
Institut Eurécom
Department of Mobile Communications

2229, route des Crètes
B.P. 193

06904 Sophia-Antipolis
FRANCE

Research Report RR-04-112

Trajectory Knowledge for Improving Topology
Management in Mobile Ad-Hoc Networks

April 22
���

, 2004

Jerome Haerri, Navid Nikaein and Christian Bonnet

Tel : (+33) 4 93 00 26 26
Fax : (+33) 4 93 00 26 27

Email :
�
Jerome.Haerri,Navid.Nikaein,Christian.Bonnet � @eurecom.fr

1Institut Eurécom’s research is partially supported by its industrial members: Bouygues
Téécom,Fondation d’entreprise Groupe Cegetel, Fondation Hasler, France Télécom, Hitachi, ST
Microelectronics, Swisscom, Texas Instruments, Thales

1

Trajectory Knowledge for Improving Topology
Management in Mobile Ad-Hoc Networks

Jerome Haerri, Navid Nikaein and Christian Bonnet

Abstract

This paper presents a novel approach to topology management in mobile
ad-hoc networks. We are proposing an algorithm that is able to construct and
maintain a Connected Dominating Set (CDS), without using periodic bea-
cons. By knowing the positions and velocities of its neighbors, a node is able
to extract their linear trajectories. Based on this information, it obtains a lo-
cal prediction of its neighborhood’s evolution, and can thereafter proactively
adapt the dominating set without relaying on periodic beacons. Maintenance
will be driven as a per-event basis; it is only when a node changes course
that messages are to be exchanged to adapt the CDS. The correctness of the
algorithm is proven, and the complexity is compared with other topology
management heuristics. Our approach is able to keep a stable time-changing
CDS, and a low broadcasting overhead while having a lower complexity than
other approaches.

2

1 Introduction

A mobile ad-hoc network (Manet) consists of a collection of mobile nodes
forming a dynamic autonomous network through a fully mobile infrastructure.
Nodes communicate with each other without the intervention of centralized access
points or base stations. In such a network, each node acts as a host, and may act as
a router. Due to limited transmission range of wireless network interfaces, multiple
hops may be needed to exchange data between nodes in the network, which is why
the literature often uses the term of multi-hop network in Manet. The topology of a
multi-hop network is the set of communication links between nodes used by rout-
ing mechanisms. Removing redundant and unnecessary topology information is
usually called topology management. The topology management plays a key role
in the performance of a routing protocol simply because the wrong topology in-
formation can considerably reduce the capacity, increase the end-to-end delay and
routing control overhead, and decrease the robustness to node failure.

There are two approaches to topology management in mobile ad-hoc networks:
power control and hierarchical topology organization. Power control mechanisms
adjust the power on a per-node basis, so that one-hop neighbor connectivity is bal-
anced and overall network connectivity is ensured. However, topologies derived
from power control schemes often result in unidirectional links that create harmful
interferences due to different transmission ranges among one-hop neighbors [6].
The hierarchical approach selects a subset of nodes, called cluster-heads, to serve
as the network backbone over which essential network control functions are sup-
ported [7]. Every node is then associated with a cluster-head, and cluster-heads
are connected with each others via gateway nodes. Therefore, the union of cluster-
heads and gateways constitute a connected backbone. For clustering to be effective,
links and nodes that are part of the backbone must be close to the minimum, and
must be connected. In graph theory, the Minimum Dominating Set (MDS) problem
and the relevant Minimum Connected Dominating Set (MCDS) problem best de-
scribe the clustering approach to topology management. MDS consists of finding a
subset of nodes with the following property: each node is either in the dominating
set, or adjacent to a node in the dominating set. MCDS consists of obtaining a min-
imum subset of nodes in the original graph, such that it composes a Dominating Set
(DS), and the induced subgraph of an MCDS has the same number of connected
components than the original graph. Unfortunately, in graph theory, computing
the MDS is NP-hard [11, 12], and MCDS is a well known NP-complete prob-
lem, even if the complete topology is available. In heuristics proposed in the past,
cluster-heads are equivalent to a sub-optimal dominating set, that can be improved
through non-deterministic negotiations or by applying deterministic criteria, and
reach a Minimal Dominating Set. The union of selected cluster-heads and gate-
ways forms a connected dominating set (CDS), which is a sub-optimal solution to
the MCDS problem.

Node mobility can cause frequent unpredictable topology changes. Hence
topology management is a non trivial task. Many hierarchical approaches have

3

been proposed, including DDR [2], TMPO [8], and MPR [10]. MPR creates a
topology based Multi-Point Relay nodes (MPR), where each node determines its
own MDS (set of MPR nodes), MPR selector set, covering up to its two hops neigh-
bors. Then, a node retransmits a broadcast message if it belongs to the sender’s
MPR selector set. This approach is however suboptimal, because the set of MPR
nodes at each node overlaps those of neighboring nodes. Therefore, considering
the complete network, MPR is only able to create a global DS and not a global
MDS. In order to obtain such MDS, MPR is improved (used by OLSR [9]) by ex-
changing MPR sets through the network, such that an optimality in the number of
MPR nodes is reached.1 TMPO [8], on the other hand, is a cluster-based topology
management protocol, in which a Connected Dominating Set (CDS) is introduced,
that keeps the same number of connected components as the original topology, yet
with a lower reorganization complexity. TMPO uses a ”willingness” value of a
node, which represents the probability a node gets to be elected in the MDS, given
its mobility and its battery life. Finally, DDR [2] uses forests and zones abstrac-
tions to obtain a fully connected graph, while keeping a low topology management
complexity. Zones are proactively maintained, and as TMPO, negotiation is not
required. Besides, DDR uses nodes’ degree as an electing criterion, such that the
broadcast tree is optimized.

In this paper, we are focusing on a novel approach, in which nodes are able
to predict neighbors’ future position, hence getting rid of periodic beacons. We
are adapting this concept to a hierarchical topology control approach denoted as
Kinetic Adaptive Dynamic topology management for Energy efficient Routing
(KADER). We are proposing a distributed self-maintained topology management
strategy based on deterministic criteria, where changes in the topology (trajectory
changes) are announced by the respective nodes in a per-event basis. We want to
construct a self-adaptive forest from a network topology in a distributed way, yet
without using periodic beacons. Each tree in the forest forms a zone and each zone
is proactively maintained. While forest seeks to reduce broadcasting overhead,
proactive zones are used to reach high scalability. Besides, since the energy cost of
increased computation is much less than the cost of increased message transmis-
sion [1], we want to reduce as much as possible the use of topology management
messages. To do so, the idea is, by modeling nodes’ positions as a piece-wise linear
trajectory, as opposed to a fixed position for a single time instant, we can predict
a node future position, and according to it, adapt the dominating set. The proto-
col does not need periodic beaconing and only requires minimal updating when
a node changes course, since most of the links remain valid. Moreover, it is a
node’s responsibility to announce its trajectory change. Therefore, the algorithm
can be seen as an per-event approach. And since energy is not waisted on message
transmissions, KADER reaches energy efficiency on topology management.

Similar to TMPO [8], MPR [9, 10], and DDR [2], our approach seeks a CDS
and does not need any negotiation round to obtain it. Nevertheless, unlike TMPO,

1We will thereafter consider the improved version when mentioning MPR.

4

the topology created with KADER is fully distributed. The algorithm does not put
any additional burden on the selected nodes, while others are in sleeping mode.
The overall topology maintenance is fully distributed along the network, further
suppressing the need to balance the cluster-heads’ role. Moreover, in highly mo-
bile networks, cluster-heads are usually weak points in a topology management,
since their lost has a major influence on the global network connectivity. Besides,
contrary to MPR, KADER does not need to propagate the topology messages on
the entire network. Topology management messages in KADER are not forwarded
outside a zone. Finally, what dissociates our approach from all theses topology
management algorithms, is that KADER uses trajectory knowledge, and conse-
quently does not need any periodic update to maintain the coherence of the created
topology.

