
Self-scaling Networks for Content Distribution
Pascal A. Felber, Ernst W. Biersack

Institut EURECOM, 06904 Sophia Antipolis, France
{felber,erbi }@eurecom.fr

Abstract—Peer-to-peer networks have often been touted as the
ultimate solution to scalability. Although cooperative techniques
have been initially used almost exclusively for content lookup and
sharing, one of the most promising application of the peer-to-peer
paradigm is to capitalize the bandwidth of client peers to quickly
distribute large content and withstand flash-crowds (i.e., a sud-
den increase in popularity of some online content). Cooperative
content distribution is based on the premise that the capacity of
a network is as high as the sum of the resources of its nodes: the
more peers in the network, the higher its aggregate bandwidth,
and the better it can scale and serve new peers. Such networks
can thus spontaneously adapt to the demand by taking advantage
of available resources. In this paper, we evaluate the use of peer-
to-peer networks for content distribution under various system as-
sumptions, such as peer arrival rates, bandwidth capacities, coop-
eration strategies, or peer lifetimes. We specifically try to answer
the question: “Do the self-scalingand self-organizingproperties
of cooperative networks pave the way for cost-effective, yet highly
efficient and robust content distribution?”

I. I NTRODUCTION

Cooperative content distribution networks are inherentlyself-
scalable, in that the bandwidth capacity of the system increases
as more peers arrive: each new peer requests service from, but
also provides service to, the other peers. The network can thus
spontaneously adapt to the demand by taking advantage of the
resources provided by every peer.

As an example of the self-scaling properties of cooperative
content distribution, consider the situation where a server must
replicate a critical file to a large number of clients, e.g., an an-
tivirus update, to all100, 000 machines of a large company.
Given a file size of4 MB, and a server (client) bandwidth
capacity of100 Mb/s (10 Mb/s) with 90% link utilization, a
classical client/server distribution protocol would distribute the
file by iteratively serving groups of10 simultaneous clients in
u = 32 Mb

9 Mb/s = 3.55 seconds. Updating100, 000 clients would
thus necessitate100,000

10 u, i.e., almost10 hours.
In contrast, cooperative distribution leverages the bandwidth

of the nodes that have already obtained the file, thus dynam-
ically increasing the service capacity of the system as the file
propagates to the clients. As each client that has already re-
ceived the file can serve another client while the server updates
10 new clients, we can compute the number of clients updated
at timet asn(t) = 2n(t − u) + 10 = 2bt/uc10 − 10. Updat-
ing 100, 000 clients would thus necessitate less than1 minute,
as can be observed in Figure 1. The exponential increase of
peer-to-peer distribution provides a sharp contrast with the lin-
ear progression of traditional client/server distribution, and il-
lustrates the self-scaling property of cooperative networks.

II. COOPERATIVECONTENT DISTRIBUTION

In order to maximize the participation of each of the peers
in the network, large content is typically split into many blocks
(or “chunks”) that are directly exchanged between the peers—a
technique also known as “swarming.” The large number and
small size of the chunks are key to quickly create enough diver-
sity in the network for each of the peers to be useful to some
other peers.

Cooperative networks are usually build incrementally, with
joining peers dynamically connecting to existing peers to even-
tually create complex mesh topologies. In practice, a peer usu-
ally knows only a subset of other peers, and actively trades with
an even smaller subset. In addition to the actual structure of the
mesh (i.e., which and how many neighbors each peers has), two
factors are crucial to the global effectiveness of the content dis-
tribution process:

• Peer selection strategy:which among our neighboring
peers will we actively trade with, i.e., serve or request
chunks from?

• Chunk selection strategy:which chunks will we prefer-
ably serve to, or request from, other peers?

The popular BitTorrent [1] tool, which we have studied ex-
tensively in [2], empirically selects the peers that offer the best
upload and download rates to trade with (“tit-for-tat” strategy).
When a new peers joins the system, it initially requests ran-
dom chunks in order to quickly receive some data and become
useful to the system; thereafter, it requests the rarest chunks
among those owned by its neighbors, because rare chunks have
a higher “trading value” than common chunks.

