
Efficient Subscription Management in Content-based Networks

Raphäel Chand, Pascal A. Felber
Institut EURECOM

06904 Sophia Antipolis, France
{chand|felber }@eurecom.fr

Abstract

Content-based publish/subscribe systems offer a conve-
nient abstraction for data producer and consumers, as most
of the complexity related to addressing and routing is en-
capsulated within the network infrastructure. A major chal-
lenge of content-based networks is their ability to efficiently
cope with changes in consumer membership. In ourXNET

XML content network, we have addressed this issue by de-
signing novel algorithms to speed up subscription manage-
ment at the routers, while guaranteeing perfect routing at
all times and maintaining compact routing tables thanks to
extensive usage of “aggregation.” In this paper, we discuss
the issue of subscription management in content-based net-
works, and we specifically describe and evaluate the algo-
rithms that we have developed forXNET.

1 Introduction

In content-based publish/subscribe systems, messages
are routed on the basis of their content and the inter-
ests (subscriptions) of the message consumers. This form
of communication is well adapted to loosely-coupled dis-
tributed systems with large consumer populations, with di-
verse interests, wide geographical dispersion, and hetero-
geneous resources (e.g., CPU, bandwidth). Several tech-
niques have been proposed to implement content routing,
with various trade offs in terms of algorithmic complex-
ity, runtime overhead, or bandwidth utilization. In partic-
ular, support forperfectrouting (i.e., a message traverses a
communication link only if there is some consumer down-
stream that is interested in that message) introduces signifi-
cant management complexity at the routers in the presence
of dynamic subscription registrations and cancellations. As
a consequence, several content-based publish/subscribe net-
works do not systematically update their routing tables upon
consumer departure and let the accuracy of routing degrade
over time.

In our XNET XML content network [7], we have ad-
dressed this issue by designing novel techniques to speed up
the most time-consuming subscription management opera-

tion of the routers. Specifically, we propose algorithms that
allow routers to quickly determine the “covering” relation-
ships between an incoming subscription and all the entries
of their routing table. Covering relationships are at the core
of subscription aggregationmechanisms, which help limit
the size of routing tables and hence improve the efficiency
of the filtering engine while ensuring perfect routing. Al-
though the algorithms presented in this paper have been de-
signed for XPath tree-structured subscriptions, they can be
readily applied to other subscription language with similar
characteristics. Experimental evaluation demonstrates that
these algorithms are highly efficient even when the number
of subscriptions in the routing table grows very large.

2 Related Work

Several publish/subscribe systems implement some form
of distributed content based routing, most notably IBM
Gryphon [2], Siena [3], and Jedi [10]. These systems adopt
various approaches to subscription management.

IBM Gryphon [2] uses a distributed filtering algorithm
based on parallel search trees maintained on each of the bro-
kers to efficiently determine where to route the messages.
The system implements perfect routing and supports sub-
scription registration and cancellations; in fact, registering
(canceling) a subscription reduces to inserting (removing)
it from the search tree and is thus an efficient operation.
However, to maintain and update the parallel search tree,
each broker must have a copy of all the subscriptions in the
system. As a consequence, this approach may not scale well
to large and highly dynamic consumer populations.

Siena [3] also uses a network of event servers for
content-based event distribution, and relies upon a routing
protocol most similar to ours, but with limited support for
subscription cancellation. In a recent paper [4], the authors
of Siena introduce a novel routing scheme for content-based
networking based on a combination of broadcast and selec-
tive routing. Subscription management is simple and effi-
cient but the system does not guarantee perfect routing, in
the sense that consumers may receive messages that they
are not interested in. The authors have addressed this issue

by having routers periodically request for the routing table
of other routers.

JEDI [10] proposes several variations for routing events
among its networked event servers; in particular, with the
hierarchicalapproach, subscriptions are propagated upward
a spanning tree and messages are propagated both upward
and downward to the children that have matching subscrip-
tions. Subscription management is simple and efficient, but
this approach may lead to large routing tables at the root and
unnecessary propagation of events upward the tree.