The rest of the paper is organized as follow. Section 2, outlines the method
used to obtain nodes trajectory knowledge. In Section 3, we presents in detail
the different parts of the algorithm. Section 4 characterizes KADER’s Connected
Dominating Set. In Section 5 we show the low overhead complexity of KADER.
Section 6 highlights the benefit of KADER on routing protocols. Finally, we draw
concluding remarks and highlight future work.

2 Trajectory Knowledge

The term ”Kinetic” in KADER reflects the motion aspect of our algorithm,
which computes a node’s future trajectory, based on its Location Information [3].
Such location information may be provided by the Global Positioning System
(GPS) or other solutions exposed in [4] or [5]. Therefore, we assume a global
synchronization between nodes in the network and define �����������	����� as the four
parameters defining a node’s position and instant velocity 2 , thereafter called mo-
bility. Then, consider the nodes in a mobile ad- hoc network. In order to compute
neighbors’ trajectories, nodes must first exchange their respective mobility param-
eters. They do so by, only once, broadcasting their parameters to their immediate
neighbors. Such message will not be forwarded, therefore a node will receive the
parameters �	���
�����	����� of only its one-hop neighbors.

Over a relatively short period of time 3, one can assume that each such node,
say � , follows a linear trajectory. Its position as a function of time is then described
by ���������������� � ��� ��� ��� �� ��� ��� � � �"! � (1)

where #%$'& � ����� represents the position of node � at time
�
, the vector (� � �)� �+*-,

denotes the initial position of node � , and vector (��� � �.��� �/* , its initial instantaneous

2We are considered moving in a two-dimensional plane.
3The time required to transmit a data packet is orders of magnitude shorter than the time the node

is moving along a fixed trajectory.

5

velocity. Lets consider node � a neighbor of � . In order for node � is able to compute
node � ’s trajectory, let us define the squared distance between nodes � and � as������ ����� � ������ ����� ��� ���� � �����	� ��� � �����
����� � � � � � � �� �� � � ! � � ��� � � ��� ���� �� ��� � ! � ���

�
� � ��� � � ��� ��� � ��� ��� � (2)

where
�����

,
� ���

. Consequently,
� ��� � � ��� � � ��� will be defined as the three param-

eters describing nodes � and � mutual trajectories, and
� ���� ��������� ����� � ��� ��� � ��� ���

,
representing � ’s relative distance to node � , will be denoted as � ’s linear relative
trajectory to � . Consequently, thanks to Eq. 1, a node is able to compute one of its
neighbor’s future position, and by using Eq. 2, it is able to extract its neighbor’s
future relative distance to it.

3 Kinetic Adaptive Dynamic Topology Management Al-
gorithm

The algorithm consists of six cyclic time-ordered phases: neighborhood dis-
covery, preferred neighbor election, self-adaptive intra-zone clustering, self-adaptive
inter-zone clustering, and event-oriented zone maintenance. These phases are car-
ried out based on trajectories and stability information exchanged through specific
non periodic event-oriented messages between nodes. The main idea of KADER
is to model node positions as a piece-wise linear trajectory, as opposed to a fixed
position for a single time instant, and to predict nodes’ future positions [3]. It is
only when a node changes its initial trajectory that the algorithm needs to be run
again. And to adapt this idea to topology management, we want to construct a
self-adapting forest from an ordinary network. Each such self-adapting tree in the
constructed forest forms a zone.4 Then, the network is partitioned into a set of non-
overlapping dynamic zones. Each zone is connected via nodes that are not in the
same zone but are in direct transmission range of each other. Such nodes are called� ��� �"!#� � & . So the whole network can be seen as a set of connected zones. The size
of a zone will increase or decrease dynamically without any need of periodic main-
tenance. Unexpected topological changes are announced by the respective nodes,
through a specific message communicating its new mobility parameters. Following
this event, the forest will adapt itself to the new topology.

3.1 Neighborhood Discovery

Basically a neighboring table is a table through which a node detects changes
to its neighborhood. This table consists of several information related to a node’s
direct neighborhood: neighboring identities $.� � , neighboring mobility, such as

4We will later use the term tree and zone interchangeably.

6

�����������	����� . It also contains neighboring stability parameters � and neighboring
last trajectory change time

� �
. As a node changes course, KADER will consider

it as a new node in the network. Since nids cannot be changed, and that we do
not forward nodes trajectories in the network as a way to distinguish a node from
the same node that has changed its trajectory, we will add a Trajectory Counter
(Tc), which mentions the number of trajectory changes a node experienced. Thus,
a unique identifier of node � and its trajectory is defined by the pair

� $.� � � ��� � � �
,

and will thereafter simply be referred as � .
In order to construct this table, each node broadcasts a single message to indi-

cate its presence in the neighborhood, and to transmit its parameters (� , � , � , ��� , ��� ,
� ,
� �

) as well. Upon receiving this kind of message, a node can make local predic-
tions about its neighborhood, like neighbors’ expected future positions, or expected
connection time (before being out of range). Since such predictions will be con-
sidered valid for all time, there will be no need to periodically refresh them. If they
happened to be invalided by an unpredicted event (a trajectory change), the respec-
tive node will spontaneously advertise its new parameters, refreshing the predic-
tions in a event-driven way. For example in Figure 3, the neighboring table of node�

has three neighbors, which are � ��� ���	���
�����������
��� � �	� � , � � �������������	�����
��� � ��
 � ,� �����	���
�����������
��� � ������
.

3.2 Preferred Neighbor Election

Instead of a node degree or a node priority, we are introducing a novel link
parameter that will better represent the routing orientation of our topology man-
agement algorithm. A zone in KADER being proactively maintained, each node
has to keep a zone table that describes the path to reach any destination contained
in its zone. Yet, we do not want these zone tables to hold the best path in term of
hops, or broadcasting coverage, but in term of power needed to reach a destination.
To do so, we are introducing a modified power function computed between a node
and its neighbors. However, due to trajectory changes, all links a node keeps be-
come sooner or later invalid. Therefore, in order to increase the life of a link, we
need to create links between nodes whose trajectories will hold as long as possi-
ble. Consequently, we are introducing a stability function which is representative
of a node’s probability to keep its trajectory. Besides, to reflect a node finite range,
we will ensure that the criterion used to elect a node will fall to zero as soon as
a node becomes unreachable. A sigmoid function, with a dropping time equal to
the time at which a node becomes unreachable, will be used in order to refrain a
node to create a link with a node that is out of range. Thus, we define Quality of
Connectivity as a function of those three criteria. Then, the algorithm selects for
each node, a neighbor that has the max QoC during a given interval. Such neighbor
will be thereafter denoted as Preferred Neighbor (PN). We define a Preferred Link
a link created by connecting a node with its Preferred Neighbor. We will prove
in A that whatever the network topology is, connecting each preferred link always
yields to a forest at every time instant.

7

3.2.1 An Energy Based Election Criterion:

The power cost as a function of time, required to transmit between nodes � and� at time
�
, is defined as # ��� ����� � # � � ����� ��� � ���� ����� , for some constant

�
; without

loss of generality, we assume
�"���

.5 By choosing power as the cost, one obtains
minimum power routes that help preserve battery life.

Figure 1: Graphical representation of the Power function at node � .
This deterministic criterion translates to a routing table at each node, whose

entries are the minimum-power paths to reach a neighbor as a function of time. A
graphical representation of such table at node � appears in Figure 1. The shaded
area indicates its composite power cost # � ����� �����	�
 � # ����� ����� ��# ���� ����� ��# ����� ����� �
which is required to reach ����� � � , and ��� . One sees that at times

� � , � � , and
� � , a

new path becomes optimal. To achieve minimum power routing, node � forwards
to node ��� for

��� � � � � , to node � � for
� � � � � � � , to node ��� for

� � � � � � � ,
and to node � � for

� � � � .
This criterion effectively minimizes at node � the energy function

� � � ��

	� # � ����� � � (3)

in a distributed manner, where
���

denotes the execution time and where the energy
function

� �
denotes the total energy needed to reach node � from

� � ��� �"!
.

