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Abstract. TOPLUS is a lookup service for structured peer-to-peer networks that is based on the hierarchical
grouping of peers according to network IP prefixes. In this paper we present MULTI+, an application-level
multicast protocol for content distribution over a peer-to-peer (P2P) TOPLUS-based network. We use the
characteristics of TOPLUS to design a protocol that allows for every peer to connect to an available peer
that is close. MULTI+ trees also reduce the amount of redundant flows leaving and entering each network,
making more efficient bandwidth usage. We use different procedures to measure or calculate the distances
among peers, in order to validate the algorithms in MULTI+.
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1 Introduction

IP Multicast seems (or, at least, was designed) to be the ideal solution for content distribution over the Internet:
(1) it can serve content to an unlimited number of destinations, and (2) it is bandwidth-wise economic. These
two characteristics are strongly correlated. IP Multicast saves bandwidth because a single data flow can feed
many recipients. The data flow is only split at routers where destinations for the data are found in more than one
outgoing port. Thusn clients do not needn independent data flows, which allows for IP Multicast’s scalability.
However, IP Multicast was never widely deployed in the Internet: security reasons, its open-loop nature, made
IP multicast remain as a limited use tool for other protocols in LANs. The core Internet lacks of an infrastructure
with the characteristics of IP Multicast.

Lately, with the advent of broadband links like ADSL and the generalization of LANs at the workplace, the
edgesof the Internet started to increase their bandwidth. Together with the ever-cheaper and yet more powerful
equipment (computational power, storage capacity), they give the millions of hosts connected to the Internet
the possibility of implementing themselves services that augment at the application level the capabilities of
the network: the Peer-to-Peer (P2P) systems. Various application-level multicast implementations have been
proposed [2, 12, 26, 20, 6], most of which are directly implemented on top of P2P infrastructures (Chord [23],
CAN [19] or Pastry [21]). The good scalability of the underlying P2P networks give these application-level
multicast one of the properties of the original IP Multicast service, that of serving content to a virtually unlimited
number of clients (peers). However, these P2P networks are generally conceived as an application layer system
completely isolated from the underlying IP network.

Thus, the P2P multicast systems that we know may fail at the second goal of IP Multicast: a LAN hosting
a number of peers in a P2P multicast tree may find its outbound link saturated byidenticaldata flowing to and
from its local peers, unless those peers are somehowawareof the fact that they are sharing the same network.
This situation remains valid for higher-tier networks (e.g., ISPs): even if the capacity of links to the Internet is
designed using conservative parameters, normally the resulting system does not allow for all or many hosts to
sustain a continuous throughput from and to the Internet. This is a critical issue for ISPs due to P2P file-sharing
applications and flat-rate commercial offers that allow a home computer to be downloading content 24 hours
a day. This problem also affects application-level multicast sessions if peers do not take care of the network
topology.

We have based our P2P multicast protocol on TOPLUS because of its inherent topology-awareness. We aim
at building a P2P multicast network that avoids network link stress while remaining scalable. In TOPLUS, nodes
that are topologically close are organized into groups. In turn, groups that are topologically close are organized
into supergroups, and close supergroups into hypergroups, etc. The groups within each level of the hierarchy
can be heterogeneous in size and in fan-out (i.e., number of subgroups). TOPLUS derives the groups from the
network prefixes contained in BGP tables or from other sources.



Before we elaborate on a Multicast deployment in a TOPLUS network, we must state some assumptions
about the system: First of all, there is a large population of peers participating in the network, which justifies the
utilization of multicast in the first place. Second, the TOPLUS Multicast infrastructure may be used to transmit
to many different multicast groups, and thus many multicast trees must live together without interfering each
other. Third, a peer is only willing to transmit data from a multicast tree if the peer is in the multicast group (that
is, a peer will not use its bandwidth just to forward data for others). However, when participating in the TOPLUS
Multicast infrastructure, a peer must accept to cooperate with others in low-bandwidth maintenance tasks.