Our subscription containment and matching techniques
are related to the widely studied problem of pattern and
regular expression matching. There exists several indexing
methods to speed up the search of textual data with regular
expressions, like the bit-parallel implementation of NFA [1]
and suffix trees [14]. In [6], the authors have addressed the
reverse indexing problem of retrieving all the regular ex-
pressions that match a given string. They propose RE-Tree,
an index structure to quickly determine the regular expres-
sions that match a given input string, by focusing the search
on only a small fraction of the expressions in the database.

In [12], Tozawa and Hagiya present a containment
checking technique for XML schemas, which is based on
binary decision diagrams. Little work has been done on the
problem of containment checking for tree-structured XPath
expressions. In fact, the problem has been shown to be
coNP-complete [11]. A sound but non-complete algorithm
has been proposed in [5] to determine whether a given tree-
structured subscription covers another subscription, but it
does not address the problem of covering relationships be-
tween large sets of subscriptions.

3 System Overview
This section gives an overview of the XNET content

routing network. We also briefly describe its most essential
mechanisms, which are relevant for the rest of the paper.
More details can be found in [7].

System Model and Definitions. XNET is a distributed
publish/subscribe system which consists of a collection of
content-based routers (or nodes) organized in an overlay
network. Each node routes the messages based on its lo-
cal knowledge of the consumer subscriptions and the actual
content of the messages.

Each data consumer and producer is connected to some
node in the network; we call such nodesconsumerandpro-
ducernodes. We assume that all routers know their neigh-
bors, as well as the best paths that lead to each producer.
We also assume that the number and location of the pro-
ducer nodes is known. From the point of view of a router,
this amounts to knowing which neighbors lead to some pro-
ducer. The consumer population can be highly dynamic and
does not need to be known a priori. The most recent imple-
mentation of our routing protocol, XROUTE, handles mul-

tiple producers [8]; for the sake of simplicity, however, we
only consider networks with a single producer in this paper.

Each node has a set oflinks, or interfaces, that connects
the node to its direct neighbors. We assume that there exists
exactly one interface per neighbor, and that communication
between two nodes is reliable. Our system also incorpo-
rates fault-tolerant mechanisms to handle both transient and
permanent failures.

<Quotes>
<Stock>

<Symbol>DEF</Symbol>
<Price>34.1</Price>

</Stock>
<Stock>

<Symbol>GHI</Symbol>
<Price>11.5</Price>

</Stock>
</Quotes>

(a)

Stock

PriceSymbol

//

="GHI" >"15"

(b)

Figure 1: (a) A sample XML document describing two stock
quotes. (b) Tree representation of a sample XPath subscrip-
tion (//Stock[Symbol="GHI"][Price>15]) that does not
match the XML document.

XNET was designed to deal with XML data, thede
facto interchange language on the Internet. Producers can
thus define custom data types and generate arbitrary semi-
structured events, as long as they are well-formed XML
documents.

Consumer interests are expressed using a subscription
language. Subscriptions allow to specify predicates on the
set of valid events for a given consumer. XNET uses a sig-
nificant subset of the standard XPath language to specify
complex, tree-structured subscriptions [13].

An XPath expression contains one or morelocation
steps, separated by slashes (/). In its most basic form, a
location step designates an element name followed by zero
or more predicates specified between brackets. Predicates
generally specify constraints on the presence of structural
elements, or on the values of XML documents using ba-
sic comparison operators. XPath also allows the use of
wildcard (*) and ancestor/descendant (//) operators, which
respectively match exactly one and an arbitrarily long se-
quence of element names. We say that an XML document
matchesan XPath expression when the evaluation of the ex-
pression on the document yields a non-null object. Figure 1
shows an XML event and an XPath subscription that does
not match the event (each branch of the subscription has a
matching node in the XML document, but the conjunctive
condition at the “Stock” node is not met).

We say that a subscriptionS1 coversor containsanother
subscriptionS2, denoted byS1 ⊇ S2, iff any event match-
ing S2 also matchesS1, i.e.,matches(S2) ⇒ matches(S1).
The covering relationship defines a partial order on the set
of all subscriptions.

The Routing Protocol. XNET implementsperfect rout-
ing, that is, a message traverses a communication link only
if there is some consumer downstream that is interested in
that message. To do so, each node in the network maintains
in its routing table a collection of subscriptions that describe
the classes of message that its neighboring nodes are inter-
ested in. When receiving a message, a node first determines
which subscriptions of its routing table match the event; it
then forwards the message to all neighbors that have regis-
tered one of these subscriptions. Given accurate routing ta-
bles, this process ensures that a message eventually reaches
all the consumers, and only those, that are interested in that
message.