However, nodes keep their trajectories only a short period of time. Therefore,
the topology configuration obtained in Figure 1 might be invalid even before node� decides to forward to � � . Even worse, a node which happens to be sub-optimal
in term of power may become highly attractive through its high stability (meaning
that even if the link is not optimal, it will remains valid a longer time). To deal
with this problem, we bias the power function toward

���
since as

�#� !
nodes

will have changed trajectory anyway.

5Therefore, Power and Distance will later be interchangeably used.

8

We define � � ������� ���������
 �
 �
	
(4)

as the probability that a node � is continuing on its present trajectory, where the
Poisson parameter ���� indicates the average time the node follows a course, and

� �
the time its current trajectory began.

Assuming independent node trajectories,
� ��������� � � ������� � � �������

describes the
probability that nodes � and � are continuing on their respective courses at time

�
,

which will be considered as the stability of link � � . The modified power cost below
probabilistically weights the power cost # ��� ����� to reflect the link’s stability.

�# ��������� � � � ��� �����# ��� ����� (5)

A low modified power cost favors a low power cost with high stability.
Finally, since we are getting rid of beacons, a node that will shortly leave the

neighborhood must be automatically removed from the neighboring table. We do
so by computing a timeout counter, given a neighbor relative position and velocity.
Upon expiration, it will remove the corresponding neighbor from the table. Be-
sides, we still need to refrain nodes to elect a PN that, either will soon leave, or
will have left when we will need to reach it. To represent the node’s finite range,
we introduce the inverse sigmoid function

� � �� � �����)� �
� � ����� �
 �
 ���������
 ��	 (6)

whose value is equal to
�

until
� � � � � $�� � and drops to

�
when the node runs out

of range. And
� � � $�� � � is the neighbor’s time before being unreachable to � , which

can be computed given the neighbor relative position, velocity, and transmission
range. Functions 4 and 6 readily substitute in the algorithm described before:

�# ��� ������� � � ��� �����# ��� ����� � � � �� ��� ����� (7)

� � � ������� ��	 �
 �
 � �!	� ��� � � � � ��� � ��� ��� � �
� � � �!� �
 �
 �������"�
 � �!	

� � � ���#���%$&�'�(�
 �*) �
+,�%-) �,+.�+ � -/+ � 	� ��� � � � � ��� � ��� ��� (8)� �
� � � �!� �
 ��02143!5'6�7 � �98,:
 ���������
 5�; 	

Now we have seven parameters
� ��� ����� � � ��� ����� � � ��� ����� , � ��� ����� , � ��� ����� , � � � $�� � � and�

describing
�# ��� ����� as criteria for a preferred link between two nodes. The pa-

rameter
�

, which control the transition slop between 1 and 0 will be in fact com-
mon to every node and be fixed at the beginning of the simulation. Figure 2 is
an example of a typical quality of connectivity table using the modified power

9

cost. The shaded area still represents the evolution of the modified power cost,�# � ����� � ���	�
 � �# ����� ����� � �# ���� ����� � �# ����� ����� � , between next-hop nodes � � , � � and ��� ;
Node � forwards to node � � for

� � � � � � , to node � � for
� � � � � � � , and

to node ��� for for
� � � � .

Finally, since we are minimizing the modified power cost in order to obtain the
best link between two nodes for all time, we define the Quality of Connectivity as� $�� ������� � �

�# ��� ����� (9)

Then, by minimizing a link’s modified power cost, we are in fact maximizing its
QoC.

Figure 2: Graphical representation of the QoC function at node � .
3.2.2 Election Algorithm:

Based on the information provided by the neighboring table, a node � can de-
termine its preferred neighbor � at time

� � , which represents the time at which �
has the biggest QoC over all other neighbors of � . The criterion is defined as

#�� � ��� � � � � � � � � $�� ������� � � �������	�
��� � � � $�� � 	 ��� � ��� (10)

We further define a fixed interval (� ��� � � * , called activation, in which � remains � ’s
PN. We say that � is activated by � over (� � � � � * , and during this activation, � has
the biggest QoC among � ’s neighbors. An activation between node � and node �
over an interval (� ��� � � * is defined as

� � � � ��� � � (� � � � � * � ���� ���	� � �)&�� ��� ��#�� � ��� � ��� ������ � ��� ��� ��� ! � &�� �����! � � (� � � � � *#�� � ����� � �
(11)

Therefore, the set (� , � ,
� � � � � � � � (� � � � � *) uniquely identifies a preferred link be-

tween node � and node � over (� � � � � * and will thereafter mentioned as � �#"
 ��$
 &% .
10

Although a node can only have one PN at a time (see Section 3.2.1), it can have
several PNs over time, with mutually exclusive set of activations. This means that
a node can locally predict its actual and future PNs, conditioned over the lack of
any unexpected topology changes. As time goes on, nodes will switch from PNs to
PNs, always maximizing the QoC. The set of � ’s PNs, denoted #�� � , regroups all
actual and predicted future PNs. This set is defined as :

� � #�� � � � � � � � � � � &�� ����� � � � ��� � � (� � � � � *�����
Note that #�� � ����� uniquely defines a PN of node � at time

�
.

We distinguish three cases:

� No PN— if the set is empty, then node � has no PN which means it has no
neighbors. In Figure 3, node $ has no neighbor and consequently no PN;

� Single PN— if the #�� � has only one member, then this member is the elected
PN at every time, until further notified (unexpected topology changes).

� Multiple PN— the set #�� � can have more than one member. In that case,
node � will automatically switch to the new PN, as soon as its actual one
becomes sub-optimal. This procedure does not require any extra overhead,
since this situation has been predicted in a distributed way.

Finally, note that #�� � is kept valid until further notified, meaning that, un-
less � receives a new trajectory message from one of its neighbors, this set stays
optimal. Upon reception of such messages, � is allowed to revise its previous de-
cision, so that the set remains optimal (see Section 3.6). Furthermore, thanks to
the intrinsic property of the QoC graph which activations are obtained from, the
set of activations contained in #�� � are mutually exclusive (see Figure 2 where(� � � � *�� (� ��� � � * ���).

Consequently the algorithm selects, for each node $ in the network topology
and at each time

�
, a neighbor that has the biggest QoC in the neighborhood. We

say that node � is the preferred neighbor of node � during a defined interval, if �
is in the neighborhood of � and has the biggest QoC among its neighbors during
this interval. Therefore, each node elects exactly one PN at each time and can be
chosen as the PN of many nodes. Thus, the way in which a node is elected follows
a monotonic increasing function depending only on its QoC. A time adapting forest
is built after connecting each node to its PN during their respective activations. In
Section A, we will prove that, whatever the network topology is, this approach
always yields to a forest at every time.

3.3 Forest Construction

In order to construct preferred links and consequently the forest, each node
generates a table called Intra-Zone table. Indeed, as soon as node � determines
the set of its PNs, it must notify its neighbors, especially its PNs, of its decision.

11

Therefore, node � sends a PN message #�� � � � ��� � � "
 ��$
 % � � � "
 � $
�� % � . It then updates
its Intra-Zone table regarding its PNs. This message indicates that node � is electing
node � as its PN with the activation

� � � � ��� � � (� � � � � * and node
�

as its future PN with
the activation

� � � � � � � � (� �'� ��� * . Note that
� � � � � ��� � � (� � � � � * ��� � � � ��� � � (� �'� ��� * � � �

and
� � � � � � � � � (� � � � � *�� � � � � ��� � � (� �'� ��� * � � (� � � ��� * . Upon reception of � ’s message,

node � check whether it has been chosen as the PN of � . If so, it also updates its
intra-zone table regarding � . This means that a tree branch is built between node �
and its preferred neighbor � during (� � � � � * , and a future tree branch between � and

�
is also created over (� � � ��� * . Besides, the preferred links � � "
 � $
 % and � � "
 � $
�� % belong
to a different tree, since

� � � � ��� � � (� � � � � * and
� � � � ��� � � (� �'� ��� * are mutually exclusive.