Related Work.Some examples of overlay networks which introduce topology-awareness in their design are Skip-
Net [17], Coral[8], Pastry [4], CAN [22]. Application-level Multicast has given some interesting results like the
NICE project [2] or End System Multicast [12]. Among those using overlay networks, there are application-level
multicast implementations like Bayeux [26], or using CAN [20] and Pastry (Scribe) [6]. There is an interesting
comparative in [7]. Content distribution overlay examples are SplitStream [5] and [13]. Recently, the problem of
data dissemination on adaptive overlays has been treated in [25]. Our approach differs mainly in the achievement
of efficient topology-aware multicast trees with no or very little active measurement.

In the next section we present the main aspects of TOPLUS. Then we sketch MULTI+. Then we show and
comment some results (more experiments are in a technical report [9]), before we conclude.

2 TOPLUS Overview

TOPLUS [10] is based on the DHT paradigm, in which a resource is uniquely identified by a key, and each key
is associated with a single peer in the network. Keys and peers share a numeric identifier space, and the peer with
the identifier closest to a key is responsible for that key.

Given a message containing keyk, the P2P lookup service routes the message to the current active peer that is
responsible fork. The message travels from source peerps, through a series of intermediate peersp1, p2, . . . , pv,
and finally to the destination peer,pd. The principal goal of TOPLUS is simple: each routing step takes the
message closer to the destination. We now formally describe TOPLUS in the context of IPv4.

Let I be the set of all 32-bit IP addresses.1 Let G be a collection of sets such thatG ⊆ I for eachG ∈ G.
Thus, each setG ∈ G is a set of IP addresses. We refer to each such setG as agroup. Any groupG ∈ G that
does not contain another group inG is said to be aninner group. We say that the collectionG is aproper nesting
if it satisfies all the following properties:

1. I ∈ G.
2. For any pair of groups inG, the two groups are either disjoint, or one group is a proper subset of the other.
3. EachG ∈ G consists of a set of contiguous IP addresses that can be represented by an IP prefix of the form
w.x.y.z/n (for example,123.13.78.0/23).

The collection of setsG can be created by collecting the IP prefix networks from BGP tables and/or other
sources [14]. In this case, many of the setsG would correspond to ASes, other sets would be subnets in ASes,
and yet other sets would be aggregations of ASes. This approach of definingG from BGP tables require that a
proper nesting is created. Note that the groups differ in size, and in number of subgroups (the fanout).

If G is a proper nesting, then the relationG ⊂ G′ defines a partial ordering over the sets inG, generating a
partial-order tree with multiple tiers. The setI is at tier-0, the highest tier. A groupG belongs to tier 1 if there
does not exist aG′ (other thanI) such thatG ⊂ G′. We define the remaining tiers recursively in the same manner
(see Figure 1).

Peer State. Let L denote the number of tiers in the tree, letU be the set of all current active peers and
consider a peerp ∈ U . Peerp is contained in a collection of telescoping sets inG; denote these sets by
HN (p),HN−1(p), · · · ,H0(p) = I, whereHN (p) ⊂ HN−1(p) ⊂ · · · ⊂ H0(p) andN ≤ L is the tier depth of
p’s inner group. Except forH0(p), each of these telescoping sets has one or more siblings in the partial-order
tree (see Figure 1). LetSi(p) be the set of siblings groups ofHi(p) at tieri. Finally, letS(p) be the union of the
sibling setsS1(p), · · · ,SN (p).

1 For simplicity, we assume that all IP addresses are permitted. Of course, some blocks of IP addressed are private and other
blocks have not been defined. TOPLUS can be refined accordingly.
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Fig. 2.A simple multicast tree.

Peerp should know the IP address of at least one peer in each groupG ∈ S(p) , as well as the IP addresses
of all the other peers inp’s inner group. We refer to the collection of these two sets of IP addresses as peerp’s
routing table, which constitutes peerp’s state. The total number of IP addresses in the peer’s routing table in
tier L is |HL(p)| + |S(p)|. In [10] we describe how a new peer can join an existing TOPLUS network. In the
technical report [9] we propose algorithms to create a TOPLUS network using an initial permanent peer.

XOR Metric. Each keyk′ is required to be an element ofI ′, whereI ′ is the set of alls-bit binary strings (s ≥ 32
is fixed). A key can be drawn uniformly randomly fromI ′, or it can be biased as we shall describe later. For
a given keyk′ ∈ I ′, let k be the 32-bit suffix ofk′ (thusk ∈ I andk = k31k30 . . . k1k0). Throughout the
discussion below, we will refer tok rather than to the originalk′.

