
Institut Eurécom
Department of Mobile Communications

2229, route des Crêtes
B.P. 193

06904 Sophia-Antipolis
FRANCE

Research Report RR-04-114

Trajectory Knowledge for Improving Topology
Management in Mobile Ad-Hoc Networks

August 25
���

, 2004

Jerome Haerri, Navid Nikaein and Christian Bonnet

Tel : (+33) 4 93 00 26 26
Fax : (+33) 4 93 00 26 27

Email :
�
Jerome.Haerri,Navid.Nikaein,Christian.Bonnet � @eurecom.fr

1Institut Eurécom’s research is partially supported by its industrial members: Bouygues
Télécom,Fondation d’entreprise Groupe Cegetel, Fondation Hasler, France Télécom, Hitachi, ST
Microelectronics, Swisscom, Texas Instruments, Thales

Trajectory Knowledge for Improving Topology
Management in Mobile Ad-Hoc Networks

Jerome Haerri, Navid Nikaein and Christian Bonnet

Abstract

This paper presents a novel approach to topology management in mobile
ad-hoc networks. We are proposing an algorithm that is able to construct and
maintain a Connected Dominating Set (CDS), without using periodic bea-
cons. By knowing the positions and velocities of its neighbors, a node is able
to extract their linear trajectories. Based on this information, it obtains a lo-
cal prediction of its neighborhood’s evolution and can thereafter proactively
adapt the dominating set without relaying on periodic beacons. Maintenance
will be driven as a per-event basis; it is only when a node changes course
that messages are to be exchanged to adapt the CDS. The correctness of the
algorithm is proven, and the complexity is compared with other topology
management heuristics. Our approach is able to keep a stable time-changing
CDS, and a low broadcasting overhead while having a lower complexity than
other approaches.

Index Terms

Mobile Ad Hoc Networks, Trajectory, Topology Control, Topology Man-
agement, Mobility Prediction, Prediction-based, Beacon-less, Dead-Reckoning.

Contents

1 Introduction 1

2 Trajectory Knowledge 3

3 Kinetic Adaptive Dynamic Topology Management Algorithm 4
3.1 Neighborhood Discovery . 4
3.2 Preferred Neighbor Election . 5

3.2.1 An Energy Based Election Criterion 5
3.2.2 Election Algorithm . 8

3.3 Forest Construction . 10
3.4 Self-Adaptive Intra-Zone Clustering 10
3.5 Self-Adaptive Inter-Zone Clustering 14
3.6 Impact of Trajectory Knowledge on Zone Maintenance 14

4 KADER’s Connected Dominating Set 16

5 Overhead Complexity 18

6 Benefit of KADER on Routing Algorithms 20
6.1 Efficient Routing . 20
6.2 Energy Efficiency . 21

7 Conclusion 23

A Correctness I

v

List of Figures

1 Graphical representation of the Power function at node � 6
2 Graphical representation of the QoC function at node � 8
3 Constructed forest . 12
4 Tree view of nodes � and � . 13
5 KADER’s Connected Dominating Set 16
6 Properties of KADER’s Connected Dominating Set 17
7 Average nodes’ trajectory length (��) under the Random Waypoint

Mobility Model . 19
8 Comparision of KADER’s complexity overhead with other topol-

ogy control protocols . 20
9 The proof of theorem 1 . I

vi

1 Introduction

A mobile ad-hoc network (Manet) consists of a collection of mobile nodes
forming a dynamic autonomous network through a fully mobile infrastructure.
Nodes communicate with each other without the intervention of centralized access
points or base stations. In such a network, each node acts as a host and may act as a
router. Due to limited transmission range of wireless network interfaces, multiple
hops may be needed to exchange data between nodes in the network, which is why
the literature often uses the term of multi-hop network in Manet. The topology of a
multi-hop network is the set of communication links between nodes used by rout-
ing mechanisms. Removing redundant and unnecessary topology information is
usually called topology management. The topology management plays a key role
in the performance of a routing protocol simply because the wrong topology in-
formation can considerably reduce the capacity, increase the end-to-end delay and
routing control overhead, and decrease the robustness to node failure.

There are two approaches to topology management in mobile ad-hoc networks:
power control and hierarchical topology organization. Power control mechanisms
adjust the power on a per-node basis, so that one-hop neighbor connectivity is bal-
anced and overall network connectivity is ensured. However, topologies derived
from power control schemes often result in unidirectional links that create harmful
interferences due to different transmission ranges among one-hop neighbors [6].
The hierarchical approach selects a subset of nodes, called cluster-heads, to serve
as the network backbone over which essential network control functions are sup-
ported [7]. Every node is then associated with a cluster-head, and cluster-heads
are connected with each others via gateway nodes. Therefore, the union of cluster-
heads and gateways constitute a connected backbone. For clustering to be effec-
tive, nodes that are part of the backbone must be close to each other and connected.
In graph theory, the Minimum Dominating Set problem and the relevant Minimum
Connected Dominating Set (MCDS) problem best describe the clustering approach
to topology management. MDS consists of finding a subset of nodes with the fol-
lowing property: each node is either in the dominating set or adjacent to a node in
the dominating set. MCDS consists of obtaining a minimum subset of nodes in the
original graph such that it composes a Dominating Set (DS), and the induced sub-
graph of an MCDS has the same number of connected components than the original
graph. Unfortunately, in graph theory, computing the MDS is NP-hard [11, 12],
and MCDS is a well known NP-complete problem, even if the complete topology
is available. In heuristics proposed in the past, cluster-heads are equivalent to a
sub-optimal dominating set, that can be improved through non-deterministic nego-
tiations or by applying deterministic criteria, and reach a Minimal Dominating Set
(MDS). The union of selected cluster-heads and gateways forms a connected dom-
inating set (CDS), which is a sub-optimal solution to the MCDS problem. Node
mobility can cause frequent unpredictable topology changes. Hence topology man-
agement is a non trivial task. There exists many hierarchical approaches that are
able to distributively create CDS, like DDR [2], TMPO [8], and MPR [10].

1

In this paper, we are focusing on a novel approach, in which nodes are able to
predict neighbors’ future position, hence getting rid of periodic beacons. We are
adapting this concept to a 2-level hierarchical topology control approach denoted
as Kinetic Adaptive Dynamic topology management for Energy efficient Routing
(KADER). Indeed, we are proposing a distributed self-maintained topology man-
agement strategy based on deterministic criteria, where changes in the topology
(trajectory changes) are announced by the respective nodes in a per-event basis.
We want to construct a self-adaptive forest from a network topology in a distributed
way, yet without using periodic beacons. Each tree in the forest forms a zone and
each zone is proactively maintained. While forest seeks to reduce broadcasting
overhead, proactive zones are used to reach high scalability, and to improve the
overall delay. Besides, since the energy cost of increased computation is much less
than the cost of increased message transmission [1], we want to reduce as much as
possible the use of topology management messages. The idea is to model nodes’
positions as a piece-wise linear trajectory, as opposed to a fixed position for a sin-
gle time instant, such that we can predict a node future position, and according to
it, adapt the forest, therefore the dominating set. The protocol only requires min-
imal updating when a node changes course, since most of the links remain valid.
Indeed, a node simply notifies its neighborhood upon an unpredicted event, such as
trajectory changes, instead of periodically sending beacons. Therefore, the algo-
rithm can be seen as a per-event approach. Since energy is not wasted on message
transmissions, KADER reaches energy efficiency on topology management. To
sum up, KADER combines the concepts of forest, zone and trajectory knowledge
in order to achieve low complexity, broadcasting efficency, and energy efficency.

Similar to KST [3], TMPO [8], MPR [9, 10], or DDR [2], our approach seeks
a CDS and does not need any negotiation round to obtain it. However, different
from KST, our approach does not require a full topology knowledge to use the tra-
jectory information, therefore restricting the complexity overhead of nodes’ trajec-
tory changes. KADER is further able to create shortest path routes between every
node contained in a zone, and not to a single source as it is the case in KST. Unlike
TMPO, the topology created with KADER is fully distributed. The algorithm does
not put any additional burden on the selected nodes, while others are in sleeping
mode. The overall topology maintenance is fully distributed along the network,
further suppressing the need to balance the cluster-heads’ role. Contrary to MPR
which requires global topology knowledge to build a CDS, KADER is only based
on local information. Finally, what dissociates our approach from TMPO,MPR,
and DDR, is that KADER uses trajectory knowledge, and consequently does not
need periodic updates to maintain the coherence of the created topology.

