ��� f�g .] No pause time. Nodes do not stop when they reach their destinations.] Successive velocities are temporally dependent on previous ones :��� ���<_:o2p 6 � ��� ���<q:r9o2gkW $ �-� ,
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where ��*:* is a randomly chosen acceleration that increases or decreases
nodes’ velocity.

In ����� and ����� ���
	
, � � n since nodes changes course with probability

equal to � when they reach their destinations. Therefore, the theoretical course
length is defined as

�:�<;>=?! � 	A@'BC�D � ��������� 	 ������ ��� ���
2.3 Reference Point Group Mobility Model

Each group of nodes has a group leader that determines the group’s motion
behavior. Initially, each member of the group is uniformly distributed in the neigh-
borhood of the group leader. Every node has a speed and direction that is derived
by randomly deviating slightly from that of the group leader. Since both the move-
ment of the logical center for each group, as well as the random motion of each in-
dividual mobile node within the group, are implemented via the Random Waypoint
Mobility Model, course lengths are similar to those obtained by the ����� ���

	
.

2.4 General Mobility Models

We introduced in the two previous sections a probability-based trajectory change
model (Manhattan) and a distance-based trajectory change model (RWM). By
grouping those two models and by varying � and ��������� � , results may be obtained
for all kind of mobility models. As defined in Section 2.1, ��������� � is obtained by
nodes velocity and the distance between two successive destinations. Therefore,
mobility models’ average course lengths highly depend on fair metrics assigned
to these two values. If nodes have a short ��������� � , they reach their destination
fast thus have a smaller course length. Manhattan-like mobility models experience
a limited course length decrease since nodes have trajectory changes only with a
certain probability. A theoretical general course length model is defined as

�:�<;>=?! � 	A@'BC�DE� ��������� � P W FHG:I
�?J�K?LM N OHY �AR��������� � N 0 � � �Z5 N �

where ��������� � N � G:I
�?J�K ���g�o I � � and ��������� 	 ^ and ��� ��� ^ representing the block length

and speed on the
%�698

block.

3 Simulation Results

We present in this section results on the average course length of mobile nodes
moving following Random Waypoint, Manhattan and Modified Random Waypoint
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mobility models for different velocities, accelerations and probabilities of trajec-
tory change.

Nodes are assumed to be moving in a flat squared area of �-n�n�n+� � �-n�n�n+� .
The Manhattan model also contains three horizontal and three vertical streets in
the squared area, and the probability to go straight at an intersection is set to��

. Mobility models are simulated for �+n�n d �-m . We make nodes average veloci-
ties 
����� ��� variate from � to �+ned�� �Qm , yet with different variances h around the
average velocity. In other words, a node velocity is uniformly distributed betweend 
����� ��� � h
	 
����� ��� W hZm . Three different accelerations are tested: � , � , � d � �� m .
Finally, for the computation of the theoretical course length, � takes four discrete
values: n , Y� , Y� and

��
.

We illustrate in Fig. 1 the average course length in Random Waypoint, Modified
Random Waypoint and Manhattan models. Since beside � , the average course
length depends on blocks length and nodes velocity while moving in these blocks,
we plot them in two graphs. In Fig. 1(a), we use �+n d � � m for the velocity and vary
the average distance between two successive destinations (block length), while in
Fig. 1(b) we fix this distance to �+n�n d � m and vary the velocity.

We can see in Fig. 1(a) that the average course length increases as blocks length
does, while in Fig. 1(b), the average course length decreases as the velocity in-
creases. When the velocity increases or when the blocks length decreases, nodes
reach their destination faster therefore experience a reduced course length. We can
see that course lengths are longer for the Manhattan model since at each destina-
tion, a node keeps a chance to stay in its present course, whereas in the Random
Waypoint or the Modified Random Waypoint model, nodes always change their
trajectories when reaching a destination point.