The XOR metric defines the distance between two idsj andk asd(j, k) =
∑31
ν=0 |jν − kν | · 2ν . The metric

d(j, k) has the following properties:

– If d(i, k) = d(j, k) for anyk, theni = j.
– Let p(j, k) be the number of bits in the common prefix ofj andk. If p(j, k) = m, d(j, k) ≤ 232−m − 1.
– If d(i, k) ≤ d(j, k), thenp(i, k) ≥ p(j, k).

d(j, k) is a refinement of longest-prefix matching. Ifj is the unique longest-prefix match withk, thenj is the
closest tok in terms of the metric. Further, if two peers share the longest matching prefix, the metric will break
the tie. The peerp∗ that minimizesd(k, n), p ∈ U is “responsible” for keyk.

3 MULTI+: Multicast on TOPLUS

A Multicast Tree.First we assume that all peers are connected through links providing enough bandwidth. A
simple multicast tree is shown in Figure 2. LetS be the source of the multicast groupm. Of course, the source
should be located in some group of a TOPLUS tree covering the whole Internet. Peerp is receiving the flow
from peerq. We say thatq is the parent ofp in the multicast tree. Conversely, we say thatp is a child ofq, its
parent in the multicast tree. Peerp is in level-3 of the multicast tree andq in level-2. It is important to note that,
in principle, thelevelwhere a peer is in the multicast tree has nothing to do with thetier the peer belongs to in
the TOPLUS tree.

In the kind of multicast trees we aim at building, each peer should be close to its parent in terms of network
delay, while trying to join the multicast tree as high (close to the source) as possible. Each peer attempts at join
time to minimize the number of hops from the source, and the length of the last hop. In the example of Figure 2,
if p is a child ofq and not ofr, that is becausep is closer toq than tor. Moreover, we want this condition to hold
even if whenp joins, q has not yet integrated the multicast tree: ifq joins later and is closer top than tor, then
q should become a child ofp. By trying to minimize the network delay for data transmission between peers, we
also avoid rearranging peers inside the multicast tree, except when a peer fails or disconnects. For the kind of
applications we are targeting the content distribution network should be as stable as possible. For a discussion
on this topic, seeMembership Managementbelow.

Building Multicast Trees.We use the TOPLUS network and look-up algorithm in order to build the multicast
trees. Consider a multicast IP addressm, and the corresponding key that, abusing the notation, we also denote



m. Each tier-i groupGi is defined by an IP network prefixai/b whereai is an IP address andb is the length of
the prefix in bits. Letmi be the key resulting from the substitution of the firstb bits ofm by those ofai. The
inner group that contains the peer responsible formi (obtained with a TOPLUS look-up) is theresponsible inner
group, or RIG, form in Gi (note that this RIG is contained inGi.) Hereafter, we assume a singlem, and for that
m and a given peerp we denote the RIG inHi(p) ∈ tier-i simply as RIG-i of p. This RIG is a rendezvous point
for all peers inHi(p). The deeper that a tier-i of a RIG-i is in the TOPLUS tree, the narrower the scope of the
RIG as a rendezvous point (fewer peers can potentially use it).

In the simple 3-tier example of Figure 3, we have labeled the RIGs for a given multicast group (peers in
grey are members of the multicast group), where all inner groups are at tier-3. The RIG-i of a peer can be found
following the arrows. The arrows represent the process of asking the RIGs for a parent in the multicast tree. For
example,p andq share the same RIG-1 because they are in the same tier-1 group.t’s inner group is its RIG-1,
but t would first contact a peerx (white) in its RIG-2 to ask for a parent. Note that this last peer is not in the
multicast tree (Figure 4.) Some inner groups can be RIGs for more than one higher-tier group. If a peer is alone
in its tier-1 group, it asks the source for a parent.
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Fig. 3.The RIGs in a sample TOPLUS network.
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Fig. 4.Sample multicast tree.

Assume a peerp in tier-(i + 1) (i.e., a peer whose inner group is at tier-(i + 1) of the TOPLUS tree) wants
to join a multicast tree with multicast IP addressm, which we call groupm.