Therefore, those edges become a preferred link, and the set of preferred links in
each neighborhood generates the set of preferred paths in the network.

3.4 Self-Adaptive Intra-Zone Clustering

At this phase, nodes attempt to expand their own view about the tree they be-
long to by completing their intra-zone table. Indeed, when a node � gets elected by a
neighbor, it then locally advertises the new PN learned. To do so, � sends a so called
Learned PN message � � �	� $ � � #�� � � � ��� � � "
 ��$
 &%�
 � � "
 � $
�� %�
 �� "
�� $
�� % ��� � � � �.� "
�� $
�� %

��� "
�� $
 � � % � , indicating that node � with

� � � � � � � � (� � � � � * has nodes
�

with� � � � ��� � � (� � � � � * and with
� � � � �'�� � (��� � ��� * as its PNs, and node � with

� � � � ��� � � (��� � ��� *
has node � with

� � � � �	��� � (��� � � � � * as its PN.

Definition 1 Let node
�

be a Preferred Neighbor of node � , and a Learned Pre-
ferred Neighbor of node � . We formally define an activation

� � � � �'� � � (� ��� ��� * as
valid with respect to an activation

� � � � ��� � � (� � � � � * , iff
� � � � � � � � � (� � � � � *��� � � � ��� � � (� ��� ��� * � ���� .

A direct consequence of Definition 1 is that ��� ��� � are belonging to the same tree
over the activation

� � � � � ��� � � (� � � � � *�� � � � � ��� � � (�� � ��� * � , while
� � � � �'� � � (� ��� ��� *"!� � � � � � � � � (� � � � � * ��� � � � �'� � � (� ��� ��� * � is considered as a separate tree connecting only��� � .

Upon reception of this message, and if PNs learned by it have valid activations,
each tree member updates its intra zone table, and re-advertises to their neighbors
if it is not a leaf node6. For this purpose, each node generates another field in its
intra zone table called Learned Preferred Neighbor (Learned PN) in order to keep
nodes that have been learned to be a tree member. We mention again that node � is
chosen to be the PN of � over an interval of (� � � � � * , and � has sent a PN message to
inform its neighborhood of its elected PN. Among the neighboring nodes of � , the
PN � forwards � ’s decision to nodes that hold a tree edge with � , say

�
, activated

over (� � � ��� * , by setting its Learned PN message to � #�� � � � �'� �'� "
 ��$
 % � . Then, the

6A leaf node is a node which only has a single neighbor and which is never a PN.

12

local view of
�

’s tree is that, over
� � � � � ��� � � (� � � � � * � � �'� � � (� � � � � * � , � is reachable

through � .
If node � is chosen as the PN of many nodes through a period of time, then �

forwards their decisions encapsulated in Learned PN field in the message, that is
� #�� � � � ��� �'� "
 ��$
 %
 �'��� "
 � $
�� %
 �'��� � "
�� $
�� %
 � � � � . It indicates that node � is forward-

ing the new learned PNs or new tree members ��� "
 ��$
 %
 �'� � "
 � $
�� %
 ��� � � "
�� $
�� %
 � � on
the tree. Other neighboring nodes of � add � to the Learned PN field corresponding
to � in their intra-zone table if node � already exists in their table over a valid acti-
vation. In this way, we say that � is learned to be the PN of � . Note that node � is
also learned by the neighboring nodes of � . Node � creates a Learned PN message
if the set of PNs learned by � is non-empty. This set is denoted by � �
��� $ � � #�� � .
Node � forwards the � � �	� $ � � #�� � , if it is not a leaf node. Hence, the intra-zone
table is only updated if the information originates from PN members and not from
� � �	� $ � � #�� members or an ordinary neighbor.

c g

k

d u

h

b

f r

v

q

a

i
p

s

n

[0,10]

[9,10]

[0,10]

[0,10] [0
,10

]

[0
,1

0]

[10,20]

[0,10]

[0,6]

[0
,1

0]

[10,20] [10,20]

[10,20]

[10,20]

Actual Tree
Future Branch
Bridge
Gateway

j

w

[6,10]

l

o

e

m

[0,9]

[0,10]
[0,10]

[9,10]

Figure 3: Constructed forest

For example, in Figure 3, let us consider the scenario where node
�

wants to
communicate to one of the nodes belonging to its tree during (� � �"� * . According to
its Intra Zone table (see Table 1(a)), node

�
can reach nodes

� � � ��� � ! � � � � through
node

�
over (� � �"� * , while other nodes

� � � are directly reachable. Since node � is a
future PN of

�
(
�

being the actual one), it is not yet accessible to nodes in
�

’s tree
(at least not through

�
). So, regarding to � $ ��� � � � 	 , the next hop to reach nodes� � � ��� � ! � �'� � is node
�

and not
� ��� . However, node

�
does not see the change in

the topology that arises at
� ���

between nodes
�

,
!

, and � .
�

initially had � as
Learned PN, thus reachable through

!
from over (� � � * , but then, node � switched

and elected
�

as its PN from over (� � �"� * . Note that this had been done without
any messages exchanged, since this configuration had been predicted by the three

13

PN Learned PN� " � $ � � % � " � $ � � % � � " � $ � � %
� " � $ � � % � ! " � $ � � %� " � $ � � % � � " � $ � % $ " � $ � � %
 " � $ � � % � & " � $ � � %� " � � $ � � % � " � � $ � � % � � " � � $ � � %

� " � � $ � � % � � " � � $ � � %� " � $ � � % -

(a) �������
	 �� 5

PN Learned PN! " � $ � � % � " � $ � � %� " � $ � %� " � $ � � % � " � $ � � % ��� " � $ � � %� " � $ � � % -� " � $ � � % -� " � $ � � % & " � $ � � % �� " � $ � � %
� " � $ � � % -

(b) �������
	 �����
Table 1: Intra-zone table of nodes

�
and

�
regarding Figure 3

nodes during the neighborhood discovery.
Then, as shown in Table 1(a) & 1(b), the view of a node, say � , about its tree

consists of two levels: #�� , � � �	� $ � � #�� . The #�� level contains the nodes
holding tree-edges with node � . The second level, � � �	� $ � � #�� , contains nodes
that are learned by the #�� level. In fact, node � can reach them via their associated#�� in its intra-zone table. Therefore, node � only knows the next hop for its second
level nodes (see Figure 4). Actually, each entry in � $ ��� � � � � can be seen as a
branch of � , that is � � � � � � �	� $ � � #�� . Thus, each node obtains a partial view
of its tree in the sense that it does not know the detailed structure of its tree.

For example, in Figure 3, where node
�

is only able to see one route to reach � ,
node

�
sees two different and exclusive paths to reach � , one through

!
and another

directly. Nevertheless, this does not have any influence on the Learned PNs of
�

,
since they still need to route through it anyway. Therefore,

�
is called critical

vertex, since all up-link nodes (up-link with respect to node �) will not see this
change in the topology, and will not receive any message about it. The topology
reorganization scope in KADER will be limited to these critical vertices, such that
the complexity remains acceptable. Finally, note that from

� � (�� � �"� * , the tree,
which node

�
belongs to, is expanded to reach nodes & and , such that node

�
will

learn about and & existence for
� � (�� � �"� * . Again, this procedure does not need

any message, as it had already been predicted during the initial topology creation.

3.5 Self-Adaptive Inter-Zone Clustering

A different routing table, called Inter Zone table is created to represent nodes
that does not belong to the tree over activations different from those in the In-
tra Zone. Every node belonging to this table over some activations are considered
part of a different tree and will be called a gateway. The link between two gateways
belonging to two different trees will be called a bridge.

