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MMSE-GDFE Lattice Decoding for
Under-determined Linear Channels

Mohamed Oussama Damen∗, Hesham El Gamal∗∗ and Giuseppe Caire‡

Abstract— Recently, the authors established the funda-
mental role of minimum mean square error generalized
decision-feedback equalizer (MMSE-GDFE) lattice decod-
ing in achieving the optimal diversity-vs-multiplexing trade-
off of delay limited multiple-input multiple-output (MIMO)
channels. This optimality motivates the current work where
we exploit this technique in constructing an efficient decod-
ing algorithm for under-determined linear channels. The
proposed algorithm consists of an MMSE-GDFE front-end
followed by a lattice reduction algorithm with a greedy or-
dering technique and, finally, a lattice search stage. By in-
troducing flexibility in the termination strategy of the lat-
tice search stage, we allow for trading performance for a
reduction in the complexity. The proposed algorithm is
shown, through experimental results in MIMO quasi-static
channels, to offer significant gains over the state of the art
decoding algorithms in terms of performance enhancement
and complexity reduction. From one side, when the search
is pursued until the best lattice point is found, the perfor-
mance of the proposed algorithm is shown to be within a
small fraction of a dB from the maximum likelihood (ML)
decoder while offering a large reduction in complexity com-
pared to the most efficient implementation of ML decoding
proposed by Dayal and Varanasi (e.g., an order of magni-
tude in certain representative scenarios). On the other side,
when the search is terminated after the first point is found,
the algorithm only requires linear complexity while offering
significant performance gains (in the order of several dBs)
over the linear complexity algorithm proposed recently by
Yao and Wornell, and independently by Windpassinger and
Fisher.

I. Introduction and Problem Formulation

Sphere decoding based on Pohst and Schnorr-Euchner
enumeration [1], [2] has received significant research inter-
est in recent years (e.g., see [3], [4] and references therein).
In particular, the introduction of the sphere decoder as
a space-time ML decoder in [5] opened the door for con-
structing efficient and sophisticated codes that reap most of
the promised theoretical gains of multiple-input multiple-
output (MIMO) fading channels (e.g., [6], [7]). In [3],
the authors have illustrated the importance of using the
minimum mean square error generalized decision-feedback
equalizer (MMSE-GDFE) with greedy ordering in reducing
the average expected complexity of the sphere decoder. In
a more recent work [8], the authors have established the
optimality of MMSE-GDFE lattice decoding, when used
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with a properly constructed LAttice Space-Time (LAST)
code, in terms of achieving the diversity-vs-rate tradeoff
characterized by Zheng and Tse [9] for MIMO channels
with arbitrary numbers of transmit and receive antennas.
In this work, we exploit this decoding strategy in con-
structing an efficient decoder for under-determined sys-
tems (e.g., in a point-to-point MIMO channel, an under-
determined system corresponds to the case where the num-
ber of symbols sent per channel use is larger than the num-
ber of receive antennas). The proposed algorithm consists
of three stages, namely 1) an MMSE-GDFE feed-forward
filter, 2) a lattice reduction algorithm (e.g., the LLL algo-
rithm [10]) along with a greedy ordering technique, and 3)
a lattice search strategy based on Schnorr-Euchner enumer-
ation. We further introduce flexibility in terminating the
Schnorr-Euchner enumeration to allow for more freedom in
the performance-vs-complexity tradeoff. At one extreme,
when the search is terminated after the first point is found,
the complexity of the algorithm only grows linearly in the
number of variables (assuming very slow fading). This al-
gorithm is shown to offer several dBs of performance gains
over the recently proposed algorithm by Yao and Wornell
[11] (and independently by Windpassinger and Fisher [12])
in a V-BLAST configuration. At the other extreme, when
the search algorithm is allowed to pursue the best lattice
point (according to the minimum Euclidean distance cri-
terion), the performance of the algorithm is shown to be
within a very small fraction of a dB from the performance
of the maximum likelihood (ML) decoder. This variant
of our algorithm, however, is shown to offer an order of
magnitude of complexing reduction compared to Dayal and
Varanasi recent implementation of the generalized sphere
decoder (GSD) [13] in a 3 × 1 quasi-static fading channel
[14]. Moreover, the reduction in complexity offered by our
algorithm compared with the GSDs in [13], [14] is also ex-
pected to increase with the dimensionality of the problem.

