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ABSTRACT

In this paper, we revisit a number of classical blind estima-
tion techniques for FIR multichannels when applied to com-
munication systems that are based on the introduction of a
cyclic prefix. These techniques include techniques based
on deterministic modeling of the unknown symbols such
as (signal and noise) subspace fitting methods, subchannel
response matching (SRM), deterministic maximum likeli-
hood (DML), and techniques based on a Gaussian white
noise model for the unknown symbols such as Gaussian ML
(GML) methods and covariance matching. The presence of
a cyclic prefix transforms spatiotemporal channels into a set
of parallel spatial channels, coupled by the discrete Fourier
transform (DFT) of the FIR channel impulse response. The
associated blind channel estimation methods become com-
putationally much more attractive and also become more
straightforward to analyze and to compare in terms of per-
formance. Working in the DFT domain reveals immdiately
that temporal whiteness of the additive noise is unessential,
only spatial whiteness matters. Furthermore, the blind chan-
nel identifiability conditions become extremely weak when
Zero Padded (ZP) systems are considered.

1. INTRODUCTION

A wealth of blind channel estimation techniques have been
introduced for spatio-temporal channels over the past decade,
based on the singularity of the received signal power spec-
tral density matrix [11]. This singularity can be exploited
to separate the white noise contribution. The main problem
characteristic in fact that allows channel identifiability is the
minimum phase characteristic of the Single-Input Multiple-
Output (SIMO) or MIMO matrix channel transfer function
of the spatio-temporal channel. Spatio-temporal channels
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arise in mobile communications when multiple antennas or
polarizations or beams are used at the receiver. Physical
multi-channels can also arise in xDSL systems when the re-
ceiver has access to a complete cable bundle. Other prob-
lem formulations that lead to multi-channel models are the
use of oversampling at the receiver or the decoupling of in-
phase and in-quadrature components when real symbols get
modulated. Or the reception of multiple signal copies in
ARQ protocols.

A variety of blind symbol/channel estimation strategies
can be developed depending on the amount of a priori in-
formation that gets formulated on the unknown symbols. In
general, the less structure that gets exploited about the sym-
bol alphabet, the less problems are encountered with local
minima. Of course, more estimation accuracy is obtained
by exploiting more information. A reasonable strategy is
hence to exploit a progressive range of algorithms exploit-
ing increasing a priori information levels. The algorithm at
the next level can be initialized with the estimate obtained
at the previous level of a priori information.

The memory introduced by a convolutive channel leads
to the requirement of having to treat all available data in a
contiguous observation interval in one shot if no subopti-
mality is allowed. This leads to problem formulations with
large convolution matrices, large covariance matrices and
high complexity. Attempts have been made by our own
group to introduce asymptotic approximations, by approxi-
mating large Toeplitz convolution matrices by circulant ma-
trices, to allow transformation to the frequency domain, or
by others by introducing approximate DFT operations.

Cyclic prefixes have been introduced in a number of ex-
isting systems such as OFDM systems for ADSL and wire-
less LANs. To combine the benefits of exploiting diversity
and simplifying equalization, multicarrier CDMA systems
have been proposed which combine a spreading over tones
with the OFDM approach. If the DFT matrix is used as
spreading matrix (corresponding to full spreading over all
tones), then the spreading-OFDM combination leads in fact
to direct transmission in the time domain but with a cyclic
prefix [5]. Such a system has been proposed for one of the



high data rate WLAN standards. Cyclic prefixes have also
been introduced in a number of communication scheme pro-
posals.

The introduction of a cyclic prefix renders the transfor-
mation to the frequency domain clean and exact even for a
finite data length. The resulting algorithmic simplifications
will be detailed for a number of classical blind channel es-
timation methods mentioned above. Furthermore, the same
framework can be used to analyze the performance of the
algorithms and the algorithmic simplifications also translate
into much simplified performance expressions, which allow
a direct and insightful analytical performance comparison
between a number of algorithms.

Another significant consequence of the presence of a
cyclic prefix is its impact on or insight in identifiability.
Since the spatiotemporal channel gets transformed into a
bank of parallel spatial channels at a number of tones, the
requirement on the noise for blind identifiability is to be spa-
tially white at each tone. However, it is not at all required
that the variance be the same at each tone. This implies
also that for non cyclic prefix systems, channel identifiabil-
ity should be possible whenever the noise spectral density
matrix is a scalar multiple of the identity matrix with the
scalar multiple being a fairly arbitrary scalar power spectral
density. This constitutes a new finding.

2. MIMO CYCLIC PREFIX BLOCK TX SYSTEMS

Consider a MIMO system with ¢ inputs x;, p > ¢ outputs
y; per (symbol/sample) period
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where H(q) = Z h[j] ¢/ is the MIMO system transfer
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function corresponding to the z transform of the impulse
response h[.]. Equation (1) mixes time domain and z trans-
form domain notations to obtain a compact representation.
In H(q), z is replaced by ¢ to emphasize its function as an
elementary time advance operator over one sample period.
Its inverse corresponds to a delay over one sample period:
q 'x[n] = x[n—1].

