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ABSTRACT
While adaptive filtering is in principle intended for tracking
non-stationary systems, most adaptive filtering algorithms
have been designed for converging to a fixed unknown fil-
ter. When actually confronted with a non-stationary environ-
ment, they possess just one parameter (stepsize, forgetting
factor) to adjust their tracking capability. Virtually the only
existing optimal approach is the Kalman filter, in which the
time-varying optimal filter is modeled as a vector AR(1) pro-
cess. The Kalman filter is in practice never applied as an
adaptive filter because of its complexity and large number of
unknown parameters in its state-space (AR(1)) model. Here
we consider optimal adaptive filtering for any stationary op-
timal filter evolution. We emphasize the various aspects of
an optimal Bayesian approach, which not only include pa-
rameter variation bandwidth but also a priori parameter size
and parameter dynamics. Finally we recommend some con-
strained versions of modest complexity and show how to esti-
mate the parameters in the resulting Bayesian adaptive filters.

1. STATE OF THE ART

Since the introduction of the LMS algorithm by Widrow and
Hopf in the 1960’s, most of the further work in adaptive
filtering has focused on improving the initial convergence.
The Recursive Least-Squares (RLS) algorithm was also de-
veloped in the 1960’s and provided an alternative algorithm
for adaptive system identification. The RLS algorithm is re-
cursive and not iterative as the LMS algorithm, solving a LS
cost function exactly at each update. As a result it converges
very fast since it provides an unbiased solution once the LS
problem gets overdetermined. This deterministic aspect adds
up to the observation that the RLS convergence is insensitive
to the input signal correlation structure (approximately, since
there is some dependence on the initialization). The RLS al-
gorithm, though providing computational savings w.r.t. the
plain solving of LS problems at each sampling period, is
quite a bit more expensive than the LMS algorithm. This
motivated on the one hand the development of fast RLS algo-
rithms, and on the other hand the development of an interme-
diate category of algorithms, all less sensitive than LMS to
the input correlation structure, including frequency or other
transform domain LMS algorithms, prewhitened LMS ver-
sions, Fast Newton Transversal Filters and (Fast) Affine Pro-
jection Algorithms.
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At the outset, all these algorithms are developed to con-
verge to an unknown optimal filter. When this optimal fil-
ter is actual time-varying, these algorithms need to be made
adaptive. The RLS algorithms are made adaptive by the in-
troduction of a weighting function/window. The weighted
LS cost function can be viewed as the output of a filter with
the instantaneous squared filtering error sequence as input.
The filter should be such that its input-output relationship is
simple and recursive. The LS cost function uses a discrete-
time integrator as filter, which can be easily modified into a
first-order recursive filter for the exponentially weighted RLS
algorithm. The sliding window RLS algorithm uses a moving
average filter that can also be expressed recursively. All other
adaptive filtering algorithms are made adaptive by the intro-
duction of a scalar stepsize. In fact, the time-varying stepsize
sequence of stochastic gradient algorithms [1] is made time-
invariant/constant to avoid convergence and permit tracking
of time-varying optimal filter settings. The tracking charac-
teristics of the LMS and RLS algorithms got analyzed only
in the 1970’s and 1980’s, 10 to 20 years after the introduction
of the algorithms, in [2] for LMS and [3] for RLS. A further
inspection of these tracking characteristics revealed the sur-
prising result that in certain cases the LMS algorithm may
provide better tracking than the RLS algorithm (each with
optimized stepsize or forgetting factor), see [4] for determin-
istic and e.g. [1] for random parameter variations. With hind-
sight, this is not at all surprising since LMS and RLS are just
two suboptimal approaches to tracking time-varying param-
eters. Whereas initial convergence is about the fast reduction
of the mean parameter error vector, tracking is about the op-
timal compromise between MSE due to estimation noise and
tracking/lag noise.

The RLS algorithm got introduced after the Kalman filter
(KF) was invented, though the RLS algorithm is a special
case of the KF for the following state-space model [5]

Ho
k = Ho

k−1 (1)

xk = YT
k Ho

k +vk . (2)

The KF formulation requires immediately a parametric form
of the optimal filter, usually a FIR filter is assumed with im-
pulse response ofN coefficients contained in the vectorHo

k .
The measurement equation(2) expresses that thedesired-
response signal xk is the sum of the output∑N−1

i=0 Ho
k,iyk−i of

the optimal FIR filterHo
k with input yk plus an independent

measurement noise vk. In KF terminology,xk would be the
measurementandH0

k thestate.
Wiener filtering (WF’ing) is about estimating one ran-

dom signal from another, let’s say estimating the signalxk on



the basis of the signalyk. In thesystem identification(sysid)
set-up of adaptive filtering, which is reflected in (1)-(2), the
relation between these two signals is thatxk is assumed to
be output of an unknown system/plant withyk as input plus
independent measurement noisevk. In this case, the optimal
Wiener (LMSSE) filter is clearlyRxYR−1

YY = HoT, which is
FIR if the system to be identified is FIR. The WF is based on
the joint statistical description of the random signalsxk and
yk. and is a deterministic quantity. The WF solution is not
influenced by the color of the noisevk.