When a consumer registers or cancels a subscription, the
nodes of the overlay update their routing table accordingly
by exchanging some pieces of information that represent
the registration or cancellation of the consumer. The pro-
cess starts at the consumer node and terminates at the pro-
ducer node(s), following the shortest paths. As a conse-
quence, messages published by the producers follow the re-
verse paths of the subscriptions, along a multicast tree span-
ning all interested consumers.

The routers in our system reduce the size of their rout-
ing tables as much as possible by using elaborateaggrega-
tion techniques, which are based on the detection and the
elimination of subscription redundancies. Subscription ag-
gregation allows us to dramatically improve the routing ef-
ficiency of the system both in terms of throughput and la-
tency, because the time necessary to filter a message is pro-
portional to the number of entries in the routing tables. On
the other hand, aggregation also adds significant complexity
and overhead to the routers, because they need to identify
the covering relationships between incoming subscriptions
and all the entries of their routing tables. These manage-
ment operations were the main bottleneck of early XNET

implementations and led us to develop the techniques pre-
sented hereafter. More details about subscription aggrega-
tion and XNET’s routing protocol can be found in [7].

4 Subscription Management
Efficient subscription management is critical for the

overall performance of the system and to guarantee short
registration delays to consumers. As previously mentioned,
the cost of subscription management mainly results from
the extensive covering checks that have to be performed by
the routers when a subscription is registered or canceled.

To determine whether a given tree-structured
subscription—also called “tree pattern” henceforth—covers
another subscription, we can use the algorithm proposed
in [5], which has a time complexity ofO(|S1||S2|), where
|S1| and |S2| are the number of nodes of the two sub-
scriptions being compared.1 Obviously, when an incoming

1Note that the covering problem has been shown to be coNP-

subscription must be tested for covering against all the
other subscriptions in the routing table, iterative execution
of the algorithm is clearly inefficient. We have therefore
designed a novel algorithm, termed XSEARCH, which
efficiently identifies all the possible covering relationships
between a given subscription and a possibly large set of
subscriptions. This algorithm is described in the rest of this
section. Additional details and proofs can be found in a
companion technical report [8].

Problem Statement. Consider a tree patterns and a set
R of n tree patterns,R = {s1, · · · , sn}, which we will
refer to as the search set. Our algorithm runs in two dif-
ferent modes according to the relationships that we want to
identify. Covered modeidentifies the setR⊇ of all the tree
patterns inR that are covered bys. Cover modeidentifies
the setR⊆ of all the tree patterns inR that covers. We refer
to XSEARCH⊇ and XSEARCH⊆ as the algorithm running in
coveredandcovermode, respectively.

Definitions and Notations. Let u be a node of a tree pat-
terns; we denote bylabel(u) the label of that node and by
child(u) the set of the child nodes ofu in s. Recall that
the label of nodeu can either be a wildcard (*), an ances-
tor/descendant operator (//), or a tag name. We define a
partial ordering� on node labels such that ifx andx′ are
tag names, then (1)x � ∗ � // and (2)x � x′ iff x = x′.

Algorithm 1 add(s, t, u)
1: if ∃t′ ∈ child(t) such thatlabel(t′) = label(u) ands /∈ sub(t′) then
2: sub(t′) = sub(t′) ∪ s
3: else
4: createt′ ∈ child(t) such thatlabel(t′) = label(u) andsub(t′) = {s}
5: end if
6: for all u′ ∈ child(u) do
7: add(s, t′, u′)
8: end for

Factorization Trees. Our XSEARCH algorithm does not
operate directly on the set of tree patternsR, but on a “fac-
torization tree” built from the setR and defined as follows.
The factorization tree ofR, denotedT (R), is a tree where
each nodet has two attributes: a labellabel(t) similar to
that of a node of a tree pattern, and a set of tree patterns
sub(t), which is a subset ofR. The root noderT of T (R)
has no label andsub(rT) = R. Initially, T (R) consists
of only its root noderT . We incrementally add each tree
patterns ∈ R to T (R) with the recursiveadd(s, rT , rs)
function shown in Algorithm 1, wherers is the root node
of tree patterns. The removal of a tree pattern fromT (R)
is performed in a similar manner using Algorithm 2. Note
that, to keep the presentation simple, we omitted the special

complete [11]. Our algorithm is sound but not complete, i.e., it may fail
to detect some covering relationships in rare pathological cases, but all the
relationships that it reports are correct. Consequently, a router may fail to
aggregate some valid subscriptions, but correctness is never violated.

case of the root node of the factorization tree in the addition
and removal algorithms.