At the beginning, every neighbors of a node � are put in its Inter Zone table
during their full initial activation, say (� ����� � * , which is defined as the connection

14

b

a

q
w

r

j

k

c

f

(a) Node �

f

b

a

q
w

r

j

c

k

(b) Node �

Figure 4: Tree view of nodes
�

and
�

.

life between the two nodes, or the time two nodes remain direct neighbors. Then,
as a node � succeeds to add some neighbor � to its tree and updates its intra zone
table over an activation (� ��� � � * , it therefore prunes � ’s initial activation. The re-
maining activation is then

� (� ����� � * ! (� � � � � * � . During this time, node � is still not
considered belonging to the same tree as � . Node � then appears in the Intra Zone
table over (� � � � � * and in the Inter Zone table over

� (� � ��� � * ! (� ��� � � * � . Every time �
receives PN or Learned PN information about � over some valid activation, it will
further prune its Inter Zone activations. Note that whatever the configuration is,� � � � � � &�� �
�� � � � � � � � � � � � � &�� �
 � � � � � � � � (� ����� � * .

Until convergence, PN and Learned PN messages will be exchanged to fill In-
tra Zone and Inter Zone tables at every node. Note that the behavior would be
the same would consider a snapshot at a particular time. Then, the size of different
zones will grow and shrink with time, self-adapting to the changing topology, with-
out message exchanges, unless an unexpected topology change happens (trajectory
change).

For example, in Figure 3, node � belongs to the inter-zone table of node
�

over activation (�"� �	� � * �
 (� � �"� * , and node & is in the inter zone of node
�

over
the activation (� �
� * , but at time � , both & and will be reachable from

�
, thus are

Learned PNs to
�

, further increasing node
�

’s zone. We say that for
� � (� �
� * , node& will be a gateway and the link

� & will be a bridge. In Figure 3, the inter zone
table of node

�
has one member activated from (� �
� * , � & " � $ � % .

3.6 Impact of Trajectory Knowledge on Zone Maintenance

As mentioned before, node trajectories information are only valid during a
short period of time. Then, since a node is unable to predict the time its neighbors
will change their trajectories, it biases the QoC to reflect the decreasing probability
of the link existence. Yet, we still consider this link valid as long as not notified
otherwise. Consequently, when a node is changing its trajectory, it must inform its
neighbors about the induced topology change. All links it formerly had with its
direct neighbors are invalidated. To do so, it sends a New Trajectory (NT) message
to all its neighbors, and piggybacks its new coordinates and velocity. Therefore,

15

its neighbors are able to adapt their trees to this event. Eventually, the algorithm
carries out the PN election phase again.

Upon reception of a NT message from � , node � updates its neighbor parameters
and recomputes the Quality of Connectivity of the new node. All activations to �
being invalid, � must notify its neighbors that the topology has changed. To do
so, it sends a Remove (RM) message including the node that changed its trajectory
as well as all Learned PNs depending to it. To do so, node � prunes its actual
and future trees by cutting the actual and future branches connecting � to � , which
consequently cuts all preferred links belonging to the pruned branches as well.
Then, in order to re-connect themselves to a tree, � and � run a new election round.
Even if � did not change course, it is then allowed to reconsider its previous decision
given the new topology so that it always keeps an optimal tree. As mentioned
before, we call critical vertex a vertex on which down-link topology changes does
not truly affect the view up-link nodes have about the tree. Hence, the topology
reorganization scope in KADER is limited to these critical vertices. When a RM
message does not have any influence on the view up-link nodes have about their
trees, it will not be forwarded, and we will therefore say that a RM message has
reached a critical vertex.

For example, in Figure 4, if
!

looses its link with
�

during the actual activation,
and reconnects with � , a change will take place in the the view node

�
has of its tree

(see Figure 4(a)), therefore
�

will forward the RM message to its neighbors. But the
view node

�
has of its tree (see Figure 4(b)) will not change, thus it will not forward

the message to
�
. By doing so, we only remove links that really are affecting the

view of the topology a node has. In fact, we limit the maintenance’s scope. The
size of the trees as well as their configurations will be adapted to the new topology
and will be valid until another node changes course, creating a event-driven zone
maintenance. Finally, we emphasize that by keeping the trajectory change’s rate
of a node below the beaconing rate of ordinary topology management protocols,
KADER ensures a decrease in the topology management messages, thus keeping
more resources for payload traffic.

4 KADER’s Connected Dominating Set

By creating zones as mentioned in section 3.4, KADER builds Dominating
Sets, and by keeping these zones connected with each others as described in sec-
tion 3.5, it obtains a Connected Dominating Set. In this chapter, we propose to
study KADER’s computed CDS with parameters such as average zone diameter
(i.e. in term of number of hops), average number of zones in the network, average
ratio of remaining edges, average ratio of PNs in the network. The following results
were obtained by measuring the metrics after the population of mobile nodes was
distributed uniformly on a grid of 2000mx2000m with each node having a trans-
mission range of 250m. Moreover, each node has a different stability value, but
nodes’ average stability is

��� � � � & . We will compare KADER in two different

16

cases : variable density and constant density.
We begin by showing in Figure 5 the topology created by KADER from an

arbitrary graph � (see Figure 5(a)) to a forest and trees (see Figure 5(b)), where
full lines are tree edges and dashed lines are bridges connecting different trees.

������������

������������

������������

������	�		�	

�

�
�

������

������������

��������
��������

������������

������������

������������
������������������������ ������������ � � !!"�""�"#�##�#$�$$�$%�%%�%

&�&&�&'�''�' (�((�())
*�**�*+�++�+

,�,,�,--
.�..�./�//�/

0�00�011

2�22�233

4�44�45�55�5

6�66�677

8�88�899:�::�:;�;;�;

<�<<�<==
>�>>�>??

@�@@�@A

B�BB�BCC
D�DD�DE�EE�E

F�FF�FG�GG�G

H�HH�HI�I

J�JJ�JKK

L�LL�LM�MM�M
N�NN�NO�OO�O P�PP�PQQ

R�RR�RS�SS�S

T�TT�TU�U
V�VV�VWW

X�XX�XYY
Z�ZZ�Z[

\�\\�\]�]]�]

^�^^�^_�__�_

`�``�`aa

b�bb�bc�cc�c
d�dd�de�ee�e

f�ff�fg�gg�g

h�hh�hi�ij�jj�jkk
l�ll�lmm

n�nn�noo

p�pp�pqq

r�rr�rs�ss�s

t�tt�tuu

v�vv�vw

x�xx�xyy

z�zz�z{{

|�||�|}} ~�~~�~��

������������

������������

�������������������

������������

������������

��������

������������

��������

������������
��������

���������

������������

������������������������
��������

 � � ¡¡

¢�¢¢�¢£�££�£

¤�¤¤�¤¥¥

¦�¦¦�¦§§
¨�¨¨�¨©�©©�©

ª�ªª�ª«�««�« ¬�¬¬�¬�
®�®®�®¯�¯¯�¯

°�°°�°±�±±�±
²�²²�²³³
´�´´�´µ�µµ�µ¶�¶¶�¶·�··�· ¸�¸¸�¸¹¹

º�ºº�º»�»»�»