The rest of the paper is organized as follows. Section 2, outlines the method
used to obtain nodes trajectory knowledge. In Section 3, we present in detail the
different parts of the topology control algorithm. Section 4 characterizes KADER’s
Connected Dominating Set. In Section 5 we show the low overhead complexity of
KADER. Section 6 highlights the benefit of KADER on routing protocols. Finally,
we draw concluding remarks and highlight future work.

2

2 Trajectory Knowledge

The term ”Kinetic” in KADER reflects the motion aspect of our algorithm,
which computes a node’s trajectory based on its Location Information [3]. Such
location information may be provided by the Global Positioning System (GPS) or
other solutions exposed in [4] or [5]. Therefore, we assume a global synchroniza-
tion between nodes in the network and define ����������������� as the four parameters
defining a node’s position and instant velocity 1 , thereafter called mobility. We
describe in this section the way KADER is able to extract those trajectories. We
further insist on the fact that KADER’s neighbor discovery procedure distinguishes
itself from regular protocols since it is neither periodically performed, nor initiated
after some adaptive intervals depending on nodes mobility. It is rather triggered
only when the neighborhood effectively changes.

Consider nodes moving in a mobile ad hoc network. In order to compute
neighbors’ trajectories, nodes must first exchange their respective mobility param-
eters. They do so by broadcasting their parameters to their immediate neighbors.
Such messages are not be forwarded, therefore a node will receive the parameters����������������� of only its one-hop neighbors. Over a relatively short period of time 2,
one can assume that each such node, say � , follows a linear trajectory. Its position
as a function of time is then described by

	�

������������� � ��� ��� ������ ��� ��� ������� � (1)

where �! #" ������� represents the position of node � at time
�
, the vector $ � � ��� �&%('

denotes the initial position of node � , and vector $ ��� � �)��� �*%(' its initial instantaneous
velocity. Let us consider node + as a neighbor of � . In order to let node � compute
node + ’s trajectory, let us define the squared distance between nodes � and + as,.-� / �����0� ,.-/�� �������213	�

�4/5�����768	�

����������13--� 9:� � /;6 � �� /;6 � �<� �=� ��� />6 ��� ���� /;6 ��� �<� ���@? -

� A5� /B�@-��DC3� /B�E�GF4� / � (2)

where
A5� /!HJI

,
F4� /!HJI

. Consequently,
AK� / � C3� / � F4� / are defined as the three parame-

ters describing nodes � and + mutual trajectories, and
, -� / �����L�MA5� /B� - �JC3� /B���DF4� /

,
representing + ’s relative distance to node � , is denoted as + ’s linear relative tra-
jectory to � . Consequently, thanks to Eq. 1, a node is able to compute one of its
neighbor’s future position, and by using Eq. 2, it is able to extract its neighbor’s
future relative distance to it.

1We are considered moving in a two-dimensional plane.
2The time required to transmit a data packet is orders of magnitude shorter than the time the node

is moving along a fixed trajectory.

3

3 Kinetic Adaptive Dynamic Topology Management Al-
gorithm

We propose to construct a self-adapting forest from an ordinary network that
will consist of non-overlapping dynamic trees, thereafter called zones3. Each zone
is kept connected with its neighboring zones through gateway nodes, thus mak-
ing the whole network a set of connected zones. The size of a zone will increase
or decrease dynamically without any need of periodic maintenance. Unexpected
topological changes are announced by the respective nodes through a specific non-
periodic message communicating its new mobility parameters. Following this
event, the forest will adapt itself to the new topology (see section 3.6).

The algorithm described hereafter consists of six cyclic time-ordered phases:
neighborhood discovery, preferred neighbor election, self-adaptive intra-zone clus-
tering, self-adaptive inter-zone clustering, and event-oriented zone maintenance.
These phases are carried out based on trajectories and stability information ex-
changed through specific non periodic event-oriented messages between nodes.

3.1 Neighborhood Discovery

Basically, KADER’s neighbor discovery procedure makes a node detect changes
in its neighborhood without exchanges of periodical beacon messages. Upon com-
pletion of this discovery procedure, nodes in the network will have a fair knowledge
of their neighborhood, and as long as their neighbors keep on moving along their
initial linear trajectories, there will be no need to refresh it. In other words, no pe-
riodical beacon messages are required, and it is only when a node’s neighborhood
effectively changes that a new neighbor discovery procedure is initiated. Nodes
keep their neighbor parameters in a so-called neighboring table.

In order to construct this table, each node broadcasts a single message to indi-
cate its presence in the neighborhood, and to transmit its parameters. Upon receiv-
ing this kind of message, a node can make local predictions about its neighborhood,
like neighbors’ expected future positions or expected connection time (before be-
ing out of range). Since such predictions will be considered valid for all time, there
will be no need to periodically refresh them. If they happened to be invalid due
to an unpredicted event (a trajectory change), the respective node spontaneously
advertises its new parameters, refreshing the predictions in a event-driven way.

This table consists of several information related to a node’s direct neighbor-
hood: neighboring identities � � � , neighboring mobility, such as ����������������� . It also
contains neighboring stability parameters

�
and neighboring last trajectory change

time
� �

. As a node changes course, KADER considers it as a new node in the net-
work. Since nids cannot be changed, and that we do not forward nodes trajectories
in the network in order to distinguish a node from the same node that has changed
its trajectory, we add a Trajectory Counter (Tc), mentioning the number of trajec-

3We will later use the term tree and zone interchangeably.

4

tory changes a node experienced. Thus, a unique identifier of node � and its trajec-
tory is defined by the pair

�
� � � � ��� F4� � , and will thereafter simply be referred as � .

For example in Figure 3, the neighboring table of node � has three neighbors, which
are � � ����������������������� � � ���K� , � F ��������������������� � � ���B� , � ����������������������� � � ������� .

3.2 Preferred Neighbor Election

A node’s Preferred Neighbor is a dedicated neighbor through which a node
sends, receives, or forwards packets. It therefore represents the link on which
a node sends its traffic. The criterion determining this neighbor depends on the
application needs. We are introducing in this section a link parameter that better
represents the routing orientation of our topology management algorithm. As we
will explain later, a zone in KADER is proactively maintained, and each node keeps
a table that describes the path to reach any destination contained in its zone. Yet,
we do not want these tables to hold the best path in term of hops, or of broadcast
coverage, but in term of power needed to reach a destination. Energy consumption
in manet being a critical issue, it is attractive to use this cost as the link parameter
from a source to a destination such that we can extend the network lifetime.

To do so, we propose to use the stochastic power function reflecting a link en-
ergy cost, and its existence’s uncertainty as the cost of a link between two nodes.
Defining the Quality of Connectivity (QoC) as a function of this cost, the algorithm
selects for each node, a neighbor that has the max QoC during a given interval.
Such neighbor will be thereafter denoted as Preferred Neighbor (PN). We define
a Preferred Link a link created by connecting a node with its Preferred Neighbor.
We will prove in the Appendix that whatever the network topology is, connecting
each preferred link always yields to a forest at every time instant.

3.2.1 An Energy Based Election Criterion

As explained above, we wish to obtain a criterion that is able to satisfy two
objectives. The first one is to represent the energy needed to reach a neighbor. It
is interesting to be able to reach a node using the an energy as low as possible.
The second one is the neighbor’s stability. A node’s stability is the probability
that it has to evolve as predicted, in other words, the probability of not having
changed its initial trajectory. Since KADER does not periodically update its set
of links, we want the links chosen by KADER to remain stable enough such that
reorganization overheads could be kept low. Therefore, KADER will not elect the
closest neighbor, but may decide to choose a further, yet more stable one.

The power cost function, required to transmit between nodes � and + at time
�
,

is defined as � � /5�������
	�,��� / �����E��

where � H��

and for some constants

and
	

. Without loss of generality, we
assume � �
� . The constant

	
depicts the overhead due to MAC control messages

5

and also possible retransmission probability between nodes � and + . Since we do
not consider a MAC layer at this stage, and assume a perfect channel without loss
or collisions and where all sent packets are successfully received, we set

	D���
.

Then,

represents a constant charge for each transmission, including the energy
needed for signal processing and internal computation. However, since KADER
does not put any extra burden on any particular node4,

is common to all nodes

and is not of great significance when comparing power costs. Therefore, without
loss of generality, we assume

�� I
. 5 By choosing power as the cost, one obtains

minimum power routes that help preserve battery life.

Figure 1: Graphical representation of the Power function at node � .

