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ABSTRACT

In this paper we consider tracking of an optimal filter modeled
as a stationary vector process. We interpret the Recursive Least-
Squares (RLS) adaptive filtering algorithm as a filtering operation
on the optimal filter process and the intantaneous gradient noise
(induced by the measurement noise). The filtering operation car-
ried out by the RLS algorithm depends on the window used in the
least-squares criterion. To arrive at a recursive LS algorithm re-
quires that the window impulse response can be expressed recur-
sively (output of an IIR filter). In practice, only two popular win-
dow choices exist (with each one tuning parameter): the exponen-
tial weighting (W-RLS) and the rectangular window (SWC-RLS).
However, the rectangular window can be generalized at a small
cost for the resulting RLS algorithm to a window with three param-
eters (GSW-RLS) instead of just one, encompassing both SWC-
and W-RLS as special cases. Since the complexity of SWC-RLS
essentially doubles with respect to W-RLS, it is generally believed
that this increase in complexity allows for some improvement in
tracking performance. We show that, with equal estimation noise,
W-RLS generally outperforms SWC-RLS in causal tracking, with
GSW-RLS still performing better, whereas for non-causal track-
ing SWC-RLS is by far the best (with GSW-RLS not being able to
improve). When the window parameters are optimized for causal
tracking MSE, GSW-RLS outperforms W-RLS which outperforms
SWC-RLS. We also derive the optimal window shapes for causal
and non-causal tracking of arbitrary variation spectra. It turns outs
that W-RLS is optimal for causal tracking of AR(1) parameter vari-
ations whereas SWC-RLS if optimal for non-causal tracking of in-
tegrated white jumping parameters, all optimal filter parameters
having proportional variation spectra in both cases.

1. INTRODUCTION

The RLS algorithm is one of the basic tools for adaptive filter-
ing. The convergence behavior of the RLS algorithm is now well
understood. Typically, the RLS algorithm has a fast convergence
rate, and is not sensitive to the eigenvalue spread of the correla-
tion matrix of the input signal. However, when operating in a non-
stationary environment, the adaptive filter has the additional task of
tracking the variation in environmental conditions. In this context,
it has been established that adaptive algorithms that exhibit good
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convergence properties in stationary environments do not neces-
sarily provide good tracking performance in a non-stationary envi-
ronment; because the convergence behavior of an adaptive filter is
a transient phenomenon, whereas the tracking behavior is a steady-
state property [1, 2].

One fundamental non-stationary scenario involves a time-
varying system in which the cross-correlation between the input
signal and the desired response is time-varying. This case occurs in
the system identification setup. To take into account system vari-
ation, two main variants of RLS algorithms exist. The first intro-
duces a forgetting factor, and leads to the exponentially Weighted
RLS (W-RLS) approach. The second uses a Sliding rectangular
Window (SWC-RLS approach). In [3, 4], a generalized sliding
window RLS (GSW-RLS) algorithm was introduced, that general-
izes the W-RLS and SWC-RLS algorithms. The GSW-RLS uses a
generalized window (see Fig. 1), which consists of an exponential
window with a discontinuity at delay L. It can be seen that the
exponential and rectangular windows are particular cases of the
generalized window, for α = 0 and (α, λ) = (1, 1) resp. In [3, 4],

Fig. 1. The generalized sliding window

a tracking improvement for GSW-RLS was observed for different
system variation models (AR(1), MA, and Random walk). On the
one hand the initial portion of the window permits to emphasize
the very recent past which allows very fast tracking. On the other
hand, the GSW-RLS algorithm solves nevertheless an overdeter-
mined system of equations and hence enjoys the fast convergence
properties of RLS algorithms. Another effect of the exponential
tail of the GSW is regularization. In fact, the rectangular win-
dow sample covariance matrix appearing in SWC-RLS can be par-
ticularly ill-conditioned compared to a sample covariance matrix
based on an exponential window with compatible time constant.
Finally, the GSW-RLS algorithm turns out to have the same struc-
ture and comparable computational complexity as the SWC-RLS
algorithm.



This paper is organized as follows. In section 2, a tracking
analysis in the frequency domain is presented. Uninformed and In-
formed Bayesian approaches are investigated respectively in sec-
tions 3, and 4. Finally a discussion and concluding remarks are
provided in section 5.