¼�¼¼�¼½
¾�¾¾�¾¿�¿¿�¿

À�ÀÀ�ÀÁ�ÁÁ�Á
Â�ÂÂ�ÂÃ�ÃÃ�Ã

Ä�ÄÄ�ÄÅ�Å

Æ�ÆÆ�ÆÇ�ÇÇ�Ç

È�ÈÈ�ÈÉ�ÉÉ�É

Ê�ÊÊ�ÊËË

Ì�ÌÌ�ÌÍÍ Î�ÎÎ�ÎÏ Ð�ÐÐ�ÐÑÑ
Ò�ÒÒ�ÒÓÓ

Ô�ÔÔ�ÔÕ�ÕÕ�ÕÖ�ÖÖ�Ö××

Ø�ØØ�ØÙÙ

Ú�ÚÚ�ÚÛ�Û

Ü�ÜÜ�ÜÝÝ

Þ�ÞÞ�Þß�ßß�ß
à�àà�àáá

â�ââ�âã�ãã�ã ä�ää�äåå

æ�ææ�æç�çç�ç

è�èè�èéé
ê�êê�êë�ëë�ë

ì�ìì�ìí�íî�îî�îïð�ðð�ðññ

ò�òò�òó�ó ô�ôô�ôõ�õõ�õ

ö�öö�ö÷÷
ø�øø�øù

ú�úú�úû�ûû�û
ü�üü�üý�ýý�ý

þ�þþ�þÿÿ

�������
�

������������

������������

������������

	�		�	

������������

��������

�������
�

������������

�������
�

�������
�

�������
�

�������
�

�������
�

�������
�

������ � �

!�!!�!"�""�"

#�##�#$
$

%�%%�%&
&

'�''�'(
(

)�))�)*
*

+�++�+,
,

-�--�-.
.

/�//�/0�0

1�11�12�22�2
3�33�34
4

5�55�56
6

7�77�78�88�8

9�99�9:

;�;;�;<�<

=�==�=>
>

?�??�?@�@@�@A�AA�AB
B

C�CC�CD
D

E�EE�EF
F

G�GG�GH
H
I�II�IJ
J

K�KK�KL

M�MM�MN�N

O�OO�OP
P

Q�QQ�QR�RR�R

S�SS�ST
T

U�UU�UV
V

W�WW�WX
X

Y�YY�YZ

[�[[�[\
\

]�]]�]^
^

_�__�_`�``�`

a�aa�ab�bb�b

c�cc�cd�dd�d

e�ee�ef
f

g�gg�gh�hh�h

i�ii�ij�j
k�kk�kl
l

m�mm�mn�nn�n

o�oo�op�pp�pq�qq�qr�r

s�ss�st
t

u�uu�uv
v w�ww�wx�x

x�x

y�yy�yz�zz�z
{�{{�{|
|

}�}}�}~
~

�������
�

������������

���������

������������

�������
�

������������

�������
�

�������
�

���������

������������

(a) An arbitrary graph

������������

������������

������������

������������

�������

�������
�

������ � �

¡�¡¡�¡¢
¢

£�££�£¤
¤

¥�¥¥�¥¦�¦¦�¦

§�§§�§¨�¨¨�¨

©�©©�©ª�ªª�ª

«�««�«¬�¬¬�¬

��®�®®�®

¯�¯¯�¯°�°°�°
±�±±�±²
²

³�³³�³´�´´�´
µ�µµ�µ¶�¶¶�¶

·�··�·¸�¸¸�¸ ¹�¹¹�¹º
º

»�»»�»¼�¼¼�¼

½�½½�½¾
¾

¿�¿¿�¿À�ÀÀ�À

Á�ÁÁ�ÁÂ
Â

Ã�ÃÃ�ÃÄ
Ä

Å�ÅÅ�ÅÆ�ÆÆ�Æ

Ç�ÇÇ�ÇÈ
È

É�ÉÉ�ÉÊ
Ê

Ë�ËË�ËÌ�ÌÌ�Ì

Í�ÍÍ�ÍÎ
Î

Ï�ÏÏ�ÏÐ
Ð

Ñ�ÑÑ�ÑÒ

Ó�ÓÓ�ÓÔ
Ô

Õ�ÕÕ�ÕÖ�ÖÖ�Ö

×�××�×Ø�ØØ�Ø

Ù�ÙÙ�ÙÚ�Ú

Û�ÛÛ�ÛÜ
Ü

Ý�ÝÝ�ÝÞ�ÞÞ�Þ

ß�ßß�ßà�àà�à á�áá�áâ
â

ã�ãã�ãä�ää�ä

å�åå�åæ�æ

ç�çç�çè
è

é�éé�éê
ê

ë�ëë�ëì

í�íí�íî�îî�î

ï�ïï�ïð�ðð�ð

ñ�ññ�ñò
ò

ó�óó�óô�ôô�ô

õ�õõ�õö�öö�ö

÷�÷÷�÷ø�øø�ø

ù�ùù�ùú�ú

û�ûû�ûü
ü

ý�ýý�ýþ
þ

ÿ�ÿÿ�ÿ�
�

�������
�

������������

�������
�

������	

�

�
�
�

������

�������
� �������

�

������������

������������

�������������������

������������

������������

�������
�

 � � !�!!�!

"�""�"#
#

$�$$�$%�%%�%

&�&&�&'
'

(�((�()�)

*�**�*+�++�+

,�,,�,-�--�-

.�..�./�//�/

0�00�01
1

2�22�23
3

4�44�45�55�5

6�66�67
7

8�88�89
9

:�::�:;�;;�;

<�<<�<=�==�=

>�>>�>?�?

@�@@�@A�AA�A

B�BB�BC�CC�C

D�DD�DE
E

F�FF�FG�GG�G
H�HH�HI�II�I J�JJ�JK

K

L�LL�LM�MM�M

N�NN�NO

P�PP�PQ�QQ�Q

R�RR�RS�SS�S

T�TT�TU�UU�U

V�VV�VW�W

X�XX�XY�YY�Y

Z�ZZ�Z[�[[�[

\�\\�\]
]

^�^^�^_
_

`�``�`a

b�bb�bc
c

d�dd�de
e

f�ff�fg�gg�gh�hh�hi
i

j�jj�jk
k

l�ll�lm�m

n�nn�no
o

p�pp�pq�qq�q

r�rr�rs
s

t�tt�tu�uu�u
v�vv�vw
w

x�xx�xy�yy�y

z�zz�z{
{

|�||�|}�}}�}

~�~~�~���
�������

�������
�

��������� ���
���������

�������
�

�������

������������

������������

�������
�

�������
�

������������

������������

������������

�������
�

������������

������������

 � � ¡
¡

¢�¢¢�¢£�££�£

¤�¤¤�¤¥
¥

¦�¦¦�¦§
§

¨�¨¨�¨©
©

ª�ªª�ª«
«

¬�¬¬�¬

®�®®�®¯
¯

°�°°�°±�±±�±

²�²²�²³�³³�³

´�´´�´µ
µ

¶�¶¶�¶·
·

¸�¸¸�¸¹
¹

º�ºº�º»
»

¼�¼¼�¼½
½

¾�¾¾�¾¿
¿

À�ÀÀ�ÀÁ�Á

Â�ÂÂ�ÂÃ�ÃÃ�Ã
Ä�ÄÄ�ÄÅ
Å

Æ�ÆÆ�ÆÇ
Ç

È�ÈÈ�ÈÉ�ÉÉ�É

Ê�ÊÊ�ÊË

Ì�ÌÌ�ÌÍ�Í

Î�ÎÎ�ÎÏ
Ï

Ð�ÐÐ�ÐÑ�ÑÑ�ÑÒ�ÒÒ�ÒÓ
Ó

Ô�ÔÔ�ÔÕ
Õ

Ö�ÖÖ�Ö×
×

Ø�ØØ�ØÙ
Ù
Ú�ÚÚ�ÚÛ
Û

Ü�ÜÜ�ÜÝ

Þ�ÞÞ�Þß�ß

à�àà�àá
á

â�ââ�âã�ãã�ã

ä�ää�äå
å

æ�ææ�æç
ç

è�èè�èé
é

ê�êê�êë

ì�ìì�ìí
í

î�îî�îï
ï

ð�ðð�ðñ�ññ�ñ

ò�òò�òó�óó�ó

ô�ôô�ôõ�õõ�õ

ö�öö�ö÷
÷

ø�øø�øù�ùù�ù

ú�úú�úû�û
ü�üü�üý
ý

þ�þþ�þÿ�ÿÿ�ÿ

���������������������

�������
�

�������
� 	�		�	
�

�

������������
���
�

�������
�

�������
�

������������

���������

������������

�������
�

������������

�������
�

������

!�!!�!"�"