Algorithm 2 remove(s, t)
1: for all t′ ∈ child(t) such thats ∈ sub(t′) do
2: sub(t′) = sub(t′) \ {s}
3: remove(s, t′)
4: if sub(t′) = {} then
5: removet′ from child(t)
6: end if
7: end for

a

c

*

c

a

b

c a

a

b b

c a

//

b

a

b

b a

// a *

c b

c a

b

a b

s1 s2 s3 s4 s5 s6

b

{s1,s3,s4,s6,s7}{s5 }

{s5 } {s1} c{s3,s4,s6,s7}

{s3,s4} {s4 }

{s4}

{s3,s6 } {s6 }

{s2 }

{s2 }

rT

31

2
4 5

6

9

7

12

11

 8

R =

a

s7

b

{s1,s2,s3,s4,s5,s6,s7}

10

Figure 2: Six tree patterns and a corresponding factorization tree,
where a node is represented by its label. Each node is associated
with a set of tree patterns, shown between brackets.

Intuitively, a factorization tree enables us to remove the
redundancies between the tree patterns inR by “factoriz-
ing” identical branches. Thus,T (R) is a compact represen-
tation of the tree patterns inR. Figure 2 shows an example
with six tree patterns and the corresponding factorization
tree. It is important to note that the factorization tree is not
unique; depending on the insertion order of the tree pat-
terns, we can have distinct, equivalent trees. This does not
affect the correctness of our XSEARCH algorithm, nor its
performance.

The Search Algorithm. We first describe the XSEARCH

algorithm in covered mode. Consider a subscription setR
and a corresponding factorization tree,T (R). Let s be a
single tree pattern. The algorithm works recursively on the
nodes ofs. When executed with the root nodes ofT (R)
and s, XSEARCH⊇(rT , rs) returns the setR⊇ of all tree
patterns that are covered bys.

The search process is described in pseudo-code in Algo-
rithm 3. Intuitively, it tries to locate the paths inT (R) that
are covered bys; the tree patterns that the union of those
paths represent are also covered bys (lines 6 and 8). The
process is slightly more complex when encountering an an-
cestor/descendant operator (//), because we need to try to
map it to paths of length0 (line 11) or≥ 1 (line 12).

To better illustrate the workings of the algorithm, con-
sider the example runs shown in Figure 3. Two tree pat-

terns,u and v, are matched against the factorization tree
T (R) of Figure 2 for clarity. The nodes ofu, v, andT (R)
are numbered in the figures; we refer to node numberi of
u, v, andT (R) by ui, vi, andti, respectively. The differ-
ent steps of the algorithm are detailed in the two execution
traces (the↪→ symbol represents recursive invocations of
the algorithm).

Algorithm 3 XSEARCH⊇(t, u)
1: if t is a leafthen
2: XSEARCH⊇(t, u) = ∅
3: else
4: if label(u) 6= “//′′ then
5: if u is a leafthen
6: XSEARCH⊇(t, u) =

⋃t′∈child(t)
label(t′)�label(u)

sub(t′)

7: else
8: XSEARCH⊇(t, u) =

⋃t′∈child(t)
label(t′)�label(u)

⋂
u′∈child(u)XSEARCH⊇(t′, u′)

9: end if
10: else
11: S0 =

⋂
u′∈child(u)XSEARCH(t, u′)

12: S≥1 =
⋃

t′∈child(t)XSEARCH(t′, u)