2. TRACKING CHARACTERISTICS OF RLS
ALGORITHMS

We consider the classic adaptive system identification problem (see
Fig. 2). The adaptive system identification is designed for deter-
mining a (typically linear FIR) model of the transfer function for
an unknown, time-varying digital or analog system.

Fig. 2. System identification block diagram

The adaptive system identification problem can be described
by:

{
dk = HoT

k Yk + nk

xk = HT
k Yk

(1)

where
- nk is an iid Gaussian noise sequence

(
nk ∼ N

(
0, σ2

n

))
where

σ2
n is the Minimum Mean Squared Error (MMSE)

- Ho
k denotes the optimal Wiener Filter

- Hk represents the adaptive Filter
- ek is the a posteriori error given by:

ek = dk − xk = H̃T
k Yk + nk (2)

where H̃k = Ho
k − Hk denotes the filter deviation.

In weighted RLS, the set of the N adaptive filter coefficients
Hk = [H1,k · · ·HN,k]T gets adapted so as to minimize recur-
sively the Weighted Least Squares criterion

Jk = F (q) e2
k =

∑

i

fi e2
k−i (3)

where F (z) =
∑

i fi z−i is the transfer function of the weighting
window fi characterizing the RLS algorithm, and q−1 e2

k = e2
k−1.

There are a number of references dealing with the performance of
RLS algorithms in non-stationary environments [7, 6, 5, 4]. The
basic idea is to focus on the model quality in terms of the out-
put Excess MSE (EMSE). We consider stationary optimal filter
variation models, hence the RLS algorithm will reach a stationary
regime to which we limit attention. The EMSE is defined as:

EMSE = E
{
e2

k

}
− σ2

n = E
{

Y T
k H̃kH̃T

k Yk

}
(4)

(in principle the a priori error signal should be considered for the
EMSE, we shall stick to the a posteriori error signal to avoid the
appearance of a delay in the notation). So, if we assume that the

system variation is a zero-mean, wide-sense stationary process Ho
k

with a power spectral density matrix
SHH

(
ej2πf

)
, and if we invoke the independence assumption, in

which Yk and H̃k are assumed to be independent (this works better
for the a priori error), the EMSE can be expressed in the following
form:

EMSE = tr
{
E
[
H̃∗

kH̃T
k

]
R
}

= tr

{
R

∫ 1

2

− 1

2

SH̃H̃(ej2πf )df

}
.

By setting the gradient of Jk in (3) w.r.t. Hk to zero, we have

(
F (q)YkY T

k

)
Hk = F (q)Ykdk

= F (q)YkY T
k Ho

k + F (q)Yknk .

Let’s denote by F̃ (q) =
F (q)

F (1)
the (dc transfer) normalized weight-

ing window. As this window is generally low-pass, F̃ (q) acts as
an averaging operator, and we have

F̃ (q) YkY T
k ≈ R .

On the other hand, as the optimal system variation is independent
of the input signal (in the system id setup), we approximate:

F̃ (q)YkY T
k Ho

k ≈
(
F̃ (q)YkY T

k

) (
F̃ (q)Ho

k

)

≈ R F̃ (q)Ho
k .

Hence the filter deviation can be expressed as:

H̃k = Ho
k − Hk =

(
1 − F̃ (q)

)
Ho

k − R−1 F̃ (q)Yknk

and the EMSE becomes:

EMSE = Nσ2
n

∫ 1

2

− 1

2

∣∣∣F̃ (e2jπf )
∣∣∣
2

df (5)

+

∫ 1

2

− 1

2

∣∣∣1−F̃ (ej2πf )
∣∣∣
2

tr
{

R SHH(ej2πf )
}

df

Remark that the EMSE can be broken up into two terms:

• Eest = Nσ2
n

∫ 1

2

− 1

2

∣∣∣F̃ (e2jπf )
∣∣∣
2

df corresponding to the es-

timation noise contribution; it can be interpreted as the es-
timation accuracy in time-invariant conditions,

• Elag =

∫ 1

2

− 1

2

∣∣∣1 − F̃ (e2jπf )
∣∣∣
2

tr
{

R SHH(ej2πf )
}

df rep-

resenting the estimation error resulting from low-pass fil-
tering the system variations (lag noise, since in the causal
window case this means lagging behind).