KF’ing is in principle a special case of the signal-in-noise
case of WF’ing. In the signal-in-noise case, the measurement
signal is the sum of the signal to be estimated plus noise.
For the KF, the signal to be estimated satisfies furthermore
a state-space model. The adaptive filtering/RLS application
of KF’ing though deviates significantly from this spirit. In
RLS, the quantity (state) estimated is the set of WF coeffi-
cientsHo

k instead of its output, the filter inputyk is consid-
ered deterministic (the estimation is givenyk) and hence the
filter estimate would be random ifyk would be considered
random. Indeed, the KF provides an estimateHk of the WF
Ho

k . Since this KF application is now an instance of param-
eter estimation, the parameter estimation quality depends on
e.g. the color of the noisevk.

The KF’ing framework can be straightforwardly ex-
tended to incorporate time-varying optimal parameters. The
simplest way is probably through the following stationary
AR(1) model state equation for the optimal filter variation
[5]

Ho
k = F Ho

k−1 +Wk (3)

replacing (1), where EWkWH
i = Qδik, EWkvH

i = 0 (noises
assumed circular in complex case). This formulation lead to
the widely accepted point of view that the KF would be the
optimal adaptive filter. This is indeed true for thesysidcon-
figuration with (3)-(2) asassumed correct modelandF , Q
and r in EvkvH

i = r δik assumed known. We may note that
in this model, WF’ing provides the time-varying optimal fil-
ter HoT

k = RxkYkR
−1
YkYk

and the KF estimates it in a Bayesian
(LMMSE) sense.

The problem with the KF viewpoint is that the model pa-
rameters, if at all the model is correct, are unknown and need
to be estimated also from the same data. Those parameters
can be inferred from the joint signal statistics, just like the
WF itself. However, in the KF, the input signalyk is con-
sidered deterministic which makes the state space model (3)-
(2) linear but time-varying. These complications lead to ap-
proximate approaches such as exponentially weighted RLS,
which can be shown [6] to correspond to the KF for certain
artificial choices ofF and Qk in ([?]). The main issue in
most applications is the so-calledgeneralization propertyof
statistical learning: what counts is the adaptive filter perfor-
mance not for the given input signal realization, but when
applied to other signal data, hence for the given signal statis-
tics. The generalization capacity may be hampered by stick-
ing too closely to one model’s details when the model is ap-
proximate. Another issue is that the KF approach for track-
ing time-varying optimal filters only applies in thesysidcon-
figuration in which the filter’s non-stationarity arises in the
crosscorrelations between input and desired-response sig-
nals, regardless of the statistics ((non)stationarity) of the in-
put. Communications applications of thesysidconfiguration
are channel estimation and echo cancellation. In all other

configurations of adaptive filtering: prediction, deconvolu-
tion/equalization and interference cancellation, the statistics
of the optimal filter may be strongly intertwined with the
statistics of the the input signal. In linear prediction for in-
stance, the desired-response and input signals are the same.
One rarely sees the linear prediction problem addressed as
a ML estimation of or KF’ing on the parameters of an AR
model, because any AR model order is likely to lead to an ap-
proximation error. Adaptive prediction is in fact a joint oper-
ation of approximation (e.g. through model order selection)
and estimation. In equalization, even if the channel variation
could be modeled as an AR(1) model as in (3), the optimal
equalizer setting is a nonlinear function of the channel. Given
all these considerations, the best practical approach is prob-
ably to specify a motivated solution structure of acceptable
complexity and optimize the parameters within that structure
(as is done in linear prediction) (approximation/estimation
compromise). The problem considered here has of course
been addressed previously and we now discuss some of this
existing work.

1.1 Tracking Bandwidth Adjustment

Most of the work on adapting tracking capability has focused
on adapting one tracking parameter. In RLS, it doesn’t cost
any computational complexity to make the forgetting factor
(FF) time-varying. Modifications to fast RLS algorithms to
allow a time-varying FF, as well as algorithms to adjust this
FF on the basis of correlation matching have been pursued in
[7]. The equivalent development for LMS algorithms con-
cerns Variable StepSize (VSS) algorithms. Important de-
velopments were presented in [8],[9]. Most of the VSS al-
gorithms use the steepest-descent strategy and the instanta-
neous squared error cost function of the LMS algorithm to
adjust the additional parameter, which is the stepsize. A re-
lated but different approach consists in running various adap-
tive filters with different time constants and selecting or com-
bining their outputs, similarly to what is done in model order
selection, see [10],[11],[12],[13].