13: XSEARCH⊇(t, u) = S0 ∪ S≥1
14: end if
15: end if

Algorithm 4 XSEARCH⊆(t, u)
1: if u is a leafthen
2: XSEARCH⊆(t, u) = sub(t)
3: else
4: if label(t) 6= “//′′ then
5: if 6 ∃u′ ∈ child(u), label(u′) � label(t) then
6: XSEARCH⊆(t, u) = sub(t)
7: else
8: if t is a leafthen
9: XSEARCH⊆(t, u) = ∅

10: else
11: XSEARCH⊆(t, u) =

12:
⋂u′∈child(u)

label(u′)�label(t)

⋃
t′∈child(t) XSEARCH⊆(t′, u′)

13: end if
14: end if
15: else
16: S0 =

⋃
t′∈child(t)XSEARCH(t′, u)

17: S≥1 =
⋂

u′∈child(u)XSEARCH(t, u′)

18: XSEARCH⊆(t, u) = S0 ∩ S≥1
19: end if
20: end if

Algorithm 5 XSEARCH⊆(rT , rs)
1: XSEARCH⊆(rT , rs) = sub(t) \

⋃
t′∈child(t) XSEARCH⊆(t′, rs)

The second algorithm, XSEARCH⊆, is described in Al-
gorithms 4 and 5 and works in a very similar manner. The
major difference is that the algorithm works recursively on
the nodes ofT (R), trying to find paths ins that are cov-
ered by the tree patterns inT (R). The recursive function
in Algorithm 4 returns the subscriptions that donot cover
s. A subscriptiont coverss if each branch ofs is cov-
ered by some branch oft (line 12). Subscriptions that have
longer (line 2) or incompatible (line 6) paths cannot cover
s, whereas shorter paths (line 9) are acceptable. Finally,
when encountering an ancestor/descendant operator (//),
we need to try to map it to paths of length0 (line 16) or

a

//

a

* b

a b

vu

1

2 4

3 5

1

2

b 3

XSEARCH(rT , u1) = XSEARCH(t3, u2)∩ XSEARCH(t3, u4)
↪→ XSEARCH(t3, u2) = XSEARCH(t4, u3)∪ XSEARCH(t5, u3)∪
XSEARCH(t9, u3)

↪→ XSEARCH(t4, u3) = ∅
↪→ XSEARCH(t5, u3) = {s3, s6}
↪→ XSEARCH(t9, u3) = {s4}

↪→ XSEARCH(t3, u2) = {s3, s6} ∪ {s4} = {s3, s4, s6}
↪→ XSEARCH(t3, u4) = XSEARCH(t5, u5)∪ XSEARCH(t9, u5)

↪→ XSEARCH(t5, u5) = {s6}
↪→ XSEARCH(t9, u5) = ∅

↪→ XSEARCH(t3, u4) = {s6}

Finally: XSEARCH(rT , u1) = {s3, s4, s6} ∩ {s6} = {s6}

XSEARCH(rT , v1) = XSEARCH(t3, v2)
↪→ XSEARCH(t3, v2) = S0 ∪ S≥1
↪→ S0 = XSEARCH(t3, v3)
↪→ S≥1 = XSEARCH(t4, v2)∪ XSEARCH(t5, v2)∪ XSEARCH(t9, v2)

↪→ XSEARCH(t3, v3) = sub(t5) ∪ sub(t9) = {s3, s4, s6, s7}
↪→ XSEARCH(t4, v2) = ∅
↪→ XSEARCH(t5, v2) = S′0 ∪ S′≥1

↪→ S′0 = XSEARCH(t5, v3)
↪→ S′≥1 = XSEARCH(t6, v2)∪ XSEARCH(t7, v2)∪ XSEARCH(t8, v2)

↪→ XSEARCH(t5, v3) = sub(t6) = {s6}
↪→ XSEARCH(t6, v2) = ∅
↪→ XSEARCH(t7, v2) = ∅
↪→ XSEARCH(t8, v2) = ∅

↪→ S′0 = {s6}
↪→ S′≥1 = ∅

↪→ XSEARCH(t5, v2) = {s6}
↪→ XSEARCH(t9, v2) = S′′0 ∪ S′′≥1

↪→ S′′0 = XSEARCH(t9, v3)
↪→ S′′≥1 = XSEARCH(t10, v2)

↪→ XSEARCH(t9, v3) = ∅
↪→ XSEARCH(t10, v2) = ∅

↪→ S′′0 = ∅
↪→ S′′≥1 = ∅

↪→ XSEARCH(t9, v2) = ∅
↪→ S0 = {s3, s4, s6, s7}
↪→ S≥1 = {s6}
↪→ XSEARCH(t3, v2) = {s3, s4, s6, s7} ∪ {s6} = {s3, s4, s6, s7}

Finally: XSEARCH(rT , v1) = {s3, s4, s6, s7}

Figure 3: Two XSEARCH⊇ example runs.