We can also see in Fig. 1(a) and Fig. 1(b) that the Random Waypoint model
has longer course lengths than the two other models. This may be explained by
the fact that at each destination, nodes’ new velocities in the RWM are uniformly
distributed between [V min,V max], while nodes’ new velocities have past de-
pendencies in ManM and ������� D � . Results for the RWM where nodes seem to
experience rather long trajectories, are also interesting since this is the commonly
used model for simulating mobile ad hoc networks.

Fig. 2 shows that h has a clear influence on the average course length, no-
tably in the Manhattan model. It represents the average trajectory length versus
the average velocity of mobile nodes. The first three curves consider nodes mov-
ing following a Manhattan model, while the last three ones a Modified Random
Waypoint model. For each model, we consider three different values for h .

By analyzing this figure, we notice that the trajectory length decreases as h
does. This can be explained as follows. By reducing h , we actually increase the
role of the average velocity ��� ��� ��� since nodes’ velocities are closer to it. There-
fore, the average course length tends to the value�:�<;>=?! � 	 ��� � ��������� 	 ������ ��� �����
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Figure 1: Comparison of the average trajectory length in the RWM, ����� ���
	

and
ManM.

We can also notice that the average trajectory length is a little bit shorter than
�>d �-m only in unlikely situations where nodes are moving at an average speed of
�+n � � . However, for fairer metrics1 such as �+n d � � m , the average course length is
� �>d �-m for the Modified Random Waypoint and even � �>d �-m for the Manhattan model.
These values are very interesting first because they really express the network mo-
bility and should be used as a factor for comparing protocols performances. It
could notably replace the pause-time usually used in the literature as a mobility pa-
rameter. Secondly, since nodes are highly predictable while they are moving from
destination points to destination points, prediction-based models may be consid-
ered. The longer is the course, the better is the prediction of future positions of
nodes.

Fig. 3 represents the influence of nodes acceleration in nodes average course
length. As in Fig.2, nodes average trajectory length are smaller in the Random
Waypoint model and the reasons are similar to those expressed for the previous
figure. In Fig. 3(a), we can see that the acceleration influences the Manhattan
model, but has no impact on the ����� ���

	
model. However, when we decreaseh in Fig. 3(b) and Fig. 3(c), nodes’ acceleration, in other words the difference be-

tween previous and next speeds, does not have a major influence on course lengths.
This may be explained by the speed limitations induced by h . Since speeds cannot
move a lot from the average velocity, the resulting course length is not influenced.
Therefore, the acceleration is ignored in the theoretical model.

Finally, Fig. 4 represents a comparison between experimental results obtained
through our simulations and theoretical ones computed using the model defined
in Section 2. We plotted three experimental values, one for each mobility model.

1Extreme metrics do not represent major cases of possible deployments of mobile ad hoc net-
works
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Then, we added four curves, one for each � used to obtain the theoretical course
length. The case where � � � is not plotted since it would simply represent trajec-
tory lengths equal to the simulation time.

We can first see that the theoretical model is accurate since the curve for the
Manhattan experimental trajectory length is similar to the theoretical one for � �n � ��� . Then, as we increase the probability to change course, the average course
length decreases as expected. Then, when � � n , meaning that a node always
change course when it reaches an intersection, the curve reaches the experimental
values obtained by the ����� ���

	
.

This graph further shows that by varying � and the average velocity2 , we can
obtain the whole array of mobility patterns.

For a fixed speed of �+n � � for example, course lengths vary from � �>d �-m for Man-
hattan when nodes have a probability

��
not to change course at an intersection,

to � �>d �-m for
Y� and � �>d �-m for � � Y�

. Finally, in the worst case, when nodes al-
ways change course when reaching an intersection, the average course length is
still ����d �-m and similar to the experimental value obtained with the ���������

	
.

Now, by varying the average velocity and keeping a fixed block length, we
actually increase the number of trajectory changes since nodes reach an intersection
faster. Yet, the average course length never goes below ��d �-m for the worst case when
� � n .