1. The peerp broadcasts a query to join groupm inside its inner group. If there is a peerp′ already part of
groupm, p connects top′ to receive the data.

2. If there is not such peerp′, pmust look for its RIG-i. A look-up ofmi insidep’s tier-i group (thus amongp’s
sibling groups at tier-(i+ 1)) locates the RIG-i responsible form. p contacts any peerpi in RIG-i, and asks
for a peer in multicast groupm. If peerpi knows about a peerp′′ that is part ofm, it sends the IP address of
p′′ to p, andp connects top′′. Note thatp′′ is not necessarily a member of the RIG-i inner group. In any case
pi addsp to the peers listening tom, and shares this information with all peers in RIG-i. If p′′ does not exist,
p proceeds similarly for RIG-(i − 1): p looks upmi−1 insidep’s tier-i − 1 group (i.e., amongp’s sibling
groups at tieri). This process is repeated until a peer receivingm is found, or RIG-1 is reached. In the latter
case, if there is still no peer listening tom, peerp must connect directly to the source of the multicast group.

One can see that the search for a peer to connect to is done bottom up.

Property 1 When a peerp in tier i+1 joins the multicast tree, by construction, from all the groupsHi+1(p),Hi(p),
· · · ,H1(p) that containp, p connects to a peerq ∈ Hk wherek = max{l = 1, . . . , i + 1} : ∃r ∈ Hl and r
is a peer already connected to the multicast tree. That is,p connects to a peer in the deepest tier group which
contains bothp and a peer already connected to the multicast tree.

This assures that a new peer connects to the closest available peer in the network. Notice that even in the
case of failure of a peer in a RIG-i, the information is replicated in all other peers in the RIG-i. If a whole
RIG-i group fails, although MULTI+ is undeniably affected, the look up process can continue in RIG-(i − 1).
We believe this property makes MULTI+ a resilient system. For a proof of this and other properties below, we
refer to the Appendix.



Multicast Tree Topology.Any peer in any group can become a multicast tree node; only the RIGs are fixed, for
a given multicast group and a given TOPLUS network structure. The topology of the tree is thus completely
random, depending only on the peers that want to join a given multicast tree. However, although not determin-
istic, this tree is constrained to follow the TOPLUS structure. As it has been shown before, when a peer joins a
multicast tree it will always connect to another peer that is close (according to TOPLUS proximity).

In general, we can assume that for any networked group in the Internet it is better to keep as much traffic as
possibleinsidethe group and avoid outbound traffic: Between ASs, routing at peering interfaces is done based
mainly on economical considerations, whereas inside an AS normally other policies stand, more closely related
to networking. In most LANs, the outbound link to the Internet presents an order of magnitude less bandwidth
than the network itself. We show here that Multicast on TOPLUS minimizes internetwork traffic.
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Fig. 5. Inbound and outbound flows at each network.
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Fig. 6. Inbound and outbound flows at each network,
with F = 4 connections per peer.

Property 2 For each group defined by an IP network prefix containing at least one peer connected to the multi-
cast tree, there is only one inbound data flow.

Property 3 For each group defined by an IP network prefix containing at least one peer connected to the multi-
cast tree, the number of outbound data flows in the worst possible case is bounded by a constant.

Property 4 Using multicast over TOPLUS, the total number of flows in and out of a group defined by an IP
network prefix is bounded by a constant.

Note that this is however an ideal scenario where each peer can transmit the received data flow to as many
peers as necessary. In the real world, there is a bandwidth limitation. We study later a modification of the protocol
that allows each peer in the multicast tree to set a maximum number of children, depending on its bandwidth.
We assume that most peers have good-quality links to the Internet (at least a medium-range ADSL).

Membership Management.Each peerp knows its parentq in the multicast tree, because there is a direct con-
nection between them. Becausep knows the RIG where it got its parent’s address, ifp’s parentq in level i of the
multicast tree fails or disconnects,p directly goes to the same RIG and asks for a new parent. If there is none,p
becomes the new tree node at leveli, replacingq. Thenp must find a parent in leveli − 1 of the multicast tree,
through a join process starting at said RIG. Ifp had any siblings under its former parent, those siblings will find
p as the new parent when they proceed likep. If more than one peer concurrently tries to become the new node
at leveli, peers in the RIG must consensually decide on one of them. It is not critical if a set of peers sharing a
parentq are divided in two subsets with different parents uponq’s depart.