This deterministic criterion translates to a routing table at each node, whose
entries are the minimum-power paths to reach a neighbor as a function of time. A
graphical representation of such table at node � appears in Figure 1. The shaded
area indicates its composite power cost � �������D�������� � � � /
	 ����� ��� � /��#����� ��� � /�
������ �
which is required to reach + � � + - , and +�� . One sees that at times

�
� ,
� - , and

� � , a
new path becomes optimal. To achieve minimum power routing, node � forwards
to node + � for

I�� � � � � , to node + - for
�

�
� � � � - , to node +�� for

� - � � � � � ,
and to node + - for

� � �D� .
This criterion effectively minimizes at node � the energy function

���E� ��
��� � ������� � � (3)

in a distributed manner, where
�
�

denotes the execution time and where the energy
function

�7�
denotes the total energy needed to reach node � from

��� �������
.

4KADER is based on a tree and not on a cluster hierarchy
5Therefore, Power and Distance will later be interchangeably used.

6

However, nodes keep their trajectories only during a short period of time.
Therefore, the topology configuration obtained in Figure 1 might be invalid even
before node � decides to forward to + � . Even worse, a node which happens to be
sub-optimal in term of power may become highly attractive through its high sta-
bility (meaning that even if the link is not optimal, it will remains valid a longer
time). To deal with this problem, we bias the power function toward

� �
since as� ���

nodes will have changed trajectory anyway.
We define

� ������������� ���	� � � � ��

(4)

as the probability that a node � is continuing on its present trajectory, where the
Poisson parameter ���� indicates the average time the node follows a course, and� �

the time its current trajectory began. Figure 7 is an example of the evolution
of �� versus nodes’ maximum velocities in a Random Waypoint Mobility Model
(RWM).

Assuming independent node trajectories, � � /������ � � ������� � � /������ describes the
probability that nodes � and + are continuing on their respective courses at time

�
,

which will be considered as the stability of link ��+ . The modified power cost below
probabilistically weights the power cost � � /5����� to reflect the link’s stability.

�� � /5������� 6 � � /������� � /������ (5)

A low modified power cost favors a low power cost with high stability.
Finally, since we are getting rid of beacons, a node that will shortly leave the

neighborhood must be automatically removed from the neighboring table. We do
so by computing a timeout counter, given a neighbor relative position and velocity.
Upon expiration, it will remove the corresponding neighbor from the table. Be-
sides, we still need to refrain nodes from electing a PN that, either will soon leave,
or will have left when we will need to reach it. To represent the node’s finite range,
we introduce the inverse sigmoid function

 �	��� ��������� �
� ��� ������� ��� � � � � ��������� � ��
 (6)

whose value is equal to
�

until
��� � ��� � � � and drops to

I
when the node runs out

of range. � ��� � � �@� is the neighbor’s time before being unreachable to � , and can
be computed given the neighbor relative position, velocity, and transmission range.
Equations 4 and 6 readily substitute in the algorithm described before:

7

�� � /5������� 6 � � /������� � /5����� �
 �	��� � /5����� (7)

� 6 � � � ��� �
�� � � � � �
A5� / � - �DC3� / �E�GF4� / � �
� ��� ������� ��� � � � � ��������� � � �

� 6 � � � ����� � �
�� � ��� ��� ��� � � � �� ����� �
A5� /B� - �DC3� / �E�GF4� / (8)� �
� ��� ������� ��� � � �
	��
������ � ����� � ��������� � ���

Now we have seven parameters
A � / � C3� / � F4� / , � � /

,
� � /

,
� ��� � � � / and

F ��" � describ-
ing

�� � /������ as criteria for a preferred link between two nodes. The constant pa-
rameter

F ��" � , which controls the transition slop between 1 and 0, is in fact
common to every node and fixed at the beginning of the simulation. Figure 2 is
an example of a typical quality of connectivity table using the modified power
cost. The shaded area still represents the evolution of the modified power cost,�� �������G� ������ � �� � /
	 ����� � �� � /�� ����� � �� � /�
������ � , between next-hop nodes + � , + - and +�� ;
Node � forwards to node + � for

I � � � �
� , to node + - for

�
�
� � � � - , and

to node +�� for for
� - �D� .

Finally, since we are minimizing the modified power cost in order to obtain the
best link between two nodes for all time, we define the Quality of Connectivity as

� �� ������� 6 �
�� � / ����� (9)

Then, by minimizing a link’s modified power cost, we are in fact maximizing its
QoC.

Figure 2: Graphical representation of the QoC function at node � .

3.2.2 Election Algorithm

In the previous section, we described a criterion based on which a node could
obtain energy saving yet stable links. However, since our protocol predicts future

8

topology configurations, when a node finds such links, KADER needs to determine
how long this link will remain optimal compared to other neighbors’ links. In this
section, we introduce a time interval, called activation, during which a link between
two nodes remains optimal. Therefore, a link between a node and its neighbor
will be activated over a certain period, then later de-activated when another link
becomes optimal. The constructed forest will then be the set of active links at a
certain time.

Based on the information provided by the neighboring table, a node � can de-
termine its preferred neighbor + at time

�
� , which represents the time at which +

has the biggest QoC over all � other neighbors of � . The criterion is defined as

��� ����� �
��� + � � � � �� � /���� �

��� �������� �
	 � � � �� � � ��� �
���

We further define a fixed time interval $ � � � � - % , called activation, in which + remains
� ’s PN. We say that + is activated by � from

�
� to

� - , and during this time interval, +
has the biggest QoC among � ’s neighbors. An activation between node � and node+ over an interval $ � � � � - % is defined as

AKF4�B� ��� + � $ � � � � - % ��� ����� �
� "�
 ���
5��� ����� �

��� +�����L� -�� ��� ��� �J� "�
 ��� ��� ��������� +
Therefore, the set (� , + , AKF4�B� ��� + � $ � � � � - %) uniquely identifies a preferred link be-

tween node � and node + activated from
�

� , and
� - , and will thereafter mentioned

as ��+�� � 	�� � ��� .
Although a node can only have one PN at a time (see Section 3.2.1), it can have

several PNs over time, with mutually exclusive set of activations. This means that
a node can locally predict its actual and future PNs, conditioned over the lack of
any unexpected topology changes. As time goes on, nodes will switch from PNs to
PNs, always maximizing the QoC. The set of � ’s PNs, denoted ��� " �B�3� , regroups
all actual and predicted future PNs of node � . This set is defined as :� + � �

C3� + � ��� " �B� � � � �� �
� � � - "�
 ��� AKF4�B� ��� + � $ � � � � - %�����

Note that ��� " �B�@������� uniquely defines a PN of node � at time
�
.

Finally, note that ��� " �B�@� is kept valid until further notified, meaning that,
unless � receives a new trajectory message from one of its neighbors, this set stays
optimal. Upon reception of such messages, � is allowed to revise its previous de-
cision, so that the set remains optimal (see Section 3.6). Furthermore, thanks to
the intrinsic property of the QoC graph from which activations are obtained, the
set of activations contained in ��� " �B��� are mutually exclusive (see Figure 2 where$ I � � �

%
 $ � � � � - % ���
).

Consequently the algorithm selects for each node � in the network topology
and at each time

�
, a neighbor that has the biggest QoC in the neighborhood. We

9

say that node � is the preferred neighbor of node + during a defined time interval,
iff + is in the neighborhood of � and has the biggest QoC among its neighbors
during this time interval. Therefore, each node elects exactly one PN at each time
and can be chosen as the PN of many nodes. Thus, the way in which a node is
elected follows a monotonic increasing function depending only on its QoC. A
time adapting forest is built after connecting all activated links. In the Appendix,
we prove that, whatever the network topology is, this approach always yields to a
forest at every time instant.

3.3 Forest Construction

For every time instant, a forest is constructed by connecting each node to its
PN. However, since every node knows in advance the set of its actual and future
PNs, this process can be performed without any exchange of messages. Therefore,
a self-adapting forest is built when, at each time instant, each node is connected to
its activated PN. We depict hereafter the process of notifying neighboring nodes of
their PN election.

In order to construct preferred links and consequently the forest, each node
generates a table called Intra-Zone table. Indeed, as soon as node � determines
the set of its PNs, it must notify its neighbors, especially its PNs, of its decision.
Therefore, node � sends a PN message ��� ��� � ��� ��+ � � 	 � � ��� � � � � �
 � � � � � . It then updates
its Intra-Zone table regarding its PNs. This message indicates that node � is electing
node + as its PN with the activation

AKF4�B� ��� + � $ � � � � - % and node � as its future PN with
the activation

AKF4�B� ��� � � $ � �#� ��� % . Note that
� AKF4�B� ��� + � $ � � � � - %
 GAKF4�B� ��� � � $ � �#� ��� % �<� �

and
� AKF4�B� ��� + � $ � � � � - %��DAKF4�B� ��� � � $ � �#� ��� % �>� $ � � � ��� % . Upon reception of � ’s message,

node + check whether it has been chosen as the PN of � . If so, it also updates its
intra-zone table regarding � . This means that a tree branch is built between node �
and its preferred neighbor + during $ � � � � - % , and a future tree branch between � and �
is also created over $ � � � ���4% . Besides, the preferred links ��+ � � 	�� � � � and � � � �
 � � � � belong
to a different tree, since

AKF4�B� ��� + � $ � � � � - % and
AKF4�B� ��� � � $ � �#� ��� % are mutually exclusive.