II. The System Model

The proposed algorithm can be used to solve the general
problem of separating m sources from observations made
by n ≤ m sensors through linear Gaussian channels. To
simplify the presentation, however, we focus here on the
special case of a point-to-point M ×N MIMO quasi-static,
flat-fading, and Gaussian channel where the baseband com-
plex model is given by
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t =

√
ρ

M
Hcxc

t + wc
t , t = 1, . . . , T (1)
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where {xc
t ∈ C

M : t = 1, . . . , T} is the transmitted signal,
{yc

t ∈ C
N : t = 1, . . . , T} is the received signal, {wc

t ∈
C

N : t = 1, . . . , T} denotes the channel Gaussian noise,
assumed temporally and spatially white with i.i.d. entries
∼ N

C
(0, 1), and Hc is the N × M channel matrix with

the (i, j)-th element hc
ij representing the fading coefficient

between the j-th transmit and the i-th receive antenna.
The fading coefficients are further assumed to be i.i.d. ∼
N

C
(0, 1) and remain fixed for t = 1, . . . , T , where T is the

duration of a space-time codeword. With the normalization

E

[
1
T

T∑
t=1

|xc
t |2

]
≤ M,

the parameter ρ represents the average signal-to-noise ra-
tio (SNR) per receiver antenna. The channel matrix Hc

is assumed to be perfectly known at the receiver and com-
pletely unknown at the transmitter. Assume that N ≤ M
and consider the real channel model equivalent to (1)

y = Hx + w (2)

where we define x = (xT
1 , . . . ,xT

T )T with xT
t =[

Re{xc
t}T, Im{xc

t}T
]T, w = (wT

1 , . . . ,wT
T )T with wT

t =[
Re{wc

t}T, Im{wc
t}T

]T, and

H �=
√

ρ

M
IT ⊗

([
Re{Hc} −Im{Hc}
Im{Hc} Re{Hc}

])
(3)

is the 2NT ×2MT block-diagonal real channel matrix con-
sisting of the same 2N × 2M diagonal block repeated T
times (IT is the identity matrix of dimension T here and ⊗
denotes the Kronecker product). Assume further that the
vector x belong to a certain lattice code (i.e., x = Gu
with G the m × m lattice generator matrix, u ∈ Z

m

with m = 2MT , and the lattice code is given by the lat-
tice points inside a carving region R). For example, with
G = Im, T = 1, and G−1R is a (scaled and shifted) hy-
percube, we obtain the well-known V-BLAST system with
uncoded QAM constellations; for T = M and G a suitably
chosen rotation, one obtains a version of a TAST constel-
lation [7].

III. The Proposed Algorithm

Before we outline the proposed algorithm, we briefly dis-
cuss our implementation of the MMSE-GDFE filter. Define
the augmented channel matrix

H̃ =
[

H
Im

]
and its QR decomposition,

H̃ = Q̃R

where Q̃ ∈ R
(n+m)×m has orthonormal columns and R ∈

R
m×m is upper triangular with positive diagonal elements.

Further, let Q = HR−1 be the upper n × m part of Q̃.
Then the MMSE-GDFE backward and forward filters are

given by B = R and F = QT, respectively. Note that one
has BTB = H̃TH̃ = Im + HTH by construction, implying
that matrix B is always invertible for any finite SNR.

We are now ready to describe the proposed algorithm in
the following steps.
1. Apply the MMSE-GDFE front-end filtering on the re-
ceived signal to obtain

y′ �= Fy
= BGu + Fw − [B− FH]Gu
= BGu + n (4)

where n is the equivalent noise which contains the self noise
term [B− FH]Gu resulting from MMSE-GDFE stage.
2. Apply the LLL reduction algorithm [10] on matrix BG
to obtain S = BGU with U a unimodular matrix and S has
reduced columns. Alternatively, one can apply other lattice
reduction algorithms, such as Korkine-Zolotareff reduction
[4], depending on the allowed preprocessing complexity and
the given dimension.
3. Order the columns of S using V-BLAST greedy ordering
[3].
4. Apply lattice decoding on S and y′ using the Schnorr-
Euchner enumeration and a finite radius as in [3] to obtain
û. In this stage, one can incorporate any predefined termi-
nation strategy or metric computation inside the Shcnorr-
Euchner enumeration using the analogy with sequential de-
coding [3].
5. Finally, the estimated codeword is obtained as ĉ =
GUû.

The power of the MMSE-GDFE front-end is manifested
in the fact that (4) is a full rank linear system of m equa-
tions and m unknown since B is always invertible (and has
all its eigenvalues larger than 1). Since the noise in (4),
Fw− [B− FH]Gu, is non-Gaussian and biased, minimum
Euclidean distance decoding of (4) is different from ML de-
coding; however, as shown in [3], [8] and illustrated in the
simulation results section, minimum Euclidean decoding of
(4) yields a performance very close to that of ML decoding.
Intuitively, the MMSE-GDFE front-end filtering plays two
important roles in decoding MIMO systems, i) neutralize
the faded eigenvalues of the wireless channel (i.e., giving
a better lattice generator matrix BG) and ii) “compress”
the additive noise (i.e., bringing the preprocessed vector y′