The main focus of our study is to better understand the po-
tential and the limitations of cooperative networks for content
contribution. In particular, we evaluate several peer and chunk
selection strategies to determine which ones perform best in
various deployment scenarios. For the purpose of our evalu-
ation, we only study the extreme case where each peer knows
all other peers (fully-connected mesh) and can potentially trade
with any of those peers during its lifetime, although we impose
a limit on the number of simultaneous active connections. This
assumption allows us to observe the asymptotic behavior of the
various cooperative strategies.

A. Deployment Scenarios

In our study, we specifically focus on two deployment sce-
narios that correspond to real-world applications of cooperative
content distribution. In the first scenario, we assume that some
critical content need to be quickly replicated on a large num-
ber of machines within the private network of a large company.
This essentially corresponds to apushmodel where all the peers

are known beforehand and distribution stops once the content
has been fully replicated on all the machines, which typically
have similar connectivity (homogeneous bandwidth).

The second scenario of interest corresponds to the traditional
Internet flash-crowd phenomenon, where a large number of
clients access almost simultaneously some large popular con-
tent. This corresponds to apull model with continuous arrival
of the peers. Distribution continues over several peer “genera-
tions,” with some peers arriving well after the first peers have
already left. The clients typically have heterogeneous band-
width capacities, ranging from dial-up modems to broadband
access (asynchronous and synchronous).

B. Notation

We denote byC the set of all chunks in the file being dis-
tributed, and byDi and Mi the set of chunks that peeri
has already downloaded and is still missing, respectively (with
Mi ∪Di = C andMi ∩Di = ∅). Similarly,di , |Di|/|C| and
mi , |Mi|/|C| correspond to the proportions of chunks that
peeri has already downloaded and is still missing, respectively.
The functionU(a, b) returns a random number uniformly dis-
tributed in the interval[a, b].

C. Peer Selection

The peer selection strategy defines “trading relationships”
between peers and affects the way the network self-organizes.
In our simplified model, we assume that all the peers know one
another. When a peer has some chunks available and some free
uplink bandwidth capacity, it will use a peer selection strategy
to locally determine which other peer it will serve next. In
this paper, we propose and evaluate the following peer selec-
tion strategies:

• Random:A peer is selected at random. This strategy is
expected to achieve good diversity in peer connectivity.

• Least missing:Preference is given to the peers that have
many chunks, i.e., we serve in priority peerj with dj ≥ di,
∀i. This strategy is inspired by the SRPT (shortest remain-
ing processing time) scheduling policy that is known to
minimize the service time of jobs [3].

• Most missing:Preference is given to the peers that have
few chunks (newcomers), i.e., we serve in priority peerj
with dj ≤ di, ∀i. The rationale behind this strategy is
to evenly spread chunks among all peers to allow them to
quickly serve other peers.

• Adaptive-missing: Peers that have many chunks serve
peers that have few chunks, and vice-versa, with more ran-
domness introduced when download tend to be half com-
plete. A peeri will serve in priority peerj with the lowest
rankrj , computed as:

rRnd
j = U(0, 1)

rDet
j =

{
dj : di ≥ 0.5

mj : di < 0.5

f = (1− |2di − 1|)2

rj = frRnd
j + (1− f)rDet

j

whererRnd
j and rDet

j are the random and deterministic
ranks of peerj, respectively, andf ∈ [0, 1] is a weight

factor that controls randomness and is maximal when peer
i is exactly half-way through the download. This strategy
is expected to give good chances to newcomers without
artificially slowing down peers that are almost complete.

Although not shown in this paper because of space con-
straints, we have also experimented with randomized variants
of least missingandmost missing, as well as additional strate-
gies that take into account the free bandwidth capacities of the
peers.

D. Chunk Selection

The chunk selection strategy specifies which chunks should
preferably be traded between the peers. Chunk selection can
be performed by the receiver (which requests specific chunks
from its neighbors) or by sender (which decides which chunk it
will send next on an active connection). With both interaction
models, obviously, the chosen chunk must be held by the sender
and not by the receiver. In our simplified model, we assume that
every peer knows the list of chunks held by its neighbors (i.e.,
all peers with a fully-connected mesh topology) and that the
chunk selection strategy is applied on the sender’s side. In this
paper, we evaluate the following chunk selection strategies:

• Random:The sending peeri selects a chunkc ∈ (Di ∩
Mj) at random among those that it holds and the receiving
peerj needs. This strategy ensures good diversity of the
traded chunks.