Therefore, those edges become a preferred link, and the set of preferred links in
each neighborhood generates the set of preferred paths in the network.

3.4 Self-Adaptive Intra-Zone Clustering

KADER aims at regrouping closed-by nodes into a zone in order to provide
energy efficient communications. In previous sections, we saw how nodes are able
to elect and reach their PNs, and how the forest is constructed. At this phase, we
illustrate nodes’ attempt to expand their own view about the tree they belong to by
completing an intra-zone table containing the best path to reach all nodes in their
zone. This process creates and proactively maintains local minimal dominating
sets (MDSs), each local MDS representing a zone.

When a node � gets elected by a neighbor + , it then locally notify all its neigh-
bors of this election. To do so, � sends a so called Learned PN message

10

����A��
�
� � ��� ��� � ��� ��+ � � 	�� � � ��� + � � �
 � � � ��� +�� � �	� � ��
 � �

 � ��� � �	� � ��
 � � ��� � ��� � � 	 � � � , indi-

cating that node + with
AKF4�B� ��� + � $ � � � � - % has nodes � with

AKF4�B� +#� � � $ � ��� ���4% and �
with

AKF4�B� +#��� � $ ��� � ���4% as its PNs, and node � with
AKF4�B� ��� � � $ ��� � ���3% has node � withAKF4�B� ����� � $ ��� � � �

�4%
as its PN.

Definition 1 Let node � be a Preferred Neighbor of node + , and a Learned Pre-
ferred Neighbor of node � . We formally define an activation

AKF4�B� +#� � � $ � ��� ��� % as
valid with respect to an activation

AKF4�B� ��� + � $ � � � � - % , iff
� AKF4�B� ��� + � $ � � � � - %
 AKF4�B� +#� � � $ � �#� ��� % � ����

.

A direct consequence of Definition 1 is that ��� + and � are belonging to the same
tree over the activation

� AKF4�B� ��� + � $ � � � � - %
 GAKF4�B� +#� � � $ ��� � ��� % � , while
AKF4�B� +#� � � $ � ��� ���4%� � AKF4�B� ��� + � $ � � � � - %
 GAKF4�B� +#� � � $ � ��� ���4% � is considered as a separate tree connecting

only + and � .
Upon reception of this message, each tree member updates its intra zone table

iff PNs learned through this message have valid activations, and re-advertises to its
neighbors if it is not a leaf node6. For this purpose, each node generates another
field in its intra zone table called Learned Preferred Neighbor (Learned PN) in
order to keep nodes that have been learned to be a tree member. We mention
again that node + is chosen to be the PN of � over a time interval $ � � � � - % , and

� has sent a PN message to inform its neighborhood of its elected PN. Among
the neighboring nodes of � , the PN + forwards � ’s decision to nodes that hold a
tree edge with + , say � , activated over $ � � � ��� % , by setting its Learned PN message
to

����A��
�
� � ��� / � � +#� + � � � 	�� � � � � . Then, the local view of � ’s tree is that, over� AKF4�B� ��� + � $ � � � � - %
 � +#� � � $ � �#� ��� % � , � is reachable through + .

If node + is chosen as the PN of many nodes through a period of time, then + for-
wards their decisions encapsulated in a Learned PN message, that is

����A��
�
� � ��� /

=
� +#� + � � � 	�� � ����� + ��� � �
 � � � ��� + ��� � � �	� � ��
 ���

 � . It indicates that node + is forwarding the

new learned PNs or new tree members + � � � 	�� � ����� + ��� � �
 � � � ��� + ��� � � �	� � ��
 ���

 on the tree.
Other neighboring nodes of � add + to the Learned PN field corresponding to � in
their intra-zone table if node � already exists in their table over a valid activation.
In this way, we say that + is learned to be the PN of � . Note that node � is also
learned by the neighboring nodes of + . Node � creates a Learned PN message if
the set of PNs learned by � is non-empty. This set is denoted by

����A��
�
� � ��� � .

Node � forwards the
����A��

�
� � ��� � , if it is not a leaf node. Hence, the intra-zone

table is only updated if the information originates from PN members and not from����A��
�
� � ��� members or an ordinary neighbor.

For example, in Figure 3, let us consider the scenario where node � wants to
communicate to one of the nodes belonging to its tree during $ I � �BI % . According to
its Intra Zone table (see Table 1(a)), node � can reach nodes

A � C �� K��! � � � + through
node � over $ I � �BI % , while other nodes ��� F are directly reachable. Since node � is a

6A leaf node is a node which only has a single neighbor and which is never a PN.

11

c g

k

d u

h

b

f r

v

q

a

i
p

s

n

[0,10]

[9,10]

[0,10]

[0,10] [0
,10

]

[0
,1

0]

[10,20]

[0,10]
[0,6]

[0
,1

0]

[10,20] [10,20]

[10,20]

[10,20]

Actual Tree
Future Branch
Bridge
Gateway

j

w

[6,10]

l

o

e

m

[0,9]

[0,10]
[0,10]

[9,10]

Figure 3: Constructed forest

PN Learned PN
� � � � �

� � A � � � �
� � � C � � � �

� �
 � � � �

� � ��! � � � �
� �

� � � � �
� � � + � � � � � � � � � �

� �
� � � � �

� � �3" � � � �
� �

� � �
� � - � � � � �

� � - � � � � � �
� � - � �

� � �
� � - � � � � � �

� � - � �F � � � �
� �

-

(a) �������
	 �
� �

PN Learned PN
! � � � �

� � � � � � �
� �+ � � � � �� � � � �

� � F � � � �
� � ��� � � � �

� �+ � � � �
� �

-C � � � �
� �

-A � � � �
� � " � � � �

� � ��� � � � �
� �

 � � � �
� �

-

(b) �������
	 �
���

Table 1: Intra-zone table of nodes � and � regarding Figure 3

12

future PN of � (� being the actual one), it is not yet accessible to nodes in � ’s tree
(at least not through �). So, regarding to � �

� �#A � � � , the next hop to reach nodesA � C �� K��! � +#� � is node � and not
F ��� . However, node � does not see the change in

the topology that arises at
� ���

between nodes � , ! , and + . � initially had + as
Learned PN, thus reachable through ! from over $ I � � % , but then, node + switched
and elected � as its PN from over $ � � �BI % . Note that this had been done without
any messages exchanged, since this configuration had been predicted by the three
nodes during the neighborhood discovery.

Then, as shown in Table 1(a) and 1(b), the view of a node, say � , about its
tree consists of two levels: ��� ,

����A��
�
� � ��� . The ��� level contains the nodes

holding tree-edges with node � . The second level,
����A��

�
� � ��� , contains nodes

that are learned by the ��� level. In fact, node � can reach them via their associated��� in its intra-zone table. Therefore, node � only knows the next hop for its second
level nodes (see Figure 4). Actually, each entry in � �

� �#A � � � can be seen as a
branch of � , that is ��� , � ����A��

�
� � ��� . Thus, each node obtains a partial view

of its tree in the sense that it does not know the detailed structure of its tree.
For example, in Figure 3 where node � is only able to see one route to reach + ,

node � sees two different and exclusive paths to reach + , one through ! and another
directly. Nevertheless, this does not have any influence on the Learned PNs of � ,
since they still need to route through it anyway. Therefore, � is called critical
vertex, since all up-link nodes (up-link with respect to node +) do not see this
change in the topology, and do not receive any message about it. The topology
reorganization scope in KADER is limited to these critical vertices, such that the
complexity remains acceptable. Finally, note that from

� � $ �K� �BI % , the tree, which
node � belongs to, is expanded to reach nodes " and � , such that node � will learn
about � and " existence for

� � $ �K� �BI % . Again, this procedure does not need any
message, as it had already been predicted during the initial topology creation.

b

a

q
w

r

j

k

c

f

(a) Node �

f

b

a

q
w

r

j

c

k

(b) Node �

Figure 4: Tree view of nodes � and � .