Join and leave is a frequent process in a P2P network, but we expect the churn to be rather low due to the fact
that in a multicast tree, all peers seek the same content concurrently, throughout the duration of the session. Thus
we do not consider “freeriding”, i.e., peers that connect just to download some data and disconnect immediately
afterwards, which introduces high dynamics in the overlay network.

Multicast Flow Load Distribution.Depending on the structure of the TOPLUS network, a node in a multicast
tree may have many descendants. For example, in a tier-1 group with 100 tier-2 subgroups, the level 1 parent
may have up to 100 descendants. The bandwidth of a single peer may not be sufficient. We now introduce two
load balancing techniques to deal with that issue:



1. In the protocol we have just presented, all peers arriving to a RIG-k looking for a parent in the multicast
tree get assigned the same parent. This parent peer may become overloaded if a large number of children
get the multicast flow from him. Assume that each peer can afford a maximum ofF outgoing flows. For
each set ofF new peers arriving to a RIG-k, one of them should become the new parent for the nextF
peers to come later. Notice that this policy alone would increment the number of levels in the multicast tree,
and consequently the delay from root to leafs. To see this, in Figure 6 only the firstF groups can connect
directly toq. The nextF peers must connect to one of the firstF . The multicast tree is increased by 1 level
for them (compare the hops fromp to q in Figures 5 and 6). The problem is that the RIG-k is only allowingF
connections toq, but there may be other peers inHk+1(q) that can accept connections. After all connections
to q have been allocated,q can suggest as a response a connection to another peer inHk+1(q) receiving the
data flow. The height of the tree does not increase. Then, only if there are no available peers inHk+1(q), q
can suggest a peer in one of the sibling groups ofHk+1(q) in tier k + 1. There is another constrain though:
independently of the peers willing to serve content inHk+1(q), the network outgoing link may not have
enough bandwidth, and another sibling group may need to be used.

2. At RIG-k, we assign to a new peer a parent that depends on the RIG-(k + 1) of origin of the new peer.
Taking Figure 6 as an example, peerr whose RIG-(k+ 1) is not contained inHk(q) should have priority to
connect directly toq. The reason of this is to allow peers from further groups to connect to a parent through
fewer hops. Peers closer toq, that is, those contained inHk(q), can afford more hops when connecting toq
through other peers inHk(q), because the delay is smaller. Thus delays become more balanced.

The properties presented previously are still valid with these policies. To understand why, consider that the
number of inbound flows does not change and that the property for the outbound flows is based on the worst
possible case: these policies just move a part of the outbound flows from the most loaded group to its siblings.
Moreover, note that this only happens in the case where the outbound link of the network of the worst case group
cannot sustain the required flow of data. Thus we still have a constant bound in the number of flows coming in
and out of a group.

Limited Source Capabilities.We have considered so far a source capable of serving content to at least one
peer in each tier-1 group in the TOPLUS tree. For compact TOPLUS trees, this sums up to 256 potential flows.
Although 256 flows is perfectly affordable to commercial or institutional multicast (think of Radio stations on
the web today), it does not allow end users in the Internet to serve content which may potentially be of interest
to many.

The problem is that our method to find a nearby existing peer is not valid between tier-1 groups. In the
absence of a peer to connect to, we connect by default to the source. We propose here another method: the
source accepts a limited number of direct connections. Once the limit is reached, new incoming connections
receive a list of peers currently receiving the flow. The peers can then connect to the closest non-overloaded in
the list (according to some easily measurable metric like RTT, or calculating their distance in a pre-calculated
coordinate space, as we shall see below.) This process can equally apply to normal peers, when the number of
connections is limited: a peer refusing a new connection must give a list of peers already connected to him. To
detect uncooperative or malicious behavior we can verify that those peers are indeed connected to the refusing
peer. This process is repeated until a valid peer is found. Note that collusion is not possible without introducing
loops in the tree.

Parent Selection Algorithms.From the ideas exposed before, we retain two main parent selection algorithms for
testing the construction of multicast trees.