• Rarest: The sending peeri selects the rarest chunkc ∈
(Di∩Mj) among those that it holds and the receiving peer
j needs. Rarity is computed from the number of instances
of each chunk held by the peers known to the sender. This
strategy is expected to maximize the number of copies of
the rarest chunk in the system.

III. S IMULATION AND EVALUATION

For the purpose of evaluating cooperative content distribu-
tion, we have developed a simulator that models various types
of peer-to-peer networks and allows us to observe step-by-step
the distribution of large files among all peers in the systems,
according to several metrics. Although we have taken extra
care to reproduce realistic operating conditions, we have yet
made some assumptions in order to simplify and speed up the
simulations. In particular, we do not consider failures (peer or
network) nor link congestion in any of the experiments, and
we do not favor long-running connections overt short connec-
tions as real systems usually do. Due to space constraints, we
only present here selected results of the simulations of extreme
scenarios (little heterogeneity, limited server bandwidth) that
best exhibit the differences between the various aforementioned
strategies; more moderate scenarios have shown the same gen-
eral trends, albeit with lower intensity.

A. Methodology and Setup

Our simulator is essentially event-driven, with events being
scheduled and mapped to real-time with a millisecond preci-
sion. The transmission delay of each chunk is computed dy-
namically according the link capacities (minimum of the sender
uplink and receiver downlink) and the number of simultaneous
transfers on the links (bandwidth is equally split between con-
current connections).

1e+01

1e+02

1e+03

1e+04

1e+05

1e+06

0:00 0:10 0:20 0:30 0:40 0:50 1:00

N
um

be
r

of
 u

pd
at

ed
 c

lie
nt

s

Time (min.)

Client/Server
Cooperative

Fig. 1. Scalability of cooperative content dis-
tribution: the number of clients that successfully
receive a file increases linearly with client/server
distribution, and exponentially with cooperative
distribution.

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

00:00 03:00 06:00 09:00 12:00 15:00 18:00 21:00 00:00

N
um

be
r

of
 c

om
pl

et
e

pe
er

s

Time

Least missing
Most missing

Adaptive missing
Random

Fig. 2. Completion times for therandomchunk
selection strategy, with simultaneous arrivals, ho-
mogeneous and symmetric bandwidth, and selfish
peers.

010002000300040005000

Peer 00:00

06:00

12:00

18:00

Time

0
20
40
60
80

100

Progress (%)

Fig. 3. Download progress for therandompeer
selection strategy, with therandomchunk selec-
tion strategy, simultaneous arrivals, homogeneous
and symmetric bandwidth, and selfish peers.

Once a peeri holds at least one chunk, it becomes a potential
server. It first sorts its neighboring peers according to the spec-
ified peer selection strategy. It then iterates through the sorted
list until it finds a peerj that (1) needs some chunks fromDi

(Di ∩Mj 6= ∅), (2) is not already being served by peeri, and
(3) is not overloaded. We say that a peer is overloaded if it has
reached its maximum number of connectionsandhas less than
128 kb/s bandwidth capacity left. Peeri then applies the spec-
ified chunk selection strategy to choose the best chunk to send
to peerj. Peeri repeats this whole process until it becomes
overloaded or finds no other peer to serve.

Our simulator allows us to specify several parameters that
define its general behavior and operating conditions. The most
important ones relate to the content being transmitted (file size,
chunk size), the peer properties (arrival rates, bandwidth ca-
pacities, lifetimes, number of simultaneous active connections),
and global simulation parameters (number of initial servers
or “origin peers,” simulation duration, peer selection strategy,
chunk selection strategy). Table I summarizes the values of the
main parameters used in our simulations.
B. Simultaneous Arrivals

The chunk selection strategy can have a significant impact
on the effectiveness of cooperative content distribution, espe-
cially when considering selfish peers. As shown in Figure 2,
several of the peer selection strategies need a long time to repli-
cate the file on all clients. First consider that the transmission

Parameter Value
Chunk size 256 kB
File size 200 chunks (i.e.,51.2 MB)
Peer arrival rate