13

3.5 Self-Adaptive Inter-Zone Clustering

In the previous section, we explained how KADER is able to create and main-
tain MDSs. However, we did not describe how these sets are kept connected to
each others. Besides, the objective of our algorithm is not only to create MDSs,
but to connect them as well in order to obtain a Connected Dominating Set (CDS).
In this part, we show how KADER uses a different table, called Inter Zone table,
that regroups the connections to different surrounding zones. Every node belong-
ing to this table are named as gateway and the link connecting two zones as bridge.
Until convergence, PN and Learned PN messages are exchanged to fill Intra Zone
and Inter Zone tables attached to every node. We further emphasize that these
messages are not periodic, but sent only when new information about a zone or sur-
rounding zones appears. Then the size of different zones will grow and shrink over
time, which makes them self-adapting to the changing topology without message
exchanges unless an unexpected topology change happens (trajectory change).

At the beginning, every neighbors of a node � are put in its Inter Zone table
during their full initial activation, say $ � � ��� - % , which is defined as the connection
life between the two nodes or the time two nodes remain direct neighbors. Then,
as a node � succeeds to add some neighbor + to its tree and updates its intra zone
table over an activation $ � � � � - % , it therefore prunes + ’s initial activation. The re-
maining activation is then

� $ � � ��� - % � $ � � � � - % � . During this time, node + is still not
considered belonging to the same tree as � . Node + then appears in the Intra Zone
table over $ � � � � - % and in the Inter Zone table over

� $ � � ��� - % � $ � � � � - % � . Every time �
receives PN or Learned PN information about + over some valid activation, it will
further prune its Inter Zone activations. Note that whatever the configuration is,� � � AKF4� "�� � ����� � �����4� � � � AKF4� "�� � � � � � ����� � � $ � � ��� - % .

For example, in Figure 3, node � belongs to the inter-zone table of node �
over activation $ �BI � � I % �� $ I � �BI % , and node " is in the inter zone of node

A
over

the activation $ I � � % . At time � , both " and � will be reachable from
A
, thus are

Learned PNs to
A
, further increasing node � ’s zone. We say that for

� � $ I � � % ,
node " will is a gateway and the link

A " is a bridge. In Figure 3, the inter zone
table of node

A
has one member activated from $ I � � % , � " � � � � � � .

3.6 Impact of Trajectory Knowledge on Zone Maintenance

Zone maintenance consists of several tasks, such as removal of irrelevant links,
acquisition of new neighbors, notification of link errors. Most of topology control
algorithms perform these tasks periodically. What makes KADER unique is its
ability to do these tasks in a complete per-event manner (i.e. non periodically).
Since it predicts future topology configurations, KADER triggers a zone main-
tenance only when those predictions appear to have failed, in other words, when
nodes changed their trajectories. In this section, we will show how a particular mes-
sage, called New Trajectory (NT) message, is used to inform neighboring nodes
of any topology changes, and to trigger a local maintenance process. Therefore,

14

KADER’s zone maintenance can be seen as per-event based.
As mentioned before, node trajectories information are only valid during a

short period of time. Then, since a node is unable to predict the time its neighbors
change their trajectories, it biases the QoC to reflect the decreasing probability of
the link existence. Yet, we still consider this link valid as long as not notified oth-
erwise. Consequently, when a node is changing its trajectory, it must inform its
neighbors about the induced topology change. All links it formerly had with its
direct neighbors are invalidated. To do so, it sends a New Trajectory (NT) message
to all its neighbors and piggybacks its new coordinates and velocity. Therefore,
its neighbors are able to adapt their trees to this event. Eventually, the algorithm
carries out the PN election phase again.

Upon reception of a NT message from + , node � updates its neighbor parameters
and recomputes the Quality of Connectivity of the new node. All activations to +
being invalid, � must notify its neighbors that the topology has changed. To do
so, it sends a Remove (RM) message including the node that changed its trajectory
as well as all Learned PNs depending to it. To do so, node � prunes its actual
and future trees by cutting the actual and future branches connecting � to + , which
consequently cuts all preferred links belonging to the pruned branches as well.
Then, in order to re-connect themselves to a tree, + and � run a new election round.
Even if � did not change course, it is then allowed to reconsider its previous decision
given the new topology so that it always keeps an optimal tree. As mentioned
before, we call critical vertex a vertex on which down-link topology changes do
not truly affect the view up-link nodes have about the tree. Hence, the topology
reorganization scope in KADER is limited to these critical vertices. When a RM
message does not have any influence on the view up-link nodes have about their
trees, it is not forwarded, and we therefore say that a RM message has reached a
critical vertex.

For example, in Figure 4, if ! looses its link with � during the actual activation
and reconnects with + , a change takes place in the view node � keeps of its tree
(see Figure 4(a)), therefore � will forward the RM message to its neighbors. But
the view node � has of its tree (see Figure 4(b)) does not change, thus it does not
forward the message to

F
. By doing so, we only remove links that really are affect-

ing the view of the topology a node has. In fact, we limit the maintenance’s scope.
The size of the trees as well as their configurations are adapted to the new topol-
ogy and are valid until another node changes course, creating an event-driven zone
maintenance. Finally, we emphasize that by keeping the trajectory change’s rate
of a node below the beaconing rate of ordinary topology management protocols,
KADER ensures a decrease in the topology management messages, thus keeping
more resources for payload traffic.

15

4 KADER’s Connected Dominating Set

By creating zones (see section 3.4), KADER builds Minimal Dominating Sets,
and by keeping these zones connected with each others (see section 3.5), it obtains
a Connected Dominating Set (CDS). In this section, we study KADER’s computed
CDS with parameters such as average zone diameter (i.e. in term of number of
hops), average number of zones in the network, average ratio of remaining edges,
average ratio of PNs in the network. The following results are obtained by mea-
suring the metrics after the population of mobile nodes was distributed uniformly
on a grid of 2000mx2000m with each node having a transmission range of 250m.
Moreover, each node has a different stability value, but nodes’ average stability is��� � � � I " . We will compare KADER in two different cases : variable density
and constant density.

We begin by showing in Figure 5 the topology created by KADER from an
arbitrary graph � (see Figure 5(a)) to a forest and trees (see Figure 5(b)), where
solid lines are tree edges and dashed lines are bridges connecting different trees.

������������

������������

��������

	�		�	

������������

�

�
��

������������

��������
��������

��������

��������

��������
������������������������ ������ �

 � !�!!�!""#�##�#$�$$�$%�%%�%&�&&�&

'�''�'(�((�()�))�)**
+�++�+,�,,�,

-�--�-.�..�.
/�//�/00

1�11�122

3�33�344

5�55�566

7�77�788

9�99�9::
;�;;�;<<

=�==�=>>
?�??�?@@

A�AA�AB�BB�B

C�CC�CD�DD�D
E�EE�EF�FF�F

G�GG�GH�HH�H

I�II�IJ�JJ�J

K�KK�KL�LL�L

M�MM�MN�NN�N
O�OO�OPP Q�QQ�QR�RR�R

S�SS�ST�TT�T

U�UU�UVV

W�WW�WX�XX�X

Y�YY�YZ�ZZ�Z
[�[[�[\\

]�]]�]^^

_�__�_``

a�aa�ab�bb�b

c�cc�cd�dd�d
e�ee�ef�ff�f

g�gg�ghh

i�ii�ijj
k�kk�kll

m�mm�mnn

o�oo�opp

q�qq�qrr

s�ss�ss�st�tt�tt�t

u�uu�uvv

w�ww�wx�xx�x

y�yy�yzz

{�{{�{||

}�}}�}~�~~�~ ������������

������������

������������

��������������������

��������

������������

��������

������������

��������

������������

������������

������������

��������

��������������������
������ � �

¡�¡¡�¡¢¢

£�££�£¤�¤¤�¤

¥�¥¥�¥¦¦

§�§§�§¨¨
©�©©�©ª�ªª�ª

«�««�«¬¬ ­�­­�­®®
¯�¯¯�¯°�°°�°

±�±±�±²�²²�²

³�³³�³´�´´�´

µ�µµ�µ¶¶·�··�·¸¸ ¹�¹¹�¹ºº
»�»»�»¼�¼¼�¼

½�½½�½¾�¾¾�¾
¿�¿¿�¿À�ÀÀ�À

Á�ÁÁ�ÁÂ�ÂÂ�Â
Ã�ÃÃ�ÃÄÄ

Å�ÅÅ�ÅÆ�ÆÆ�Æ

Ç�ÇÇ�ÇÈ�ÈÈ�È

É�ÉÉ�ÉÊÊ

Ë�ËË�ËÌ�ÌÌ�Ì

Í�ÍÍ�ÍÎÎ Ï�ÏÏ�ÏÐÐ Ñ�ÑÑ�ÑÒ�ÒÒ�Ò
Ó�ÓÓ�ÓÔ�ÔÔ�Ô

Õ�ÕÕ�ÕÖÖ×�××�×Ø�ØØ�Ø

Ù�ÙÙ�ÙÚÚ

Û�ÛÛ�ÛÜ�ÜÜ�Ü

Ý�ÝÝ�ÝÞ�ÞÞ�Þ

ß�ßß�ßàà

á�áá�áâ�ââ�â

ã�ãã�ãä�ää�ä å�åå�åæ�ææ�æ

ç�çç�çèè

é�éé�éê�êê�ê
ë�ëë�ëì�ìì�ì

í�íí�íîîï�ïï�ïððñ�ññ�ñò�òò�ò

ó�óó�óô�ôô�ô õ�õõ�õöö

÷�÷÷�÷øø
ù�ùù�ùú�úú�ú

û�ûû�ûüü
ý�ýý�ýþþ

ÿ�ÿÿ�ÿ������

�������
�

������������

������������

������	
	

�

�
������

������
�

�

�������
�

������������

�������
�

������������

�������
�

�������
�

������������

������������

�������
�

 � � !
!