– FIFO, where a peer joins the multicast tree at the first parent found with a free connection. When a peer
gets to a RIG to find a parent, the RIG answers with a list of already connected peers. This list is ordered
by arrival time to the RIG. Obviously, the first to arrive connects closer (in hops) to the source. The arriving
peer tests each possible peer in the list starting with the first one until it finds one that accepts a connection.

– Proximity-aware, where,when the first parent in the list has all connections occupied, a peer connects to the
closest parent in the list still allowing one extra connection.

Note that we do not always verify if we are connecting to the closest parent in the list. The idea behind this
is that, while we implicitly trust MULTI+ to find a close parent, we prefer to connect to a peer higher in the
multicast tree (fewer hops from the source) than to optimize the last hop delay. If MULTI+ works correctly,



the difference between these two policies should not be excessive, because the topology-awareness is already
embedded in the protocol through TOPLUS. We do not constantly rearrange the multicast tree structure with
each arrival, because the longer a peer has been in the system the more likely it is to stay connected [3], and
short-term delay minimization optimizations may not pay in the long run in terms of network stability.

4 Testing MULTI+ with Skitter Coordinates

Obviously, theO(n2) cost of actively measuring the full inter-host distance matrix forn peers limits the size of
the peer sets we can use [9]. P2P systems must be designed to be potentially very large, and experiments should
reflect this property by using significant peer populations. Some methods ([16, 18, 15, 24]) to map hosts into a
M -dimensional coordinate space have been developed. The main advantage is that given a list ofn hosts, the
coordinates for all of them can be actively measured inO(Mn) time (the distances of the hosts to a set ofM
landmarkhosts, withM � n). Then, the inter-host distance matrix can be calculated off-line, and the population
of our experiment is only limited by CPU power and memory (a far less tight bound).

Skitter Coordinates.CAIDA [1] offers to researchers a set of network distance measurements from so-called
Skitter hosts to a large number of destinations.Skitter is a traffic measurement application developed by
CAIDA. In a recent paper [24], the authors have used these data to obtain a multi-dimensional coordinate space
representing the Internet. A host location is denoted by a point in the coordinate space, and the latency between
two hosts can be calculated as the distance between their corresponding points. The authors of [24] have kindly
provided us with the coordinates of196, 297 IP addresses for our study. Hereafter we call this space the Skitter
coordinate space. To assert the accuracy of the Skitter data we have, we measured the degree of correlation be-
tween distances calculated from this coordinate space and the real measured distances for some random samples.

We calculate distances using a Euclidean metric, definedD(xi, xk) =
√∑

k=1,...,M (xik − xjk)2, for any two

hosts identified by theirM -coordinate vectorsxi andxj . We have compared those distances with the distances
given by measurements with theping program andKing [11] on different sets of hosts, obtaining very encour-
aging results [9]. From this we conclude that we can use the Skitter coordinate space to compute approximate
distances between hosts.

5000 Peers Multicast Tree.In this experiment we test the characteristics of Multicast trees built with MULTI+
using the Skitter12-dimensional coordinate space and a set of 5,000 peers. We use the coordinate space to
measure the distance between every pair of hosts. In order to make the experiment as realistic as possible, we use
a TOPLUS tree with routing tables of reduced size, obtained from the grouping of small and medium-sized tier-
1 groups into virtual groups, and this process introduces a distortion in the topological fidelity of the resulting
tree [10]. The 5,000 peers are organized into a TOPLUS tree with 59 tier-1 groups, 2,562 inner-groups, and up to
4 tiers. We evaluate the two different parent selection policies described before: FIFO and proximity-aware. We
also compare these two approaches with random parent selection. In all cases we test MULTI+ when we do not
set a limit on the maximum number of connections a peer can accept, and for a limited number of connections,
from 2 to 8 per peer. This limitation also applies to the source. However, in our test we give the source a non-
existent IP address, so that our measurements do not get biased by the choice of a given peer. In the test we
measure the following parameters, presented here using their CDF (Cumulative Distribution Function):

– The percentage of the peers in the total system, when the full multicast tree is built, closer to one peer that
this peer’s parent. Those figuresexcludethe peers directly connected to the source (Figure 7).

– The level peers occupy in the multicast tree. The more levels in the multicast tree, the more delay we incur
in along the transmission path and the more the transmission becomes subject to losses due to peer failure
(Figure 8).