Simultaneous (push) 5000 peers att0
Continuous (flash-crowd) Poisson with rateλ = 1

2.5 s
Peer bandwidth (downlink/uplink)

Homogeneous, symmetric 100% peers:128/128 kb/s
Homogeneous, asymmetric 100% peers:512/128 kb/s
Heterogeneous, asymmetric 50% peers:512/128 kb/s

Peer lifetime
Selfish Disconnects when complete
Altruistic Remains5 minutes online

Active connections per peer 5 inbound and5 outbound
Number of origin peers 1 (bandwidth:128/128 kb/s)
Duration of simulation 12 h or more
Peer selection strategy Varies
Chunk selection strategy Varies

TABLE I
PARAMETERS USED IN THE SIMULATIONS.

of all 200 chunks of the file over a128 kb/s connection requires
200·256·8 kb

128 kb/s = 3200 seconds, i.e., slightly less than one hour.
If we could construct a linear chain, with each client receiving
the file from the previous peer in the chain and serving itsi-
multaneouslyto the next one, we could theoretically approach
this asymptotic limit. In practice, because we only consider the
transmission of complete chunks and we share bandwidth ca-
pacities between several connections, we expect to experience
lower efficiency.

We can explain the low performance of theleast missingpeer
selection strategy by the fact that the server will initially only
serve the same5 peers that are closest to completion. These
peers will in priority exchange chunks with each other and then
slowly propagate some chunks to the other peers, which remain
mostly idle because they have no rare chunks to trade. As com-
pleted peers leave immediately the system, we essentially have
one server (the initial peer) that iteratively serves batches of5
peers at a time, which explains the low efficiency of theleast
missingstrategy. One should note, however, that this strategy
minimizes the download time of the first complete peer.

At the other extreme, themost missingpeer selection strat-
egy tries to make all clients progress simultaneously, thus mak-
ing them quickly and equally useful to others. This results in
a better utilization of the available resources. By “artificially”
delaying the departure of the peers, we always keep a large ser-
vice capacity and ensure that all peers complete approximately
at the same time. In the case of simultaneous arrivals, we can
observe that themost missingstrategy minimizes the download
time of the last complete peer.

Therandompeer selection strategy is expected to let all peers
progress at approximately the same rate, and thus to behave
roughly like themost missingstrategy. We observe, however,
that only one third of the peers complete simultaneously and
the rest essentially follow the same pattern as theleast miss-
ing strategy. This problem can be tracked down to therandom
chunk selection. Indeed, the chunks that were injected first
in the system exist in many instances, while the latter chunks
are very rare, with the server doing nothing to correct this im-
balance. Most of the peers quickly reach near completion, as
shown in Figure 3, but many require much time to obtain the
few missing chunks (often just one) that are only held by the
origin server.

Theadaptive missingstrategy is interesting because it seems

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

01:0001:00 02:0002:00 03:0003:00

N
um

be
r

of
 c

om
pl

et
e

pe
er

s

Time

Least missing
Most missing

Adaptive missing
Random

Fig. 4. Completion times for therarest chunk
selection strategy, with simultaneous arrivals, ho-
mogeneous and symmetric bandwidth, and selfish
peers.

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

00:00 02:00 04:00 06:00 08:00 10:00 12:00

N
um

be
r

of
 c

om
pl

et
e

pe
er

s

Time

Arrivals
Least missing
Most missing

Adaptive missing
Random

Fig. 5. Completion times for continuous arrivals,
with the rarest chunk selection strategy, homoge-
neous and asymmetric bandwidth, and altruistic
peers.

0

200000

400000

600000

800000

1e+06

1.2e+06

1.4e+06

00:00 02:00 04:00 06:00 08:00 10:00 12:00

N
um

be
r

of
 b

lo
ck

s
in

 th
e

sy
st

em

Time

Least missing
Most missing

Adaptive missing
Random

Fig. 6. Chunk capacity of the system, with the
rarestchunk selection strategy, homogeneous and
symmetric bandwidth, and altruistic peers.

to inherit some of the good properties of each of the extreme
least missingandmost missingstrategies. It initially quickly
and evenly replicates blocks in the system and, at the same time,
does not artificially prevent near-complete peers to finish their
download.