The estimation and lag noise terms can also be interpreted as the
variance and the bias of the conditional estimation problem, for a
given value of the optimal filter sequence. In fact,

H̃k =
(
1 − F̃ (q)

)
Ho

k

︸ ︷︷ ︸
b

− R−1 F̃ (q)Yknk



where b = E|HoH̃k is the estimation bias. We get

RH̃H̃ = E|Ho

(
H̃kH̃T

k

)
= b bT

︸︷︷︸
bias

+ σ2
n

(
∑

i

f̃2
i

)
R−1

︸ ︷︷ ︸
variance

. (6)

Then we see that:

• Eest = Nσ2
n

(
∑

i

f̃2
i

)
is the variance component,

• Elag = tr
{
R EHo

[
bbT
]}

is the bias component.

3. UNINFORMED APPROACH FOR RLS TRACKING
ANALYSIS

In an uninformed approach we assume that little or no information
about the system variations is available for the design of the RLS
algorithm.

3.1. Uninformed Tracking Analysis of Causal RLS Algorithms

From (5), we can see that the following window characteristics
characterize estimation and lag noises resp.:

• l∞ =
(∑

i f̃2
i

)
=
∥∥∥F̃
∥∥∥

2

2
characterizing Eest,

• EF (f) =
∣∣∣1 − F̃

(
ej2πf

)∣∣∣, called parameter tracking char-

acteristic, characterizing the lag noise.

To compare the tracking ability of RLS with different weighting
windows, we shall choose the windows parameters such that the
different algorithms behave identically under time-invariant condi-
tions. In fact, comparing adaptive filters characterized by different
values of l∞ barely makes any sense (in the uninformed case) and
it resembles ”comparing runners that specialize in different dis-
tances” [8]. By normalizing the performance under time-invariant
conditions, the tracking characteristic EF (w) depends only on the
window shape.

Since the complexity of RLS with a rectangular window es-
sentially doubles with respect to an exponential window, it is gen-
erally believed that this increase in complexity allows for some
improvement in tracking performance. In contrast to this intuition,
Fig. 3 shows that the plot of the normalized tracking characteristic
of W-RLS lies below that corresponding to SWC-RLS. Thus, the
tracking capability of W-RLS approach is better. This effect can
be attributed to a higher degree of concentration of the exponential
window around i = 0, which results in a smaller estimation delay,
hence smaller bias error [8].

As we have mentioned in the Introduction, the SW-RLS ap-
proach can be generalized at a small cost for the resulting RLS
algorithm to a window with three parameters (instead of just one).
Compared to the Sliding and the Exponential widows, the Gener-
alized Sliding Window introduces two extra degrees of freedom.
The shape of the widow depends on the choice of these degrees
of freedom. Thus, they can be optimized to minimize the aver-
age parameter tracking characteristic. In other words, the window
parameters are chosen so as to






min
λ,α,L

∫ f0

0

∣∣∣1 − F̃
(
ej2πf

)∣∣∣
2

df

subject to
∑

k

f̃2
k = l∞

(7)

where f0 is the assumed bandwidth of the system variations. In
Fig. 3, we add the tracking characteristic of the GSW-RLS estima-
tor, as a function of f = fo. As expected, the optimized GSW-
RLS outperforms the SWC-RLS and W-RLS approaches.
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Fig. 3. Parameter tracking characteristic for W, SWC, GSW-RLS.

3.2. Uninformed Tracking Analysis for Non-Causal RLS Al-
gorithms

Bias in the RLS algorithm is caused by two kinds of distortion:
amplitude and phase distortions. Phase distortion can be consider-
ably attenuated by introducing a suitable estimation delay (using
non-causal filtering). With no information about the system char-
acteristics, a suitable estimation delay can be determined as [8]:

τe =
∑

k

kf̃k , (8)

the mean of the f̃k considered as a distribution. As before, under
identical estimation noise, comparing the tracking capability of the
non-causal RLS algorithms can be investigated by comparing what
is called in [8] the parameter matching characteristic defined as:

ẼF (w) =
∣∣∣e−j2πfτe − F̃

(
ej2πf

)∣∣∣ =
∣∣∣1 − ej2πfτe F̃

(
ej2πf

)∣∣∣ .