Consider a (OFDM or single-carrier) CP block trans-
mission system with N samples per block. The introduc-
tion of a cyclic prefix of K samples means that the last
K samples of the current block (corresponding to N sam-
ples) are repeated before the actual block. If we assume
w.l.0.g. that the current block starts at time 0, then samples
x[N—K]---x[N—1]are repeated at time instants — K, .. .,

—1. This means that the output at sample periods 0, ..., N—1
can be written in matrix form as

[

=
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where the matrix H is not only (block) Toeplitz but even
(block) circulant: each row is obtained by a cyclic shift to
the right of the previous row. Consider now applying an
N-point FFT to both sides of (2) at block m:

FnpY[m] = Fn,HFy' FyX[m] + FyVim] - (3)
or with new notations:

Um] = H Alm] + W[m] 4
where Fy, = Fy ® I, (Kronecker product: A ® B =
[a;;B]), Fy is the N-point N x N DFT matrix, H =
diag {hy,...,hy_1} is a block diagonal matrix with diag-
onal blocks hy, = 37 h[l] e=727~H, the p x 1 chan-
nel transfer function at tone & (frequency = k/N times the
sample frequency). In OFDM, the transmitted symbols are
in A[m] and hence are in the frequency domain. The cor-
responding time domain samples are in X[m|. The OFDM
symbol period index is m. In Single-Carrier (SC) CP sys-
tems, the transmitted symbols are in X[m] and hence are in
the time domain. The corresponding frequency domain data
are in A[m]. The components of V are considered white
noise, hence the components of W are white also. At tone
(subcarrier) n € {0,..., N—1} we get the following input-
output relation

uy[m] = hy an[m]+ wn[m] (®)
——— N N ——
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where the symbol a,,[m] belongs to some finite alphabet
(constellation) in the case of OFDM.

3. SOME GENERALITIESFOR CP SYSTEM
METHODS

In what follows, we shall see that for methods and perfor-
mance analysis, we get a cost function or information at
each tone for the channel response at that tone, and to get
the cost function or information for the temporal channel re-
sponse, it suffices to sum up the cost functions or informa-
tions over the tones after transforming back to the time do-
main. To be a bit more explicit, let hy, = vec(h;,) and let h
be the vectorized channel impulse response. Then there ex-
ists transformation matrices GG (containing DFT portions)
such that

h, = G, h. (6)



Nowy, if at tone & we have a cost function of the form

b, Qx by )

then this induces a cost function for the overall channel im-
pulse response of the form

h’ h (8)

N—-1
> G QLG
k=0

and similarly for Fisher information matrices. So in what
follows, we shall concentrate on the cost function for a given
tone.

4. DETERMINISTIC SYMBOLSCASE

Algorithms that fall under this category are
e subspace fitting (MIMO)

e Subchannel Response Matching (SRM)/ Cross Rela-
tion (CR) method (SIMO)

e DML, IQML, DIQML, PQML (SIMO)

e singular prediction parameters (MIMO): P(z) H(z) =
h[0] = (h*[0] P(2)) H(z) =0

e deterministic approach by itself of limited use in MIMO

case unless channels of different sources of same length:

the case of spatial multiplexing MIMO systems

5. SIGNAL SUBSPACE FITTING

Let us focus in particular on the signal subspace fitting method
(noise subspace fitting can be similarly formulated for the
SIMO case using the linear noise subspace parameteriza-
tion in terms of the channel, considered in the next section.
For the (spatiotemporally) white noise case (and assuming
spatiotemporally white symbols for simplicity), the eigen-
decomposition of the covariance matrix of a block of signal
in the time domain can in fact easily be computed from the
eigendecompositions at each tone! Indeed
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where the matrix in square brackets is block diagonal. Hence
the eigenvectors in the time domain are the DFTs of the
eigenvectors at each tone, and the eigenvalues are the same
in time or frequency domain. This exact relationship no

longer holds for the eigenvectors based on sample covari-
ances in time and frequency domain due to the noise (it re-
mains true in the absence of noise). Nevertheless this rela-
tionship encourages us to develop subspace fitting problems
in the frequency domain, involving eigendecompositions of
N p x p matrices instead of the eigendecomposition of one
Np x Np matrix. Furthermore, it is clear that the eigenvec-
tors do not change in the frequency domain if the noise vari-
ance starts to differ from tone to tone (this would correspond
to cyclostationary colored noise in the time domain, which
can model stationary colored noise with some approxima-
tion if N is large). Let E denote a sample average, then the
details of the signal subspace fitting method are

o 1, = Ewnju[n] = o2 hihi! + 07 I,
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o signal subspace fitting cost function
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min 37 [f Vel 3
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e cost function per tone = not very costly to introduce
optimal weighting

6. MORE DETERMINISTIC APPROACHES

e Deterministic (symbols) ML (DML):
N-1 N-1
~ . 1~
max ];) tr {Pn,Tr} < min ];) tr { Py, T }

e IQML.: in the SIMO case, we can introduce a linear
(in the channel parameters) parameterization of the
noise subspace, hi- sothat P = B,. =