"�""�"#�##�#

$�$$�$%�%%�%

&�&&�&'�''�'

(�((�()�))�)

*�**�*+�++�+

,�,,�,-
-

.�..�./
/

0�00�01
1

2�22�23
3 4�44�45�5

5�5

6�66�67
7

8�88�89
9

:�::�:;�;;�;

<�<<�<=
=

>�>>�>?
?

@�@@�@A�AA�AB�BB�BC�CC�C

D�DD�DE
E

F�FF�FG�GG�G

H�HH�HI
I
J�JJ�JK
K

L�LL�LM�MM�M

N�NN�NO�OO�O

P�PP�PQ
Q

R�RR�RS
S

T�TT�TU
U

V�VV�VW�WW�W

X�XX�XY�YY�Y

Z�ZZ�Z[
[

\�\\�\]�]]�]

^�^^�^_
_

`�``�`a�aa�a

b�bb�bc
c

d�dd�de�ee�e

f�ff�fg�gg�g

h�hh�hi�ii�i

j�jj�jk�kk�k
l�ll�lm�mm�m

n�nn�no�oo�o

p�pp�pq�qq�qr�rr�rs�ss�s

t�tt�tu�uu�u

v�vv�vw
w x�xx�xy

y

z�zz�z{
{

|�||�|}
}

~�~~�~�
�

������������

�������
�

������������

�������
�

�������
�

������������

������������

�������
�

������������

�������
�

(a) An arbitrary graph

������������

������������

�������
�

�������
�

������������

�������
�

 � � ¡�¡¡�¡

¢�¢¢�¢£
£

¤�¤¤�¤¥
¥

¦�¦¦�¦§
§

¨�¨¨�¨©
©

ª�ªª�ª«
«

¬�¬¬�¬­�­­�­

®�®®�®¯�¯¯�¯

°�°°�°±�±±�±
²�²²�²³
³

´�´´�´µ�µµ�µ
¶�¶¶�¶·�··�·

¸�¸¸�¸¹�¹¹�¹ º�ºº�º»
»

¼�¼¼�¼½�½½�½

¾�¾¾�¾¿�¿¿�¿

À�ÀÀ�ÀÁ
Á

Â�ÂÂ�ÂÃ
Ã

Ä�ÄÄ�ÄÅ
Å

Æ�ÆÆ�ÆÇ
Ç

È�ÈÈ�ÈÉ
É

Ê�ÊÊ�ÊË
Ë

Ì�ÌÌ�ÌÍ
Í

Î�ÎÎ�ÎÏ
Ï

Ð�ÐÐ�ÐÑ
Ñ

Ò�ÒÒ�ÒÓ�ÓÓ�Ó

Ô�ÔÔ�ÔÕ�ÕÕ�Õ

Ö�ÖÖ�Ö×�××�×

Ø�ØØ�ØÙ�ÙÙ�Ù

Ú�ÚÚ�ÚÛ�ÛÛ�Û

Ü�ÜÜ�ÜÝ�ÝÝ�Ý

Þ�ÞÞ�Þß�ßß�ß

à�àà�àá
á â�ââ�âã�ãã�ã

ä�ää�äå�åå�å

æ�ææ�æç
ç

è�èè�èé�éé�é

ê�êê�êë�ëë�ë

ì�ìì�ìí
í

î�îî�îï
ï

ð�ðð�ðñ
ñ

ò�òò�òó�óó�ó

ô�ôô�ôõ�õõ�õ

ö�öö�ö÷�÷÷�÷

ø�øø�øù
ù

ú�úú�úû
û

ü�üü�üý
ý

þ�þþ�þÿ
ÿ

�������
�

�������
�

������
���
������
���

�������
�

	�		�	
�

�

�������
�

�

�
�
�

������������ ���������
���

������������

������������

�������������������
�

�������
�

������������

������

!�!!�!"�""�"

#�##�#$
$

%�%%�%&�&&�&

'�''�'(�((�(

)�))�)*�**�*

+�++�+,
,

-�--�-.�..�.

/�//�/0
0

1�11�12�22�2

3�33�34
4

5�55�56�66�6

7�77�78
8

9�99�9:
:

;�;;�;<�<<�<

=�==�=>
>

?�??�?@
@

A�AA�AB�BB�B

C�CC�CD�DD�D

E�EE�EF�FF�F

G�GG�GH
H

I�II�IJ
J
K�KK�KL
L

M�MM�MN�NN�N

O�OO�OP�PP�P

Q�QQ�QR�RR�R

S�SS�ST�TT�T

U�UU�UV
V

W�WW�WX�XX�X

Y�YY�YZ�ZZ�Z

[�[[�[\
\

]�]]�]^�^^�^

_�__�_`
`

a�aa�ab
b

c�cc�cd�dd�d

e�ee�ef�ff�f

g�gg�gh
hi�ii�ij�jj�j

k�kk�kl
l

m�mm�mn�nn�n

o�oo�op�pp�p

q�qq�qr
r

s�ss�st�tt�t

u�uu�uv�vv�v
w�ww�wx�xx�x

y�yy�yz
z

{�{{�{|�||�|

}�}}�}~�~~�~

�������
�

�������
�

������������

������������ ���
�����

�������
�

������������

�������
�

�������
�

������������

�������
�

������������

������������

�������
�

������������

������������

������

¡�¡¡�¡¢�¢¢�¢

£�££�£¤
¤

¥�¥¥�¥¦�¦¦�¦

§�§§�§¨
¨

©�©©�©ª
ª

«�««�«¬�¬¬�¬

­�­­�­®�®®�®

¯�¯¯�¯°
°

±�±±�±²
²

³�³³�³´�´´�´

µ�µµ�µ¶�¶¶�¶

·�··�·¸�¸¸�¸

¹�¹¹�¹º�ºº�º

»�»»�»¼�¼¼�¼

½�½½�½¾
¾

¿�¿¿�¿À
À

Á�ÁÁ�ÁÂ
Â

Ã�ÃÃ�ÃÄ
Ä Å�ÅÅ�ÅÆ�Æ

Æ�Æ

Ç�ÇÇ�ÇÈ
È

É�ÉÉ�ÉÊ
Ê

Ë�ËË�ËÌ�ÌÌ�Ì

Í�ÍÍ�ÍÎ
Î

Ï�ÏÏ�ÏÐ
Ð

Ñ�ÑÑ�ÑÒ�ÒÒ�ÒÓ�ÓÓ�ÓÔ�ÔÔ�Ô

Õ�ÕÕ�ÕÖ
Ö

×�××�×Ø�ØØ�Ø

Ù�ÙÙ�ÙÚ
Ú
Û�ÛÛ�ÛÜ
Ü

Ý�ÝÝ�ÝÞ�ÞÞ�Þ

ß�ßß�ßà�àà�à

á�áá�áâ
â

ã�ãã�ãä
ä

å�åå�åæ
æ

ç�çç�çè�èè�è

é�éé�éê�êê�ê

ë�ëë�ëì
ì

í�íí�íî�îî�î

ï�ïï�ïð
ð

ñ�ññ�ñò�òò�ò

ó�óó�óô
ô

õ�õõ�õö�öö�ö

÷�÷÷�÷ø�øø�ø

ù�ùù�ùú�úú�ú

û�ûû�ûü�üü�ü
ý�ýý�ýþ�þþ�þ

ÿ�ÿÿ�ÿ������

������������������������

������������

������	
	
�

�
�

�

������

�������
�

�������
�

������������

�������
�

������������

�������
�

�������
�

������������

������������

 � � !
!