Fig. 4 shows plots of normalized matching characteristics of SWC-
RLS, W-RLS, and GSW-RLS (with optimized window parame-
ters) algorithms. The curves show that in the non-causal adapta-
tion case, the optimal shape for the generalized window becomes
the rectangular one (and in particular, rectangular windowing out-
performs exponential windowing). The better parameter matching
properties of the SWC-RLS approach can be explained by the lin-
earity of the associated phase characteristic (due to the window
symmetry). The delay τe becomes the center of the window and
after delay compensation, there is zero phase distortion left.

4. INFORMED APPROACH FOR RLS TRACKING
OPTIMIZATION

Now we suppose the statistics of the system variation to be avail-
able. In this case, we can achieve an optimal tradeoff between the
estimation and lag noises. The optimal tradeoff can be found by
minimizing the EMSE:

min
F

(
Nσ

2

n

∫ 1

2

−

1

2

df

∣∣∣F (ej2πf )
∣∣∣
2

+

∫ 1

2

−

1

2

df

∣∣∣1−F (ej2πf )
∣∣∣
2

tr {RSHH (f)}

)

subject to F (1) = 1 (9)
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Fig. 4. Parameter matching characteristic.

4.1. Optimized Causal Parametric Windows, Separable Vari-
ation Spectrum Case

In a first instance, we propose to investigate a simple (but interest-
ing) variation model. We assume that the impulse response coeffi-
cients have proportional Doppler spectrum; i.e.

SHH

(
ej2πf

)
= D Shh

(
ej2πf

)
. (10)

To simplify, we suppose also that the scalar spectrum Shh is a flat
low-pass spectrum; i.e.

Shh

(
ej2πf

)
=

{
1 |f | < f0

0 elsewhere

The matrix D is arbitrary but if it were diagonal (decorrelated filter
coefficients) the diagonal would represent the power delay profile
of the optimal filter (in wireless channel terminology). With the
separable model, the Excess MSE (for the causal adaptation case)
can be expressed as:

Nσ2
n

∫ 1

2

− 1

2

df
∣∣∣F (ej2πf )

∣∣∣
2

+ tr {R D}

∫ 1

2

− 1

2

df
∣∣∣1−F (ej2πf )

∣∣∣
2

.

The EMSE expressions for the different RLS variants become, as
a function of the windows parameters:

EMSESWCRLS =
Nσ2

n

L

+ 2 tr {R D}

(
L − 1

L
f0 −

1

πL2

L−1∑

k=1

sin (2πf0k)

)

EMSEWRLS = Nσ2
n

1 − λ

1 + λ

+ 2 tr {R D}

(
λf −

λ

π

1 − λ

1 + λ
arctan

(
1 + λ

1 − λ
tan (πf)

))

EMSEGSWRLS = Nσ2
n

1 − λ

1 + λ

1 + α(α − 2)L2L

(1 − αλL)2

+ 2 tr {R D}

(
f0γ0 +

∞∑

k=1

γk

πk
sin (2kπf0)

)

where γk gets computed recursively as:

{
γk+1 = λγk − ακ2λ2L−1−k , k < L,

γk+1 = λγk , k ≥ L.

To investigate the tracking ability of the different RLS algorithms,
we compare the minimum EMSE achieved by each variant (with
optimized parameters). Fig. 5 plots the curves of minimized EMSE
(as a function of the bandwidth f0).
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Fig. 5. EMSEmin curves for flat low-pass variations.

This analysis shows that, for a flat low-pass spectrum, the expo-
nential window performs better than the rectangular window, but
also that the optimal generalized window performs even better.

Fig. 6. Signal in noise problem.