#�##�#$�$$�$

(b) Constructed forest

Figure 5: KADER’s Connected Dominating Set

50 100 150 200 250 300 350 400 450 500
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

of Nodes

R
em

ov
ed

 E
dg

es
 R

at
io

KADER Constant Density
KADER Variable Density

(a) Removed Edges
Ratio

50 100 150 200 250 300 350 400 450 500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

of Nodes

R
em

ai
ni

ng
 P

N
s

R
at

io

KADER Constant Density
KADER Variable Density

(b) Remaining PNs
Ratio

50 100 150 200 250 300 350 400 450 500
1.5

2

2.5

3

of Nodes

D
ia

m
et

er
 o

f Z
on

es
 (

H

op
s)

KADER Constant Density
KADER Variable Density

(c) Diameter of Zones

Figure 6: Properties of KADER’s Connected Dominating Set

Then, the graph in Figure 6(c) shows the diameter of a zone versus the number
of nodes in the network. The diameter of a zone is defined as the length of the path
that has the longest hop count. If the zone diameter is fixed, then we can place an
upper bound on the Intra zone end-to-end delay. We can clearly see in Figure 6(c)
that zones in KADER are relatively stable, in both a variable and a constant density.
This comes from its distance parameter in the electing criterion. Since KADER al-
ways try to create a link between nearby neighbors, neither density, nor the number
of nodes have a big influence. Furthermore, the longer the zone diameter becomes,
the more proactive the protocol is, and vice versa. As a consequence, KADER
tends to reduce its reorganization complexity by limiting its scope to closest nodes,
at a cost of extra overheads between zones. Finally, this graph shows that KADER
has an upperbounded zone length. This is important since its complexity is directly
proportional to this length.

17

The graph in Figure 6(a) shows the edges’ ratio the topology algorithm is able
to remove versus the number of nodes. We can see that KADER is able to remove
65% of the total number of edges. By getting rid of unnecessary links, KADER
helps reducing the broadcast burden in the network, and the scalability of rout-
ing protocols. Besides, unlikely to other approaches, the objective of KADER is
not necessary to obtain the minimum number of edges, since intra-zone routing
is obtained at no extra cost. It is rather designed to create stable zones, such that
its proactive maintainance is reduced. The conclusion is the same in Figure 6(b),
which shows the remaining preferred neighbors ratio versus the number of nodes.
KADER is able to remove 45% of PNs, which helps to reduce the broadcasting
overhead in the network. Therefore, by removing 65% of unecessary links and by
only keeping a backbone of 55% of router nodes, KADER proves to be broadcast-
ing efficent.

5 Overhead Complexity

It is important to compare the communication complexity of that algorithm for
topology creation. The communication complexity describes the average number
of messages required to perform a protocol operation. Note that this comparison
does not include the complexity of route discovery. 7 This issue is not covered in
this paper. We have selected three related protocols: MPR, TMP and DDR. We
consider a network with N nodes. For the three protocols, let � be the rate of topol-
ogy control generation, and � be the period of beaconing, or hello transmission. In
the KADER case, � is replaced by the trajectory change’ rate of a node,

�� , which
trigger the topology control. As mention before, we do not use beacons, therefore
� does not any significance in our algorithm.

In KADER, the network is partitioned into � zones, and each zone will have�� nodes. The amount of communication overhead to build and maintain the forest
is � since sending a PN election message, a forest will be constructed. To con-
struct a zone, each node generates (d-1) messages to forward the learned PN or
removed PN, where � is the hop-wise zone diameter. Therefore, each zone gener-
ates 	
������ �� messages. Since there exists � zones in the network, the overall
generated forward messages becomes 	
�������� . In conclusion, the total amount
of communication overhead for creating the topology produced by KADER is

������������� � � 	
�! "�� #�$&%&%&')(*$�%
where �,+.- (see Figure 6(c)).

It can be shown that the complexity of KADER is always smaller than MPR,
TMPO, or even DDR. In MPR, the communication overhead is

� �0/ � � �1�2
7KADER being zone-wise proactive, it is able to find the intra-zone paths without any increase

in complexity.

18

��� � � #�$&%&%&' ($�%�� � ��� � . � � is the average number of retransmis-
sions in an MPR flooding and is proportional to the number of nodes, whereas
in KADER, � reaches a threshold. TMPO is creating a communication overhead
of
��� �0/	� � � � ��
�� �� � ��
���
 � #�$�% %�' ($&% 8, where � �� � � is the av-

erage number of cluster-heads in the MDS. We can see that, similar to MPR, the
complexity of TMPO is always bigger than KADER. Finally, similar to KADER,
DDR partitionnes the network � in � zones of length � , and each zone generates
	
� � �� �� messages. However, DDR needs periodical messages. Therefore, the
total communication overhead in DDR is

� � � � � �,� � 	
� � ���� #�$&%&%&')(*$�% ,
where � +�� . Since � ��������� + � � � � , KADER has a smaller communication
overhead than DDR. And by removing periodic messages (which saves �1� over-
head messages) the communication overhead of KADER is even further reduced.

6 Benefit of KADER on Routing Algorithms

KADER is able to derive the most stable links from a network topology such
that full connectivity is always guarantied. It then becomes interesting to analyze
the benefit routing protocols can extract from it.

6.1 Efficient Routing

KADER is able to group nodes into a set of zones, which proactively maintains
routes between every nodes belonging to the same zone. Therefore, any routing
protocol using KADER would not need any overhead for Intra Zone routing. A
reactive approach, such that AODV [13], would take great help of the CDS cre-
ated in KADER by reducing the overhead of its route discovery procedure. This
would create an hybrid routing protocol, using proactive intra-zone routing, and
on-demand zone-level routing. On the other hand, similar to OLSR [10] using
MPR [9], a proactive protocol would be able to benefit from KADER broadcasting
efficiency by improving its scalability and its end-to-end delay.

6.2 Energy Efficiency

In KADER, during the construction of the forest, every node elected its Pre-
ferred Neighbor partly depending on the energy needed to reach it. Indeed, the
transmission range of the Intra zone routing is always adapted to reach only the
desired PN. Hence, KADER makes proactive Intra Zone routes optimal in term
of energy data flow generated and forwarded by each node, further reducing the
energy used for routing and increasing the channel capacity. And since KADER
does not use beacons, routing protocols using KADER could reach routing energy
efficiency.

8We are assuming a simplified case, where we are not considering the complexity overhead trig-
gered by gateways and doorways, which further increases TMPO complexity.

19

7 Conclusion

In this paper, we have presented a novel approach to topology management
algorithms, called Kinetic Adaptive Dynamic topology management for Energy
efficient Routing (KADER). It employes nodes’ trajectory knowledge to get rid of
periodic beacons. The major properties of KADER are Low Complexity, Broad-
casting Efficency, and Energy Efficency.

We showed that by using trajectory knowledge to predict nodes future posi-
tions, KADER was able to dynamically create and maintain a connected dominat-
ing set without using periodic beacons. Results pointed out that the CDS created
and maintained by KADER was composed of only 45% of nodes, and 65% of
links composing the original network, while always being able to keep a full con-
nectivity between every node. Then, using a similar denomination than those in
routing protocols, KADER can be classified as a reactive topology management
protocol, since it is only triggered when an event occurs. Therefore, by initiat-
ing topology maintance only when a node is changing course and not periodically,
KADER reaches energy efficiency for topology management. Moreover, KADER
is able to obtain a lower maintanance complexity than other topology management
algorithms.