"�""�"#�##�#

$�$$�$%
%

(b) Constructed forest

Figure 5: KADER’s Connected Dominating Set

The graphs in Figure 6(a) and 6(b) show the edges’ ratio the topology algorithm
is able to remove versus the number of nodes and preferred neighbors ratio versus
the number of nodes. We can see that KADER is able to remove 65% of the total
number of edges. By getting rid of unnecessary links, KADER helps reducing the
broadcast burden in the network, and the scalability of routing protocols. Besides,
unlikely to other approaches, the objective of KADER is not necessary to obtain
the minimum number of edges, since intra-zone routing is obtained at no extra cost.
It is rather designed to create stable zones, such that its proactive maintenance is
reduced. As seen in 6(b), KADER is able to remove 45% of PNs, which helps to
reduce the broadcasting overhead in the network. Therefore, by removing 65% of
unecessary links and by only keeping a backbone of 55% of router nodes, KADER

16

50 100 150 200 250 300 350 400 450 500
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

of Nodes

R
em

ov
ed

 E
dg

es
 R

at
io

KADER Constant Density
KADER Variable Density

(a) Removed Edges Ratio

50 100 150 200 250 300 350 400 450 500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

of Nodes

R
em

ai
ni

ng
 P

N
s

R
at

io

KADER Constant Density
KADER Variable Density

(b) Remaining PNs Ratio

50 100 150 200 250 300 350 400 450 500
1.5

2

2.5

3

of Nodes

D
ia

m
et

er
 o

f Z
on

es
 (

H

op
s)

KADER Constant Density
KADER Variable Density

(c) Diameter of Zones

Figure 6: Properties of KADER’s Connected Dominating Set

17

proves to be broadcasting efficient.
Then, the graph in Figure 6(c) shows the diameter of a zone versus the num-

ber of nodes in the network. The diameter of a zone is defined as the length of
the path that has the longest hop count. If the zone diameter is fixed, then we
can place an upper bound on the Intra zone end-to-end delay. We clearly see in
Figure 6(c) that zones in KADER are relatively stable, in both a variable and a
constant density. This comes from its distance parameter in the electing criterion.
Since KADER always tries to create a link between nearby neighbors, neither den-
sity nor the number of nodes have a big impact on the zone’s diameter. Note that
the longer the zone diameter becomes, the more proactive the protocol is, and vice
versa. As a consequence, KADER tends to reduce its reorganization complexity
by limiting its scope only to the closest nodes, at a cost of extra overheads for
intra zone communications. Finally, this graph shows that the electing criterion
gives an upperbounded zone length. This is important since KADER’s complexity
overhead is directly proportional to this length.

5 Overhead Complexity

It is important to compare the communication complexity of that algorithm for
topology creation. The communication complexity describes the average number
of messages required to perform a protocol operation. Note that this comparison
does not include the complexity of route discovery 7. This issue is not covered
in this paper. We have selected three related protocols: MPR, TMP and DDR.
We consider a network with N nodes. For the three protocols, let � be the rate of
topology control generation, and � be the period of beaconing, or hello transmis-
sion. In the KADER case, � is replaced by the trajectory change’ rate of a node,

�� ,
which trigger the topology control. As mentioned before, we do not use beacons,
therefore � does not have any significance in our algorithm.

In KADER, the network is partitioned into � zones, and each zone will have�� nodes. The amount of communication overhead to build and maintain the forest
is � since sending a PN election message, a forest will be constructed. To construct
a zone, each node generates (d-1) messages to forward the learned PN or removed
PN, where � is the hop-wise zone diameter. Therefore, each zone generates ���
	��� �� messages. Since there exists � zones in the network, the overall number of
generated forward messages becomes ���
	 ��� � . In conclusion, the total amount
of communication overhead for creating the topology produced by KADER is

�
���������� �
� ����� ��� � ����� A � ���

where � � �
(see Figure 6(c)).

7KADER being zone-wise proactive, it is able to find the intra-zone paths without any increase
in complexity.

18

It can be shown that the complexity of KADER is always smaller than MPR,
TMPO, or even DDR (see Fig 8). In MPR, the communication overhead is

 ��� � �
� � � ��� � � � ����� A � ����� � ��� � . � � is the average number of retransmis-
sions in an MPR flooding and is proportional to the number of nodes, whereas
in KADER, � reaches a threshold. TMPO is creating a communication overhead
of

	� ����
 � � � � �
��� ���
 ��� � � � � ����� A � ��� 8, where � ���
 � is the av-
erage number of cluster-heads in the MDS. We can see that, similar to MPR, the
complexity of TMPO is always larger than KADER. Finally, similar to KADER,
DDR partitiones the network � in � zones of length � , and each zone generates
��� 	 ��� �� messages. However, DDR needs periodical messages. Therefore, the
total communication overhead in DDR is

 � � � � � � � � ��� 	 ��� � � ����� A � ��� ,
where � ��� . Since �
�������� � � � � � , KADER has a smaller communication
overhead than DDR. And by removing periodic messages (which saves � � over-
head messages) the communication overhead of KADER is even further reduced.

10 20 30 40 50 60
0

10

20

30

40

50

60

70

80

Maximum Speed

A
ve

ra
ge

 T
ra

je
ct

or
y

Le
ng

th

PAUSE = 0[s]
PAUSE = 2[s]
PAUSE = 4[s]

Figure 7: Average nodes’ trajectory length (
��) under the Random Waypoint Mo-

bility Model

Figure 7 depicts results we obtained when attempting to have an insight of
fair values for

�� . The benefits of KADER depending greatly on it, this might be
interesting to try to fix a range for this parameter. We simulated with ns-2 a mobile
ad hoc network moving according to a Random Waypoint Mobility Model. We
obtained these values by computing the average time between the moment a node
starts heading to its final destination and the time its reaches it. We simulated it
with different PAUSE times, and with nodes’ maximum velocities variating from
10m/s to 60m/s. The results are interesting since even with a maximum velocity of
60m/s, nodes have an average trajectory length of 20s.

Figure 8 shows the complexity overhead of KADER, TMPO, MPR and DDR
versus the number of nodes. We can see that as the size of the network grows, so

8We are assuming a simplified case, where we are not considering the complexity overhead trig-
gered by gateways and doorways, which further increases TMPO complexity.

19

0 100 200 300 400 500
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

of Nodes

C
om

pl
ex

ity
 o

ve
rh

ea
d

DDR Complexity overhead
MPR Complexity overhead (R

N
=4)

TMPO Complexity overhead (|MDS|=6)
KADER Complexity overhead 1/β=30
KADER Complexity overhead 1/β = 5
KADER Complexity overhead 1/β = 1
KADER Complexity overhead 1/β = 0.5

Figure 8: Comparision of KADER’s complexity overhead with other topology con-
trol protocols

is the overhead. However, MPR, TMPO and DDR never reach the low complexity
obtained by KADER. Since KADER’s overhead is proportional to the factor

�� ,

we computed it for four different values of
�� : 0.5s, 1s, 5s and 30s. These values

are smaller than what Figure 7 could suggest. We did this on purpose in order to
consider penalizing scenarii for KADER. When

�� � I
 � � , this means that, every
half a second, the CDS needs to be updated since a node changed its trajectory.
In this configuration, we can see that KADER’s complexity overhead is similar to
MPR’s using a periodic update of half a second too. However, as we increase

�� ,
therefore making use of KADER’s predictions, we see that our protocol outclasses
all other ones.

To conclude, we found that a fair value for
�� could be established to 30s. This

shows KADER’s low complexity overhead compared to other topology control
protocols, and further justifies our approach not to periodically update the con-
structed topology, but instead to predict trajectories.

6 Benefit of KADER on Routing Algorithms

KADER is able to derive the most stable links from a network topology such
that full connectivity is always guarantied. It then becomes interesting to analyze
the benefit routing protocols can obtain from it.

6.1 Efficient Routing

KADER is able to group nodes into a set of zones, which proactively maintains
routes between every node belonging to the same zone. Therefore, any routing
protocol using KADER does not need any overhead for Intra Zone routing. A
reactive approach, such that AODV [13], takes great help of the CDS created in
KADER by reducing the overhead of its route discovery procedure. This creates an

20

hybrid routing protocol, using proactive intra-zone routing, and on-demand zone-
level routing. On the other hand, similar to OLSR [10] using MPR [9], a proactive
protocol is able to benefit from KADER broadcasting efficiency by improving its
scalability and its end-to-end delay.

6.2 Energy Efficiency

In KADER, during the construction of the forest, every node elects its Pre-
ferred Neighbor partly depending on the energy needed to reach it. Indeed, the
transmission range of the Intra zone routing is always adapted to reach only the
desired PN. Hence, KADER makes proactive Intra Zone routes optimal in terms
of energy data flow generated and forwarded by each node, further reducing the
energy used for routing and increasing the channel capacity. Since KADER does
not use beacons, routing protocols using KADER reach routing energy efficiency.