When switching to therarest chunk selection strategy, we
observe in Figure 4 significant performance improvements, par-
ticularly for therandompeer strategy that becomes as efficient
as most missing, and theleast missingstrategy that shows a
seven-fold improvement. In contrast to therandomchunk se-
lection strategy, we do not experience the pathological situation
where the origin sequentially serves the rare missing chunks to
almost-complete peers.

C. Continuous Arrivals

In the case of continuous arrivals and asymmetric bandwidth
(512/128 kb/s ADSL) with moderately altruistic peers, we ob-
serve in Figure 5 that therandomand adaptive missingpeer
selection strategies keep up with the arrival rate of the clients,
with the latter looking empirically better initially. Themost
missingstrategy delays the completion of a first batch of clients,
before following the same slope as the arrivals but with notable
steps. Finally, theleast missingstrategy shows an odd behavior:
the number of complete peers is slow to “take off,” then makes
a big step to overtake all other strategies, then stalls again for
a longer period of time before another even higher step, and
so on. To better understand this behavior, consider that the
origin peer will iteratively serve groups of5 peers until they
complete their download. The peers of a group will exchange
chunks with each other in priority, but also slowly propagate
some chunks to other less-complete peers, which will quickly
disseminate them among all remaining peers (they cannot in-
deed serve more-complete peers as theleast missingstrategy
would require, because they only have blocks that the more-
complete peers also hold). Therefore, we have few peers that
complete very fast, and a large majority of peers that progresses
slowly but steadily and eventually complete all together.

We can better understand the behavior of the peer selection
strategies by considering the chunk capacity of the system with
respect to time, shown in Figure 6. Therandomandadaptive
missingstrategies maintain a nearly constant number of chunks
in the system. We can note that the latter looks more efficient
than the former in this deployment scenario, as it achieves the
same completion rate with a lower average chunk capacity. The

most missingstrategy creates a higher chunk capacity by delay-
ing peers until the first batch completes, which corresponds to
the sharp drop of chunk capacity. Thereafter, the capacity oscil-
lates with a constant period, driven by the batches of peers that
progress and complete together. Finally, theleast missingstrat-
egy exhibits the highest volatility in chunk capacity. The sys-
tem traverses phases during which it builds an extremely large
chunk capacity, and then completely empties it by letting almost
all peers terminate simultaneously. Interestingly, the frequency
and amplitude of the oscillations increase over time. This cor-
responds to the steps that we have observed in Figure 5.

IV. CONCLUSIONS ANDOPEN ISSUES

The main objective of this paper was to assess the potential
of, and make a case for, cooperative content distribution. Based
on our preliminary study, it appears that theself-scalingand
self-organizingproperties of peer-to-peer networks do indeed
offer the technical capabilities to quickly and efficiently dis-
tribute large or critical content to huge populations of clients.
Cooperative distribution techniques capitalize the bandwidth of
every peer to dramatically increase the service capacity of the
system. The efficiency of these techniques does, however, de-
pend on many factors. In particular, the chunk and peer se-
lection strategies directly impact the delay experienced by the
clients and the global throughput of the system. We did not
clearly identify a “best” strategy, as each of them offers various
trade offs and may prove most adequate for specific deployment
scenarios. Further investigations will be necessary to answer
the many open questions raised by our study. In particular, we
did not take into account failures nor thechurnof the system,
and it is not clear how such networks behave in the face of ma-
licious or uncooperative clients.

REFERENCES

[1] B. Cohen, “Incentives to build robustness in BitTorrent,” Tech. Rep.,
http://bitconjurer.org/BitTorrent/bittorrentecon.
pdf , May 2003.

[2] M. Izal, G. Urvoy-Keller, E.W. Biersack, P.A. Felber, A. Al Hamra, and
L. Garces-Erice, “Dissecting BitTorrent: Five months in a torrent’s life-
time,” in Proceedings of the 5th Passive and Active Measurement Work-
shop, Apr. 2004.

[3] L.E. Schrage, “A proof of the optimality of the shortest remaining service
time discipline,”Operations Research, vol. 16, pp. 670–690, 1968.