– The latency from the root of the multicast tree to each receiving peer (Figure 9).
– The number of multicast flows that go into and out of each TOPLUS group (network) (Figure 10).

There are two points that are capital in order to properly evaluate the results of these experiments:

– Many peers (31%) arealone in their respective inner groups. Moreover, 65% of the peers in are in inner
groups with 3 or fewer peers. This reinforces the impact of the “topology-awareness” introduced by the
TOPLUS layout, because connections inside an inner group are rare, and therefore mainly made among
differentinner groups.



– Peers join the system in a completely random order. This means that close peers do not arrive in sequence.
In particular, when a peer appears in an inner group where a previous peer exists, the new peer may not find
an available connection in the existing peer.

From our experiments we obtain very satisfactory results. From Figures 7 to 10 we draw a number of con-
clusions:

– Individual peers do not need to support a large number of outgoing connections to benefit from MULTI+
properties: three connections are feasible for broadband users, and the marginal improvement of 8 connec-
tions is not very significant.

– The proximity-aware policy performs better than FIFO in terms of end-to-end latency (Figure 9) and con-
nection to closest parent (Figure 7). However, with respect to the number of flows per group (Figure 10) and
level distribution in the multicast tree (Figure 8), they are very similar. That is because both trees follow the
TOPLUS structure, but the proximity-aware policy takes better decisions when the optimal parent peer has
no available connections.

– In Figure 7(c) we can see that having no connection restrictions makes closeness to parent less optimal than
having restrictions, for the proximity-aware policy. This is normal, since when we have available connec-
tions, a peer’s main goal is to connect as high in the multicast tree as possible. See in Figure 8 how peers
are organized in fewer levels, and in Figure 9 how the root-to-leaf latency is better for the unrestricted con-
nection scheme. Still, we can assert that the multicast tree is following (when possible) a topology-aware
structure, because most peers connect to nearby parents.

– The random parent selection policy organizes the tree in fewer levels than the other two policies (Figure 8(a)),
because connections are not constrained to follow the TOPLUS structure. However those connections are
not optimized, and the resulting end-to-end delay performance in any aspect is considerably poorer.

We show in Table 1 the maximum number of flows going through a TOPLUS group interface. MULTI+
reduces the average and maximum number of flowsper network, when compared to an arbitrary connection
scheme and assuming each TOPLUS group (IP network prefix) represents a physical network. On average, each
group counts 3 or 4 flows under MULTI+ (independently of the parent choice policy), while 7 are used with
the random algorithm. The proximity-aware parent selection clearly improves both the number of flows per
group (Table 1) and the end-to-end latency (Table 2). In this 5,000 peer set, even limited to two connections per
peer, MULTI+ builds multicast trees with significantly better properties than a random one. Indeed, MULTI+ is
conceived for large scale deployments counting many peers, and its properties become asymptotically better the
more peers we introduce in the system.

Table 1. Maximum number of flows leav-
ing/entering a group.

Max. connections 2 3 4 6 8
FIFO 260 198 145 107 109

Proximity-aware165 109 101 39 55
Random 885 919 907 931 897

Table 2.Average latency from root to leaf.

Max. connections 2 3 4 6 8
FIFO 3, 905(±53) 2, 527(±45) 1, 641(±32) 1, 135(±28) 965(±24)

Proximity-aware2, 871(±47) 1, 630(±35) 1, 205(±26) 797(±19) 698(±18)
Random 5, 339(±60) 3, 291(±40) 2, 742(±35) 2, 072(±33) 1, 646(±28)

5 Conclusion and Future Work

We have presented MULTI+, a method to build application-level multicast trees on P2P systems. MULTI+ relies
on TOPLUS in order to find a proper parent for a peer in the multicast tree. MULTI+ exhibits the advantage of
being able to create topology-aware content distribution infrastructures without introducing extra traffic for active
measurement. Admittedly, out-of-band information regarding the TOPLUS routing tables must be calculated
offline (a simple process) and downloaded (like many P2P systems today require to download a list of peers
for the join process). The proximity-aware scheme improves the end-to-end latency, and using host coordinates
calculated offline and obtained at join time (as is done for TOPLUS) avoids the need for any active measurement.
MULTI+ also decreases the number of redundant flows that must traverse a given network, even when only few
connections per peer are possible, which allows for better bandwidth utilization. As future work, we plan to
evaluate the impact of leaving and failing peers on the multicast tree performance.
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Fig. 7.Percentage of peers in the whole system closer than the one actually used (for those not connected to the source.)
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Fig. 8.Level of peers in the multicast tree.
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Fig. 9.Latency from root to leaf (in Skitter coordinate units) in the Multicast tree.
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Fig. 10.Number of flows through group interface.
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A Appendix: Proof of the Properties