≥ 1 (line 17). Note that we implicitely introduce an artifi-
cial root node in the tree-structured subscriptions (denoted
rs for subscriptions) in order to simplify the description
of the algorithm. When called with the roots of the fac-
torization tree and a subscriptions, Algorithm 5 recusively
searches for subscriptions that do not covers and return the
complement set with respect toR. Because of space limi-
tations, correctness proofs are not given here (they can be
found in [8]).

Both Algorithms 3 and 4 perform inO(|T (R)| · |s|)
time, where|T (R)| is the number of nodes in the factor-
ization tree and|s| that in the expression being tested. This
quadratic time complexity is due to the fact that each node
in T (R) ands is checked at most once. As for the space
complexity, the size of the factorization treeT (R) grows
linearly with the number of tree patterns in the search setR.
However, by construction, the factorization tree typically
requires much less space than would be needed to maintain
the whole search setR, that is,|T (R)| �

∑
si∈R |si| when

|R| grows to large values.

5 Performance evaluation
Experimental Setup. To test the effectiveness of our sub-
scription management techniques, we have conducted sim-
ulations using real-life document types and large numbers
of subscriptions. We have generated realistic subscription
workload using a custom XPath generator that takes a Doc-
ument Type Descriptor (DTD) as input and creates a set of
valid XPath expressions based on a set of parameters that
control: the maximum heighth of the tree patterns; the
probabilitiesp∗ andp// of having a wildcard (*) and an-

cestor/descendant (//) operators at a node of a tree pattern;
the probabilitypλ of having more than one child at a given
node; and the skewθ of the Zipf distribution used for select-
ing element tag names. For our experiments, we generated
sets of tree patterns of various sizes, withh = 10, p∗ = 0.1,
p// = 0.05, pλ = 0.1, andθ = 1. We used the widely-used
NITF (News Industry Text Format) DTD [9] as the input
DTD of our XPath generator. All the algorithms were im-
plemented in C++ and compiled using GNU C++ version
2.96. Experiments were conducted on 1.5 GHz Intel Pen-
tium IV machines with512 MB of main memory running
Linux 2.4.18.

XSEARCH Efficiency. We evaluated the efficiency of the
XSEARCH algorithm for search sets of different sizes. For
this experiment, we considered search sets with unique sub-
scriptions, that is, a given subscription does not appear more
than once in a set. Indeed, in a given router, XSEARCH

is used to determine the covering relationships between a
given subscription and the subscriptions in the routing ta-
ble, which are all unique.

For each search set, we generated1, 000 additional sub-
scriptions and, for each of them, we measured the time
necessary to determine the subset of the subscriptions that
cover, and are covered by, that subscription. For compari-
son purposes, we have also measured the efficiency of the
XSEARCH algorithm against sequential execution of the
containment algorithm of [5], which we callLinear.

Figure 4 shows the average search time of the XSEARCH

algorithm. It appears clearly thatXSearch is extremely ef-
ficient. Even for very large search sets, we can expect an

0

10

20

30

40

50

20000 40000 60000 80000 100000

T
im

e
in

 m
s

Size of search set

Average search time for XSearch⊇
Average search time for XSearch⊆

Figure 4: Average search time for the XSEARCH algorithm.

average search time of less than50 ms. In comparison, the
Linear algorithm yields to search times that are systemati-
cally more than two orders of magnitude higher. This result
is not surprising, as theLinear algorithm needs to evaluate
the entire subscription setR while XSearch only searches
through the factorization tree, which is much smaller by
construction.

The second variant of the algorithm,XSearch⊆, tends
to be slightly less efficient thanXSearch⊇ for large con-
sumer populations. We can explain this observation by the
fact that, on average, theXSearch⊆ algorithm necessitates
deeper traversals of the factorization tree.