N-—1
i tr {(hi-%hit)"*hi-fv,hit
m}in kz—o {( K ©) Tk k}

e Subchannel Response Matching (SRM)/Cross Rela-
tion method (CR):

N-1
m}jn l;) tr {hé‘kahé‘}

e Denoised IQML (DIQML):
N-1
min 3 tr {(ht )t (F - 52, 1)}
k=0
Of course, one can now go further in denoising and
replace Ty, — 812%11) by its pure signal subspace part.



e WSSF/large sample Gaussian (symbols) ML (GML):
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7. GAUSSIAN SYMBOL S APPROACHES

e Tone-wise covariance analysis
H 2 H 2
ry = Eugln]uy [n] = o, hyhy +oy I,

=- separate noise variance identifiable at every tone,
this corresponds to a circulant noise covariance ma-
trix in the time domain. This also suggests for non-
CP systems that Sy (z) = S(z) I, with some scalar
S(z) should be identifiable. In fact, since spatially
colored noise can be handled blindly to some extent,
it should also be possible to handle Sy (z) = S(z) Ryv
for some spatial covariance matrix Ry .

e GML: has the same gradient as WCM below.
e \Weighted Covariance Matching (WCM):

N-1
min
h,o2

k=0

tr {r;l(rk —?k)rkfl(rk —i'\k)}

e Linear prediction based methods:

becomes
Py hy, = h[0]

tonewise.

e For MIMO, the proper exploitation of the Gaussian
case is quite advantageous over the deterministic sym-
bols approach.

8. ZERO PADDED (ZP) SYSTEMS

These are a special case of CP systems in which the cyclic
prefix signal is zero. The result can be considered as zero
padding or guard intervals. In the ZP case, the descrip-
tion of the signal as in (2) changes. Due to the fact that
the last K (block) entries of X are zero, the non-zero part
of X multiplies a reduced form of H in which the last K
(block) columns have been removed. The result is a tall
banded block triangular block Toeplitz matrix H. As a re-
sult of this reduction in signal, the signal subspace dimen-
sion has increased whereas the noise subspace dimension
has correspondingly increased. Nevertheless a fast compu-
tation of the eigenvectors of the theoretical covariance ma-
trix Ryy remains possible. The noise subspace vectors com-
prise those of the CP case, which can be computed by DFT

from the noise subspace vectors at the various tones. The
extra noise suspace vectors only have non-zero portions in
the first and the last K (block) rows, since those are the
(two triangular) portions in the last K columns of H that are
non-zero. Hence, in the time domain, it suffices to compute
a covariance martix of (block) size 2K, project it on the
signal subspace from the CP case (partial DFTs of signal
subspaces in the frequency domain) and then compute the
noise subspace of the resulting matrix of actual size 2Ng.

9. SOME CHANNEL IDENTIFIABILITY
CONSIDERATIONS

Consider a genuine CP system first. Apart from the fact that
convolution becomes circulant instead of linear, not much
changes from the blind multichannel estimation problem in
non-CP systems. This means that in the deterministic sym-
bols case, only a (non-unique) irreducible factor of the chan-
nel can be identified (in fact only Pp .y can be identified
(projection onto the column space of H(z))), and the esti-
mation is sensitive to channel length overdetermination. In
the Gaussian symbols case on the other hand, robustness to
channel length overdetermination and channel zeros arises,
and the channel unidentifiablity gets reduced to a block di-
agonal unitary mixture matrix in general, depending on the
relation between the channel lengths seen from the differ-
ent channel inputs. The remaining ambiguity on possible
channel zeros becomes discrete in the SIMO case. In fact,
what can be identified more in the Gaussian case w.r.t. the
determistic symbols case is the quantity H(z) H(z). The
number of tones in the CP symbol should equal or exceed
the filter length: N > L+1.

In the ZP case, as the channel convolution matrix H be-
comes block triangular, the only requirement for it to be full
column rank is for h[0] to be full column rank. In that case,
the channel is identifiable up to a static mixture (unitary in
the Gaussian symbols case), regardless of channel zeros or
channel length overdetermination.

10. CONCLUDING REMARKS

CP systems allow for the development of highly structured
blind multichannel estimation algorithms. The resulting lim-
ited complexity of these algorithms is such that it becomes
affordable to consider implementing the best performing al-
gorithms, for instance based on a combination of subspace
decompositions and maximum likelihood techniques. In
particular, ML techniques based on Gaussian symbol mod-
els become quite accessible in CP systems.

In the CP context, it should be fairly straightforward to
answer questions such as to determine the optimal block
size N from a subspace based estimation point of view: this



is the issue of trading block size for temporal averaging and
hence suspace estimation quality.

CP systems simplify blind channel estimation based on
deterministic or Gaussian symbol models. However, for
OFDM systems, it is clear that furthermore it should remain
straightforward to incorporate more precise marginal dis-
tribution information for the symbols at the various tones,
such as Higher-Order statistics, Constant Modulus proper-
ties, Finite Alphabet constraints or other information-theoretic
criteria. Along the same lines, the development of semiblind
techniques is quite straightforward in OFDM systems, with
pilot tones, due to the orthogonality between pilot and data
tones.
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