21

7 Conclusion

In this paper, we have presented a novel approach to topology management
algorithms, called Kinetic Adaptive Dynamic topology management for Energy
efficient Routing (KADER). It employs nodes’ trajectory knowledge to get rid of
periodic beacons. The major properties of KADER are Low Complexity, Broad-
casting Efficency, and Energy Efficency.

We showed that by using trajectory knowledge to predict nodes future posi-
tions, KADER is able to dynamically create and maintain a connected dominating
set without using periodic beacons. Results pointed out that the CDS created and
maintained by KADER was composed of only 45% of nodes, and 65% of links
composing the original network, while always being able to keep a full connectiv-
ity between every node. Then, using a similar denomination than those in routing
protocols, KADER can be classified as a reactive topology management protocol,
since it is only triggered when an event occurs. Therefore, by initiating topology
maintenance only when a node is changing course and not periodically, KADER
reaches energy efficiency for topology management. Moreover, KADER is able
to obtain a lower maintenance complexity than other topology management algo-
rithms.

In our future work, we will evaluate the performance of KADER with different
routing protocols under various traffic load and mobility rate.

23

References

[1] G. J. Pottie, “Wireless sensor networks”, Proc. IEEE Information Theory
Workshop, Killarney, Ireland, pp. 139-140, June 1998.

[2] Navid Nikaein, Houda Labiod , and Christian Bonnet, “Distributed Dynamic
Routing Algorithm for Mobile Ad-Hoc Networks,” Proc. MobiHOC 2000,
USA/Boston.

[3] C. Gentile, J. Haerri, and R. E. Van Dyck, “Kinetic minimum-power routing
and clustering in mobile ad-hoc networks,” IEEE Proc. Vehicular Technology
Conf. Fall 2002, pp. 1328-1332, Sept. 2002.

[4] R.J. Fontana and S.J. Gunderson, ”Ultra-wideband precision asset location
system”, IEEE Conf. on Ultra Wideband Systems and Technologies, pp. 147-
150, 2002.

[5] C. Gentile and Luke Klein-Berndt, ”Robust Location using System Dynamics
and Motion Constraints”, To be presented to the IEEE International Confer-
ence on Communications, Paris, 20-24 June, 2004.

[6] R. Prakash ”Unididirectional links prove costly in Wireless Ad-Hoc Net-
works”, In Proc. of the Discrete Algorithm and Methods for Mobile Comput-
ing Computing and Communications (DialM), Seattle, WA, August, 1999.

[7] P. Krishna et al, ”A cluster-based approach for routing in dynamic networks”
ACM SIGCOMM Computer Communication Review, pp. 49-65, Apr. 1997.

[8] L. Bao and J.J. Garcia-Luna-Aceves, ”Topology Management in Ad-Hoc Net-
works”, Proc. MobiHOC 2003, USA/Annapolis.

[9] A. Laouiti et al, ”Multipoint Relaying: An Efficient Technique for Flooding
in Mobile Wireless Networks”, 35th Annual Hawaii International Conference
on System Sciences (HICSS’2001), Hawaii, USA, 2001.

[10] T. Clausen et al, ”Optimized Link State Routing Protocol”, IEEE INMIC,
Pakistan, 2001.

[11] A. Amis et al, ”MaxMin D-Cluster Formation in Wirless Ad-Hoc Networks”,
In Proceedings of the IEEE Conference on Computer Communications (IN-
FOCOM), Mar. 1999.

[12] M.R. Garey and D.S. Johnson, Computers and intractability. A guide to the
theory of NP-completness, Freeman, Oxford, UK, 1979.

[13] C.E. Perkins et al. ”Ad Hoc On-Demand Distance Vector Routing”, draft-
ietf-manet-aodv-13, 2003.

25

A Correctness

Definition 2 An arbitrary undirected time dependent graph � ��� � is defined as
� ��� � � ��� ��� ��� � � , where � is the set of vertices, and

� ��� � is the set of edges
at time � .
Theorem 1 For any graph � ��� � , let � � ��� � � ��� ��� � ��� � � be the subgraph obtained
by connecting each vertex � to its preferred links

� � ��� � . Then � � ��� � is a forest.

Proof: Let � ��� � be the original graph at time � , and let � � ��� � be the graph
obtained by executing the KADER algorithm for each vertex ���	� at time � . We
first recall that the main idea is to select for each node �
��� ��� � , a neighbor that
has the maximum QoC. In order to prove that � � ��� � does not contain any cycle
� � �
� � �
� � � �

 � �
� � � � �
� , let us suppose the contrary, and let ��� be the vertex of
� with the biggest

��� � .

vi

vi−1

vi−2

vi+1

vi−3

vi+2

Figure 9: The proof of theorem 1

Let us consider two vertices of ��� � � and �
� � � adjacent to ��� in � (Figure 9).
Without loss of generality, assume that the algorithm on ��� chosen an adjacent
vertex ��� � � (if neither ��� � � nor �
� � � had been chosen, � is not a cycle). Consider
now the execution of the algorithm on ��� � � . We will show that such node will not
choose ��� , thus implying that � is not a cycle.

Lets define � � ��� � �
� � � � as the QoC function between ��� and �
� � � . Since ���
chooses ��� � � , � � �
� � �
� � � � � � � �
� � �
� � � � . And by ��� ��� ’s decision to choose ��� � � ,
� � �
� ��� � �
� � � � � � � �
� ��� � �
� � � ��� � � �
� � �
� � � � , � being an monotone increasing
function. Therefore, � � ��� � �
� � � � ��� � �
� � � � �
� ��� � . This proves that ��� � � will not
choose ��� as PN, and � will not be a cycle.

Theorem 2 For any PN activation
AKF � � ��� � �
� � � ��� � � � � ��� , and any graph � � ��� � � � � � �

��� ��� � ��� � � � � � � obtained by connecting each vertex to its preferred links
� � ��� � � � � �

activated during
� � � � � ��� , � � ��� � � � � � is then always a forest at every time instant

included in
� � � � � ��� .

I

Proof: When a node ��� elects a PN ��� � � during an activation
AKF � � ��� � �
� � � �� � � � � ��� , it means that � � � � � � � � ��� , � � �
� � �
� � � � ��� � � � � �
� � � � � ��� � � ��� . Since nodes

share a common clock, all their current left activation are equal to the current time
and will thereafter be considered as

I
, past activations being irrelevant.

If a node ��� elects a PN ��� � � during an activation
AKF � � ��� � �
� � � ��� I�� � � � , without

loss of generality, ��� � � can elect a node ��� � � as PN during an activation
AKF � � ��� � � �

�
� � � ��� I�� � ��� . Since the algorithm prunes the activation between ��� and �
� � � as
� � I�� � � � � I�� � ��� � , we must consider two cases. In the first case, the initial acti-
vation

AKF � � ��� � �
� � � ��� I�� � � � is less or equal than
AKF � � ��� � � � �
� � � ��� I�� � ��� , thus it is kept

unaltered during the forwarding steps. In the second case, the algorithm prunes the
initial activation.The forwarded activations are two separated and mutually exclu-
sive activations.

Let us consider � � smaller or equal to � � . Then, following the development in
the proof of Theorem 1, at some point, node ��� � � could elect node ��� during an
activation

AKF � � ��� � �
� � � ��� I�� ��� � �)A � ��� � � � � . � I�� ��� � is the remaining activation after
multiple prunning at each node in the path. Then, it means that � ��� � I�� � � � , �
� � �
could elect ��� as PN, thus creating a cycle during this time. Theorem 1 prove that
this situation is not possible, since � � � � I�� � � � , we obtain a stable tree which is not
a function of � . Then, during the activation

AKF � � ��� � �
� � � ��� I�� ��� � , � does not contain
any cycle.

Since the initial activation has been pruned, we still need to consider the case
of the remaining activation (

� �
� � � � �). Without loss of generality, let us consider that
this activation has been pruned at a single node ��� � � . This node has the possibility
to elect ��� � � as PN (mutual election), updating the mutual activation as the union of
their respective ones. Note that this case does not create a cycle. � � � � can otherwise
elect another node, say ��� � � . Since

� � � � � � � � I�� ��� � ��� , �
� � � �
� � � is then a branch
of a different and independant tree and the situation is independant to the previous
one. Therefore, this neither creates a cycle, which concludes the proof.

Theorem 3 � G, let G’ be the subgraph obtained by connecting each node to its
preferred links during their respective activations. Then G’ is a forest at every time
instant.

Proof: � node ��� , since all its PNs activation intervals are mutually exclu-
sive (

 � AKF � � � � � � � �

 ��AKF � � � � � � � � ���), from Theorem 2, we can conclude that
KADER always yield to a forest at every time instant.

II