Therefore, by varying those two parameters in the theoretical model, we can
model highly mobile or rather static networks, small successive progressions or
global directions, and predictable or non predictable motions.
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Figure 4: Comparison of the average trajectory length for the RWM and ManM.

2The velocity can be used to represent the time to reach an intersection since the blocks length is
constant in average
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4 Discussion

In the previous section, we obtained values for the average trajectory length in
Random Waypoint, Modified Random Waypoint and Manhattan mobility models.
Although very interesting, these values depend on nodes average velocity and on
the distance between two successive destinations.

Let us first consider the case of nodes average velocity. It is not easy to have
a good estimate on their values in real situations. We can only propose some as-
sumptions. First, if an average velocity should be obtained for nodes attached to
people (such as sensors or mobile phones), a fair value would more be around
�>d � �Zm since the major part of the human species experiences only limited move-
ments. Yet, the average velocity is highly evoluting and may have a large variance.
It can indeed vary from n in the office, to �+n d � � m in a car and to �+n�n d � � m in com-
mercial airplanes. Finally, we can find a dual behavior for personal motions. When
nodes move fast, they usually follow predefined routes and their trajectories may be
predicted. But when nodes experience random walks, they usually move at lower
speeds and results obtained in this paper gives estimates on their average course
lengths. Therefore, nodes mobility depends on the application for the deployment
of mobile ad-hoc networks.

When considering the distance between successive destinations, we simply ar-
gue that when nodes have a small distance between each intersections, the average
course length drops dramatically. Yet, by having fast randomly distributed trajec-
tory changes, a node effectively remains in the same position and the network does
not really needs to update nodes position at each trajectory change. For mobil-
ity models describing nodes globally moving following a reference direction yet
experiencing minor random trajectory changes around the reference direction (see
Fig. 5), it is conceivable to look at the reference motion and not at the specific
ones. Trajectories are therefore considered as a global movement between two
destinations and minor trajectory changes which do not add sufficient information
on nodes mobility are discarded.

Figure 5: Reference Point Model.

Finally, as we gave some insight on nodes average trajectory length in com-
monly used mobility models, we bring justifications to the pertinence of prediction-
based models. Thanks to nodes position, speed and motion pattern, these models
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are able to predict nodes exact future position without the need of periodical beacon
messages, conditionally constrained to the hypothesis nodes did not unexpectedly
change their trajectories. Therefore, the longer the course length is, the more accu-
rate the prediction is. Lets consider the worst case result obtained in the previous
section. The average course is more or less ��d !�m . Let us consider the proactive
OLSR[5] routing protocol. It keeps the state of its neighbors by sending Hello
messages every �+n�n d & ! m . Therefore, the expected benefit obtained from the use of
a prediction-based approach for this protocol is a reduction by a factor of 14 of
the number of messages compared to the regular OLSR. Now, in better situations
where trajectory lengths are longer than ��d �-m , we can imagine further improve-
ments.

5 Conclusion and Future Work

We proposed in this paper a study of the average trajectory length of mobile
nodes in mobility models. We obtained results for Random Waypoint, Modified
Random Waypoint and Manhattan models. We showed that the average trajectory
length is never shorter than ��d �-m in the worst case scenario when using fair metrics.
In better situations, this value is rather situated around �+n d �-m . Therefore, by fixing
a refreshing period to this time interval, it becomes possible to improve the global
performance of topology control and routing protocols.

We also proposed a theoretical model for the average course length of mobile
nodes and prove that it is consistent with experimental results. This model is able
to compute the expected course length for highly mobile or rather static networks,
considering small successive progressions or global directions, and in predictable
or non predictable motions.

Finally, to the light of our results, we expressed justifications to prediction-
based models which are emerging as the next stage to the evolution of routing
protocols.

In our future work, we plan to perform a thorough study on practical trajectory
lengths in real environments. Now that we obtained an insight of the average course
lengths in mobility models, it is interesting to see if those results hold in practical
situations.
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