A further refinement is to allow different tracking band-
widths for differents filter components as is done in [14] with
a VSS per filter coefficient and in [15] where the tracking ca-
pacity increases with frequency for the various frequency do-
main components of the filter. The work in [14] essentially
shows that a ”diagonal” state-space model (3) may allow a
simplification of the KF to a LMS algorithm with a VSS per
tap, but no attempt is made to automatically adjust the result-
ing stepsizes.

1.2 Power Delay Profile

Besides the statistical modeling of the parameter variation,
another important ingredient in Bayesian adaptive filtering is
the incorporation of prior knowledge on the coefficient sizes.
Indeed, when tracking time-varying filters, it becomes pos-
sible to learn the variances of the filter coefficients. This as-
pect has been exploited for a while in a rudimentary, binary
form for sparse filters: filter coefficients are either adapted or
deemed to small and kept zero (for each filter coefficient, the
stepsize is either 0 or a constant). More recently, a smoother
evolution of the stepsize has been introduced, leading to the
Proportionate LMS (PLMS) algorithm, motivated e.g. by
acoustic echo cancellation in which the adaptive filter has
many coefficients, but their value tapers off, see [16],[17].



Similar prior information is starting to be taken into account
for (LMMSE) channel estimation in wireless communica-
tions [18], where the evolution of the channel coefficient
variances along the impulse response is called the power de-
lay profile.

1.3 Full Bayesian Approach

In a full Bayesian approach, the whole matricial spectrum
SHo(z) = SHoHo(z) of Ho

k counts: not only the parameter vari-
ation speed/bandwidth but the whole spectral shape counts,
not only the spectral shape but also the power delay profile
counts, and in principle also the cross spectra between coef-
ficients need to be accounted for.

The KF [5] allows to do all this in thesysidset-up, but ig-
nores the estimation ofSHo(z). In [19], a point of view close
to the one of this paper is developed. However, they require
the knowledge of the (multivariate IIR) matricial spectrum of
the (standard) adaptive filter gradient (this could be estimated
from the observations of the gradient) and knowledge of the
(multivariate IIR) matricial spectrum of the stationary filter
parameter vector. This last requirement is quite unrealistic.
Furthermore, the design steps suggested may be quite sensi-
tive to estimation errors to some quantities that get estimated.

2. MODELING OF STANDARD ADAPTIVE FILTER
BEHAVIOR

The adaptive filter isHk and the a prior error signal isek =
xk−YT

k Hk−1. Consider the (complex) LMS algorithm first

H lms
k = H lms

k−1 + µ Y∗
k ek (4)

whereas the RLS filter update is of the form

Hrls
k = Hrls

k−1 + R̂−1
k Y∗

k ek (5)

whereR̂k = λ R̂k−1 +Y∗
k YT

k . Let R= EY∗
KYT

k . Then, assum-
ing the adaptation speed is not too fast, we get approximately

H lms
k =

[
I − (I −µR)q−1

]−1
µ R(Ho

k +R−1Y∗
k vk)

Hrls
k =

1−λ

1−λ q−1 (Ho
k +R−1Y∗

k vk)

(6)
whereq−1Hk = Hk−1. Using averaging analysis at low adap-
tation speed, these results for thesysidset-up hold approxi-
mately also for the other adaptive filtering applications. Note
that Ho

k + R−1Y∗
k vk is closely related toGk = R−1Y∗

k xk,
which is a mixed quantity in that it is averaged in the input
covariance but instantaneous in the input-desired-response
correlation.

One may remark that in the context of tracking (slowly)
time-varying parameters, the exact least-squares property of
RLS becomes quite unimportant. In fact, the main property
that continues to count is the decorrelation property leading
to insensitivity of the tracking dynamics to the variation in
the input signal spectrum.