Size of search set 1,000 2,000 5,000 10,000

XSEARCH⊇ 0.23 0.45 1.17 2.41

XSEARCH⊆ 0.28 0.53 1.30 2.57

Table 1: Average search time of XSEARCH in ms.

One should note that, in practice, the sizes of the rout-
ing tables rarely exceed1, 000 entries, even for very large
consumer populations, thanks to subscriptions aggregation.
For completeness, we show in Table 1 the absolute aver-
age search time of XSEARCH for search sets of small sizes,
which are most relevant in the context of content-based
routing.

|R| 1,000 2,000 5,000 10,000 20,000 50,000 100,000∑
si∈R |si| 7.6 15.8 42.1 88.1 183.3 481.8 998.6

|T (R)| 1.9 3.6 8.2 15.1 28.1 62.1 112.6

Table 2: Space requirements for a given subscription populationR
and its factorization treeT (R), in thousands of nodes.

Space Efficiency. We have experimentally quantified the
space requirements of the factorization tree with subscrip-
tion sets of various sizes. The results in Table 2 confirm
that the number of nodes in the factorization tree is indeed
notably smaller than the sum of the nodes of the individual
subscriptions.

6 Conclusion
We have described the subscription management tech-

niques that we implemented in our XNET content routing
network. These techniques rely on XSEARCH, an algo-
rithm that determines the covering relationships between
subscriptions, to efficiently process consumer registrations
and cancellations. By capitalizing the performance of this
algorithm, our content-based publish/subscribe system can
maintain compact routing tables (for improved routing per-
formance) while ensuring perfect routing (for bandwidth ef-
ficiency) at all time. Although described in the context of
content-based routing and XPath, the XSEARCH algorithm
can be readily used with similar subscription languages or
to address different data management problems.

References

[1] R. A. Baeza-Yates and G. H. Gonnet. Fast text searching for
regular expressions or automaton searching on tries.Journal
of the ACM, 43(6):915–936, 1996.

[2] G. Banavar, T. Chandra, B. Mukherjee, J. Nagarajarao,
R. Strom, and D. Sturman. An efficient multicast protocol
for content-based publish-subscribe systems. InProceed-
ings of ICDCS, May 1999.

[3] A. Carzaniga, D. Rosenblum, and A. Wolf. Design and Eval-
uation of a Wide-Area Event Notification Service.ACM
Transactions on Computer Systems, 19(3):332–383, 2001.

[4] A. Carzaniga, M. J. Rutherford, and A. L. Wolf. A rout-
ing scheme for content-based networking. InProceedings
of IEEE INFOCOM, Mar. 2004.

[5] C.-Y. Chan, W. Fan, P. Felber, M. Garofalakis, and R. Ras-
togi. Tree Pattern Aggregation for Scalable XML Data Dis-
semination. InProceedings of VLDB, Aug. 2002.

[6] C.-Y. Chan, M. Garofalakis, and R. Rastogi. Re-tree: an
efficient index structure for regular expressions.The VLDB
Journal, 12(2):102–119, 2003.

[7] R. Chand and P. Felber. A scalable protocol for content-
based routing in overlay networks. InProceedings of NCA,
Cambridge, MA, Apr. 2003.

[8] R. Chand and P. Felber. XNet: An XML Content Routing
Network. Technical report, Institut EURECOM, 2004.

[9] I. P. T. Council. News Industry Text Format.
[10] G. Cugola, E. D. Nitto, and A. Fugetta. The JEDI event-

based infrastructure and its application to the development
of the opss wfms. IEEE Transactions on Software Engi-
neering, 27(9):827–850, Sept. 2001.

[11] G. Miklau and D. Suciu. Containment and equivalence for
an xpath fragment. InProceedings of PODS, Madison, WI,
June 2002.

[12] A. Tozawa and M. Hagiya. XML schema containment
checking based on semi-implicit techniques. InProceed-
ings of the Conference on Implementation and Application
of Automata (CIAA), July 2003.

[13] W3C. XML Path Language (XPath) 1.0, Nov. 1999.
[14] S. Wu and U. Manber. Fast text searching: allowing errors.

Communications of the ACM, 35(10):83–91, 1992.