in (4) closer to the lattice points generated by BG). Fur-
thermore, one can see that the proposed algorithm does
not utilize the available information on the carving region
R, and hence, if the output codeword does not belong to
the transmitter codebook the receiver will declare an error
(This is the reason behind referring to the proposed algo-
rithm as a lattice decoder). Of course, one can alternatively
project the decoded lattice point ĉ on the transmitter code-
book when it falls outside it (when R has a simple form);
however, we have observed that the latter operation gives
very marginal improvement compared to simply declaring
an error when the decoded lattice point falls outside R.
The reason for not exploiting the information about the
carving region is that, in general, the image of the region
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R after applying the LLL algorithm does not enjoy any par-
ticular structure. Therefore, accounting for this distorted
image will entail significant increase in the decoding com-
plexity. Moreover, the loss in performance resulting from
this sub-optimality (i.e., lattice decoding) was found to be
very marginal in all the cases we considered (as evident
in the simulation results in the following section) and the
complexity reductions resulting from using the LLL are,
in most cases, significant (especially for under-determined
systems). Note also that the MMSE-GDFE is only applied
on the quasi-static channel matrix H and not on the lattice
generator matrix of the input codebook G. The fact that H
in (2) is block diagonal with the same block containing the
real representation of Hc repeated T times means that the
MMSE-GDFE is only operating on the spatial dimension
in this case.

Finally, a brief comment about the termination strategy
is in order. It is straightforward to see that the first point
found by the Schnorr-Euchner enumeration is the Babai
point for the lattice in (4) after applying LLL algorithm
(one should note that the Babai point is a function of the
generator matrix used to find it). If the search is termi-
nated at this point, the complexity is only linear in the
number of variables (assuming the fading channel is very
slow such that the overhead of MMSE-GDFE and LLL
can be ignored). Recently, Yao and Wornell, and indepen-
dently Windpassinger and Fischer have proposed a decod-
ing algorithm with a comparable complexity to this linear
complexity variant of the proposed scheme (we will refer
to this algorithm as “the YWWF decoder” in the sequel).
In this algorithm, the output codeword is the solution of
zero-forcing decision-feedback equalizer (ZF-DFE), or the
Babai point, of the LLL reduction of HG in (2) for sys-
tems with m ≤ n [11], [12]1(i.e., the difference between the
YWWF decoder and the linear complexity variant of our
scheme is the MMSE-GDFE front-end). Unlike our algo-
rithm, one can easily see that the YWWF decoder does not
extend to under-determined systems. Moreover, we show
in the next section our algorithm, with the MMSE-GDFE
front-end, largely outperforms the YWWF decoder while
maintaining the linear complexity when m ≤ n.

IV. Performance, Complexity and Numerical

Results

In this section, we present representative simulation re-
sults that illustrate the two main advantages of the pro-
posed algorithm, namely, 1) the proposed class of algo-
rithms offer significant complexity reduction over state of
the art decoders with comparable performance (with a
small fraction of a dB) and 2) the proposed class of algo-
rithms offer significant performance gains over state of the
art decoders with comparable complexity. First, with no
termination strategy, we demonstrate that the performance
of the proposed decoder is virtually indistinguishable from
the ML decoder while offering at least an order of magni-
tude reduction in complexity compared to the most efficient

1In [11], [12], G = Im.

implementation of the GSD available in the literature (i.e.,
Dayal and Varanasi scheme [14]). In this comparison, we
will use the same set-up as [14] to ensure fairness. In the
second scenario, we demonstrate the excellent performance
of the linear complexity variant of the proposed algorithm
by comparing it to the YWWF decoder in a V-BLAST
configuration. To the best of the authors’ knowledge, the
YWWF decoder represents the state of the art performance
for receivers with linear complexity.

Following the set-up in [14], Fig. 1 reports the perfor-
mance of two variants of the threaded algebraic space-time
(TAST) constellations in a 3 × 1 point-to-point MIMO
channel. In the rate-1 code, we use a 64-QAM constellation
and transmit one symbol per channel use (i.e., the space-
time constellation matrices have only with one thread con-
taining information). In the rate-3 code, we use a 4-
QAM constellation and transmit three symbols per channel
use (i.e., the space-time constellation matrices have three
threads containing information). As observed in [14], one
obtains a small but sizable performance gain when using
rate-3 TAST code in a 3 × 1 configuration at this SNR’s
range. For both variants, we can observe that the per-
formance of the proposed MMSE-GDFE lattice decoder is
less than 0.1 dB away from the ML decoder. The main
disadvantage of the rate-3 code is that it corresponds to an
under-determined system with 6 excess unknowns. There-
fore, when using the same decoder to decode both rate-1
and rate-3 codes, one can measure the average complexity
increase with the excess dimensions by comparing the ratio
of both decoding complexities. If we define