In our future work, we will evaluate the performance of KADER with different
routing protocols under various traffic load and mobility rate.

20

References

[1] G. J. Pottie, “Wireless sensor networks”, Proc. IEEE Information Theory
Workshop, Killarney, Ireland, pp. 139-140, June 1998.

[2] Navid Nikaein, Houda Labiod , and Christian Bonnet, “Distributed Dynamic
Routing Algorithm for Mobile Ad-Hoc Networks,” Proc. MobiHOC 2000,
USA/Boston.

[3] C. Gentile, J. Haerri, and R. E. Van Dyck, “Kinetic minimum-power routing
and clustering in mobile ad-hoc networks,” IEEE Proc. Vehicular Technology
Conf. Fall 2002, pp. 1328-1332, Sept. 2002.

[4] R.J. Fontana and S.J. Gunderson, ”Ultra-wideband precision asset location
system”, IEEE Conf. on Ultra Wideband Systems and Technologies, pp. 147-
150, 2002.

[5] C. Gentile and Luke Klein-Berndt, ”Robust Location using System Dynamics
and Motion Constraints”, To be presented to the IEEE International Confer-
ence on Communications, Paris, 20-24 June, 2004.

[6] R. Prakash ”Unididirectional links prove costly in Wireless Ad-Hoc Net-
works”, In Proc. of the Discrete Algorithm and Methods for Mobile Comput-
ing Computing and Communications (DialM), Seattle, WA, August, 1999.

[7] P. Krishna et al, ”A cluster-based approach for routing in dynamic networks”
ACM SIGCOMM Computer Communication Review, pp. 49-65, Apr. 1997.

[8] L. Bao and J.J. Garcia-Luna-Aceves, ”Topology Management in Ad-Hoc Net-
works”, Proc. MobiHOC 2003, USA/Annapolis.

[9] A. Laouiti et al, ”Multipoint Relaying: An Efficient Technique for Flooding
in Mobile Wireless Networks”, 35th Annual Hawaii International Conference
on System Sciences (HICSS’2001), Hawaii, USA, 2001.

[10] T. Clausen et al, ”Optimized Link State Routing Protocol”, IEEE INMIC,
Pakistan, 2001.

[11] A. Amis et al, ”MaxMin D-Cluster Formation in Wirless Ad-Hoc Networks”,
In Proceedings of the IEEE Conference on Computer Communications (IN-
FOCOM), Mar. 1999.

[12] M.R. Garey and D.S. Johnson, Computers and intractability. A guide to the
theory of NP-completness, Freeman, Oxford, UK, 1979.

[13] C.E. Perkins et al. ”Ad Hoc On-Demand Distance Vector Routing”, draft-
ietf-manet-aodv-13, 2003.

21

A Correctness

Definition 2 An arbitrary undirected time dependent graph � 	�� � is defined as
��	�� � � 	�� ��� 	�� � � , where � is the set vertices, and � 	�� � is the set of edges at
time � .

Theorem 1 For any graph ��	�� � , let ��� 	�� � � 	�� ����� 	�� � � be the subgraph obtained
by connecting each vertex � to its preferred links �	� 	�� � . Then ��	�� �
� is a forest.

Proof: Let ��	�� � be the original graph at time � , and let � � 	�� � be the graph
obtained by executing the KADER algorithm for each vertex ���� at time � . We
first recall that the main idea is to select, for each node ����� 	�� � , a neighbor that
has the maximum QoC. In order to prove that ���
	�� � does not contain any cycle� � ��� ������� � ������� ������� � ����� , lets suppose the contrary, and let ��� be the vertex of

�
with the biggest ��� � .

vi

vi−1

vi−2

vi+1

vi−3

vi+2

Figure 7: The proof of theorem 1

Let us consider two vertices of ����� � and ����� � adjacent to � � in
�

(Figure 7).
Without loss of generality, assume that the algorithm on � � chosen an adjacent
vertex ����� � (if neither � ��� � nor ����� � had been chosen,

�
is not a cycle). Consider

now the execution of the algorithm on � ��� � . We will show that such node will not
choose � � , thus implying that

�
is not a cycle.

Lets define ! 	�� � ��� ��� � � as the QoC function between � � and � �"� � . Since � �
chose � ��� � , ! 	�� � ��� ��� � ��#$! 	�� � ��� ��� � � . And by � ���&% ’s decision to choose � ��� � ,
! 	������&% ������� � �'#(! 	������&% �������&)��*#+! 	���� ������� � � , ! being an monotone increasing
function. Therefore, ! 	�� � ��� ��� � � +,! 	�� ��� � ��� ���&% � . This proves that � ��� � will not
choose � � as PN, and

�
will not be a cycle.

Theorem 2 For any PN activation '.-/� 	�� � ��� ��� � �10 � � ��� %32 , and any graph �4� 	�� � ��� % � �
	�� ����� 	�� � ���
%�� � obtained by connecting each vertex to is preferred links �5� 	�� � ���
% �
activated during 0 � � ��� %32 , � � 	�� � ��� % � is then always a forest at every time instant
included in 0 � � ��� %/2 .

Proof: When a node � � elects a PN � �"� � during an activation '.-3� 	�� � ��� ��� � �10 � � ��� %32 ,
it means that 67�	�80 � � ���
% 2 , ! 	���� ������� � � 	�� �9#:! 	���� ��� ; � 	�� � ��6=< . Since nodes share

22

a common clock, all their current left activation are equal to the current time and
will thereafter be considered as � , past activations being irrelevant.

If a node � � elects a PN � ��� � during an activation ' -3� 	�� � ��� ��� � �10 ����� � 2 , without
loss of generality, � ��� � can elect a node � ���=% as PN during an activation '.-/� 	�� ��� � �
� ���=% �10 ����� %�2 . Since the algorithm prunes the activation between � � and � ���=% as
	�0 ����� � 2�� 0 ����� %32 � , we must consider two cases. In the first case, the initial activation
'.-3� 	�� � ��� ��� � �10 ����� � 2 is less or equal than '.-/� 	�� �"� � ��� ���=% �10 ����� %12 , thus it will be kept
unaltered during the forwarding steps. In the second case, the algorithm prunes the
initial activation.The forwarded activations are two separated and mutually exclu-
sive activations.

Lets consider � % smaller or equal to � � . Then, following the development in
the proof of Theorem 1, at some point, node � ��� � could elect node � � during an
activation ' -3� 	���� ������� � �10 �����
) 2 ��'*% �) + � � � . 0 �����
) 2 is the remaining activation after
multiple prunning at each node in the path. Then it means that 67��� 0 �����)32 , � ��� �
could elect � � as PN, thus creating a cycle during this time. Theorem 1 prove that
this situation was not possible, since 67� � 0 �����)32 , we obtained a stable tree which
is not a function of � . Then, during the activation ' -3� 	�� � ��� ��� � �10 �����)12 , � does not
contains any cycle.

Since the initial activation has been pruned, we still need to consider the case of
the remaining activation (0 �) ��� � 2). Without loss of generality, lets consider that this
activation has been pruned at a single node � ���=% . This node has the possibility to
elect � �"� � as PN (mutual election), updating the mutual activation as the union of
their respective ones. Note that this case does not create a cycle. � ���=% can otherwise
elect another node, say � ���=) . Since 0 �) ��� � 2 � 0 �����)12 ��� , � ���=% � ���=) is then a branche
of a different and independant tree and the situation is independant to the previous
one. Therefore, this neither creates a cycle, which concludes the proof.

Theorem 3 6 G, let G’ be the subgraph obtained by connecting each node to its
preferred links during their respective activations. Then G’ is a forest at every time
instant.

Proof: 6 node � � , since all its PNs activation intervals are mutually exclu-
sive (� 	
' -3� 	�� ��� � � ������� � '.-3� 	�� ����� � � ���), from Theorem 2, we can conclude that
KADER always yield to a forest at every time instant.

23