4.2. Optimized Windows

Consider minimizing the Excess MSE with respect to the window
coefficients. This problem can be interpreted in terms of Wiener
filtering for a signal in noise problem, see Fig. 6, where the desired
and noise signal spectra are respectively Svv

(
ej2πf

)
= σ2

v =

Nσ2
n, and Sdd

(
ej2πf

)
= tr

{
R SHH

(
ej2πf

)}
. The causal Wiener

solution for such problem is

FWiener

(
ej2πf

)
=

Sdd

(
ej2πf

)

Sdd (ej2πf ) + σ2
v

. (11)

The DC component of this Wiener solution is

FWiener (1) =
Sdd (1)

Sdd (1) + σ2
v

. (12)

Now, since Sdd is quite lowpass , we have Sdd(1) >> σ2
v . Thus,

for an acceptable SNR, FWiener(1) ≈ 1. Then,

Fopt

(
ej2πf

)
≈ FWiener

(
ej2πf

)
=

Sdd

(
ej2πf

)

Sdd (ej2πf ) + σ2
v

. (13)



The associated Excess MSE is given by:

EMSEmin = σ2
v

∫
Fopt

(
ej2πf

)
df = σ2

v fopt
0 . (14)

If we impose a causality constraint, the Wiener solution becomes:

F c
Wiener

(
ej2πf

)
= 1 −

σ2
v

σ2 A (ej2πf )
(15)

where A (z) denotes the optimal prediction error filter for the sig-
nal x = d + v, and σ2 the associate prediction error variance.
Using the same arguments as before, one can show that, for an
acceptable SNR, F c

Wiener (1) ≈ 1; and then F c
opt

(
ej2πf

)
≈

F c
Wiener

(
ej2πf

)
. The associated Excess MSE is given by:

EMSEc
min = σ2

v

∫
F c

opt

(
ej2πf

)
df = σ2

v fc,opt
0 . (16)

4.3. Optimality Considerations for Classical Windows

The question we investigate in this section is ”For which optimal
filter variation model is the exponential or the rectangular window
optimal?”. To answer this question, we use the reverse engineering
technique. We assume a separable optimal filter variation spectrum
with uncorrelated optimal filter coefficients.

Equating the causal Wiener solution and the exponential win-
dow transfer function leads to a variation spectrum of the form:

Shh(z) ∝
1

(1 − αz−1) (1 − αz)
. (17)

Thus, for AR(1) ”drifting” parameters, the exponential window
optimizes the tracking performance (over the set of all causal win-
dows).

Similarly, by equating the non-causal Wiener filter with the
centered rectangular window, one can show that SWC-RLS is op-
timal for a variation spectrum of the form:

Shh(z) ∝
FR(z)

1 − FR(z)
(18)

where FR(z) =
1

L

z
L
2 − z−L

2

z
1

2 − z− 1

2

denotes the centered sliding win-

dow transfer function. Shh(z) in (18) can be interpreted to be the
spectrum of a process g with spectrum Sgg(z) = FR(z)), low-

pass filtered by H(z) =
(

1
1−FR(z)

)1/2

(spectral factor). The in-

put g can be interpreted as a white jumping process (with memory
L/2), or as white noise viewed on the scale L/2: g stays constant
for L/2 samples, then jumps to an uncorrelated value, stays con-
stant again for L/2 samples and so on. On the other hand, around
frequency zero

1

1 − FR (e2jπf )
≈

3

π2(L2 − 1)

1

f2
. (19)

Then, the low-pass filter H(z) can be interpreted as an integrator.

5. CONCLUDING REMARKS

In this paper, we have considered tracking of a time-varying sys-
tem modeled as a stationary vector process. In the Uninformed
approach, we have investigated the tracking capability, by com-
paring the tracking and matching characteristics of the different
RLS windows (under identical estimation noise). In the Informed
approach, we have interpreted the RLS algorithm as a filtering op-
eration on the optimal filter process and the instantaneous gradient
noise. We have shown the optimality of the exponential window
for AR(1) ”drifting” parameters, and of the sliding window for in-
tegrated white ”jumping” parameters. An open question remains:
how to estimate and optimize simultaneously the adaptive filter
and window parameters? Alternatively, one may opt for a two-
step approach:
• Step 1: non-causal SWC-RLS (with short window), providing
noisy but undistorted filter estimates.
• Step 2: Wiener (Kalman) filtering to provide the optimal esti-
mation noise/low-pass distortion compromise, e.g. as in [9].
Such an approach allows for less constrained optimal filtering, that
can be optimized, and tailored to individual (and possibly corre-
lated) filter coefficients, whereas RLS has only one global window.
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