γ =
Average complexity of decoding rate-3 code
Average complexity of decoding rate-1 code

, (5)

then a straightforward implementation of the GSD, as out-
lined in [13], would result in γ = O (

46
)
. In fact, even with

the modification proposed in [14], Dayal and Varanasi could
only brings this number down to γ = 460 at an SNR of 30
dB. In Table IV, we report the values of complexity ratio
γ for the proposed algorithm at different SNRs, where one
can see the significant reduction in complexity (i.e., from
460 to 12 at an SNR of 30 dB). Also, note that a complex-
ity ratio of γ = 460 in [14] was obtained as a ratio of the
complexity of their generalized sphere decoder for the rate-
3 TAST code [14] over that of the sphere decoder for the
rate-1 TAST code (which is greater than the complexity
of MMSE-GDFE lattice decoder for the rate-1 TAST code
used as the denominator of (5)), and therefore, the reduc-
tion in complexity obtained by our algorithm compared to
the GSD [13], [14] is more than the factor 460/12 = 38.33
in this scenario. Based on experimental observations, we
also expect this gain in complexity reduction to increase
with the excess dimension m − n. In fact, based on this
result, one is tempted to conjecture that the complexity
of the proposed algorithm grows polynomially in the num-
ber of variables even in an under-determined configu-
ration (i.e., a cubic complexity in the number of variables
would result in γ = O (27) in this example). If this claim is
true, then this will be the first known algorithm with near-
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TABLE I

Average Complexity Ratio of the proposed algorithm for

Rate-3 TAST Code over Rate-1 TAST Code (with the same

rate) in a 3 × 1 MIMO System

SNR (dB) 22 24 26 28 30
γ 41 31 23 16 12

ML performance and polynomial complexity in an under-
determined configuration. Unfortunately, we don’t have a
rigorous proof for this claim at the moment. Finally, we
stress that the near-ML performance of the proposed algo-
rithm, with complete search, was observed in many other
scenarios. We, however, opted not to report these results
for brevity.

To illustrate our second point, Fig. 2 compares the per-
formance of the linear complexity variant of our algorithm
with that of the YWWF decoder [11], [12] in a 4 × 4 V-
BLAST MIMO system with a 4-QAM constellation. From
the figure, one can see the 3 dB gain offered by the pro-
posed algorithm compared to the YWWF decoder. In fact,
quite surprisingly, the performance of the proposed linear
complexity algorithm is within a fraction of a dB from that
of ML decoder, whereas the algorithm in [11], [12] is more
than 3 dB away from the performance ML detection. The
comparison is done for a system with m ≤ n because the
YWWF decoder does not extend to under-determined con-
figurations. Finally, we only reported numerical results in
two scenarios for brevity and the conclusions drawn from
these two examples were found to hold in many other sce-
narios as well.

V. Conclusion

In this paper, we have proposed a new decoding algo-
rithm for linear Gaussian channels that combines MMSE-
GDFE filtering, lattice reduction techniques with greedy
ordering and lattice decoding using Schnorr-Euchner enu-
meration. The proposed algorithm offers near-ML decod-
ing and extends naturally to under-determined systems
(more unknowns than observations). In under-determined
systems, the proposed algorithm was shown to offer signif-
icant complexity reduction compared to the most efficient
implementation of ML decoding available in the literature.
By using a dynamic termination strategy for the Schnorr-
Euchner enumeration stage, we developed a generalization
of the basic MMSE-GDFE lattice decoder that allows for
graceful performance-vs-complexity tradeoff. In the lowest
complexity implementation, the complexity of this algo-
rithm collapses to a linear function in the number of vari-
ables (assuming very slow fading). This linear complexity
variant was shown to significantly outperform the YWWF
linear complexity decoder in a V-BLAST configuration. Al-
though our focus was devoted to a point-to-point MIMO
configuration, it is straightforward to see that the proposed
algorithm can be utilized in other interesting scenarios such
as an overloaded multiuser code division multiple access
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Fig. 2. Performance of linear complexity decoding algorithms in a
4 × 4 V-BLAST system with a 4-QAM constellation.

(CDMA) system, for example.

One of the most interesting venue for future work is to
pursue a theoretical complexity analysis of the proposed
algorithm. This analysis is now well motivated by the
experimental results which suggest that the average com-
plexity of the proposed algorithm only grows polynomially
with the number of variables for a wide range of SNRs,
m and n even in an under-determined configuration while
maintaining near-optimal performances. If this claim holds
against the test of the theoretical analysis, the proposed
algorithm will prove to be the first known near-optimal
decoding technique that enjoys polynomial complexity in
under-determined linear Gaussian channels.
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