3. GENERAL BAYESIAN ADAPTIVE FILTER
SOLUTION

We shall introduce, mostly for the purpose of analysis, a
somewhat idealized Bayesian solution which is based on the
assumption thatR can be estimated well. This solution will

be based on LMMSE estimation (Wiener filtering) ofHk
from

Gk = R−1Y∗
k xk = Ho

k +R−1Y∗
k vk +(R−1Y∗

k YT
k − I)Ho

k (7)

where for slow parameter variations, the last term can be ne-
glected since it is the product of low-pass noiseHo

k with high-
pass noiseR−1Y∗

k YT
k − I . The optimal Bayesian adaptive fil-

ter would be to apply the KF to (7),Gk = Hk+G̃k, which can
be considered as a measurement equation for the stateHo

k . In
steady-state, the KF converges to the WF

Hk = F(q)Gk (8)

where in the non-causal case

F(q) = SHoG(q)S−1
GG(q) = I −SG̃G̃(q)S−1

GG(q) (9)

Neglecting the last term in (7) and assuming thatvk is white
noise (hencẽGk is white), we haveSG̃G̃(q) = RG̃G̃ = σ2

v R−1.
Hence the non-causal WF is fairly straightforward to find
sinceSGG(q) can be estimated simply from the observations
of Gk, thoughσ2

v is somewhat trickier to derive from the ob-
served MSE (the details are omitted here). For the causal
case, considerGk = P(q)Gk whereP(q) is the (∞ length)
(monic) multivariate prediction error filter for the vector sig-
nal Gk and Gk is the resulting white prediction error with
covariance matrixRGG. Then the causal WF is

F(q) =
{

SHoG(q)P†(q)
}

+ R−1
GG

P(q) = I −RG̃G̃R−1
GG

P(q)
(10)

which is based on the same quantities as the non-causal
WF. It can be shown that in the case of FIR Wiener fil-
tering (causal or not), an expression similar to the one in
(10) holds in whichP(q) would then denote the LMMSE
estimation error filter for estimatingGk on the basis of the
otherG’s involved, andRGG denotes the corresponding es-
timation error covariance matrix. The use of a general fil-
ter F(q) will lead to an estimation error̃Hk = Ho

k −Hk =
(I −F(q))Ho

k −F(q)G̃k with covariance matrix

RH̃H̃ =
∮

dz
2π j z

(I −F)SHoHo(I −F)† +
∮

dz
2π j z

FRG̃G̃F†

(11)
whereF = F(z) andSHoHo = SHoHo(z), and results in Excess
MSE (EMSE) tr

{
RH̃H̃ R

}
.

4. STRUCTURED/REDUCED-COMPLEXITY
CASES OF INTEREST

The analysis is easiest when the input is white,R= I . It is
of interest to analyze the following structured models for the
optimal filter Doppler spectrum:
(i) subspace model:Ho

k = AWk whereA is tall andSWW(z)
is diagonal

(ii) decoupled coefficient dynamics:SHoHo diagonal

(iii) uniform dynamics plus power delay profile:SHoHo(z) =
Shh(z)D whereShh is scalar andD is a constant diagonal

A very low complexity solution for (ii) or (iii) would be a
LMS algorithm with individual stepsizes for the coefficients.



It is of interest to compare the resulting EMSE with opti-
mized individual stepsizes to the classical LMS with an opti-
mized global stepsize. For case (iii), if the power delay pro-
file (D) is binary then in the classical solution the EMSE will
be proportional to the total number of adaptive filter coeffi-
cients whereas in the optimized individual stepsize case, only
the coefficients with non-zero variance will contribute. Also,
in case (iii), withD = I , one can come up with a spectrum
Shh(z) for which RLS is optimum.

5. ADAPTIVE BAYESIAN ADAPTIVE FILTERING

5.1 Predictive Bayesian Adaptive Filter

In the case of white input (such as in communications chan-
nel estimation or electrical echo cancellation, in which cases
the input is the transmitted symbol sequence), the ideal
Bayesian adaptive filter introduced above is immediately
applicable. Constrained structure solutions such as LMS-
variants (individualized stepsize) can be considered. Classi-
cal VSS solutions can also be applied to individualized step-
sizes.

In the case of colored inputs, one can go to transform do-
main LMS: frequency domain, subbands, wavelets. Or use
FNTF, prewhitened LMS or IV-LMS with Instrumental Vari-
able (IV)zk = S−1

yy (q)yk.

5.2 Two-Stage Solutions

In this case we consider a first stage with a fast standard adap-
tive filter, e.g. NLMS with stepsize equal to 1. The second
stage is a Wiener filter on the filter estimates provided by the
first stage. Even in fast time-varying filter cases, the filter
variation bandwidth will typically be only a fraction of the
signal bandwidth. This means that the filter estimates from
the first stage can be (first lowpass filtered (by e.g. simple av-
erages) to reduce the estimation noise and) subsampled and
WF (or KF) can be applied in the second stage, to a slightly
modified form of (7) (with quite generally white measure-
ment noise due to the subsampling) or perhaps even to a
modified form of (6) if one doesn’t want to neglect the adap-
tation dynamics in the first stage. This second stage then be-
comes similar to the filtering approaches suggested for brute
periodic channel estimates in [20],[21]. Since the 2nd stage
works at reduced rate, the added complexity of working in 2
stages becomes acceptable.
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