Property 1 When a peerp in tier i+1 joins the multicast tree, by construction, from all the groupsHi+1(p),Hi(p),
· · · ,H1(p) that containp, p connects to a peerq ∈ Hk wherek = max{l = 1, . . . , i + 1} : ∃r ∈ Hl andr is a
peer already connected to the multicast tree. That is,p connects to a peer in the deepest tier group which contains
bothp and a peer already connected to the multicast tree.

Proof: For this peerp, ∀i RIG-i⊂Hi(p). To join the multicast tree,p first looks up RIG-i. RIG-imemorizes
p. If RIG-i does not know about another peer in the multicast tree, there is no such peer inHi(p). p continues
looking up RIG-i−1, and so on, untilp reaches a RIG-k who knows about a peerq in the multicast tree. Because
RIG-k remembersq, RIG-k ⊂ Hk(q). Thus RIG-k ⊂ Hk(q) and RIG-k ⊂ Hk(p). Assuming a proper nesting
in TOPLUS, RIG-k can not be in two different groups of the same tier. ThusHk(q) = Hk(p) and bothp andq
are contained in the same group. AndHk(p) is the lowest-tier group containing both because RIG-k is the first
to know aboutq. 2

Property 2 For each group defined by an IP network prefix containing at least one peer connected to the multicast
tree, there is only one inbound data flow.

Proof: We proof by induction for a peerp in tier-i + 1 contained in a set of groups (or networks defined by
IP network prefixes)Hi+1(p),Hi(p), · · · ,H1(p):

– If there is one peerq already connected to the multicast tree inp’s inner groupHi+1, p connects toq. Else,
p must connect to another peer outsideHi+1. Thus only one flow may go into the networkHi+1.

– In the look-up of a peer already connected to the multicast tree, assumep gets toHk(p) in tier-k. Thus,
by property 1 no peer exists connected to the multicast tree inHi+1(p),Hi(p), · · · ,Hk+1(p). Only the data
flow to p will go into Hi+1(p),Hi(p), · · · ,Hk+1(p). If there is one peerq ∈ Hk(p) receiving the multicast
flow, p connects toq, andp adds no data flow intoHk(p). Elsep proceeds the look-up inHk−1(p). In any
case only one data flow can go into the network defined byHk(p). 2

Property 3 For each group defined by an IP network prefix containing at least one peer connected to the multicast
tree, the number of outbound data flows in the worst possible case is bounded by a constant.

Proof: Assume as before a peerp in tier-i + 1 contained in a set of groups (i.e., networks defined by IP
network prefixes)Hi+1(p),Hi(p), · · · ,H1(p). Assume peerp is looking for a peer to connect to. Without loss
of generality, letHk(p) be the tier-k group where the RIG-k knows about a peerq connected to the multicast tree.
p connects toq and adds an outbound data flow (fromq to p) toHk+1(q). From the previous property, there can
only be at most one inbound data flow inHk+1(p). The same is valid for every sibling group ofHk+1(q). The
number of siblings ofHk+1(q) is a constant. Thus the number of outbound data flows fromHk+1(q) towards
tier-(k + 1) groups is a constant. For a worst case scenario, assume now thatq is also the peer known by RIG-
(k − 1) in Hk−1(q). Applying the same reasoning to the siblings ofHk(q), we have another constant number
of outbound flows fromHk+1(q) towards tier-k groups. A constant number of outbound flows at every tier, and
the number of tiers being bounded by a constant, the number of outbound data flows is bounded by a constant
for groupHk+1(q). 2

Property 4 Using multicast over TOPLUS, the total number of flows in and out of a group defined by an IP
network prefix is bounded by a constant. The proof is trivial from the two previous properties.2


